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Abstract

Heatmap regression has become the most prevalent

choice for nowadays human pose estimation methods. The

ground-truth heatmaps are usually constructed via cover-

ing all skeletal keypoints by 2D gaussian kernels. The stan-

dard deviations of these kernels are fixed. However, for

bottom-up methods, which need to handle a large vari-

ance of human scales and labeling ambiguities, the cur-

rent practice seems unreasonable. To better cope with these

problems, we propose the scale-adaptive heatmap regres-

sion (SAHR) method, which can adaptively adjust the stan-

dard deviation for each keypoint. In this way, SAHR is

more tolerant of various human scales and labeling am-

biguities. However, SAHR may aggravate the imbalance

between fore-background samples, which potentially hurts

the improvement of SAHR. Thus, we further introduce the

weight-adaptive heatmap regression (WAHR) to help bal-

ance the fore-background samples. Extensive experiments

show that SAHR together with WAHR largely improves the

accuracy of bottom-up human pose estimation. As a result,

we finally outperform the state-of-the-art model by +1.5AP
and achieve 72.0AP on COCO test-dev2017, which is com-

parable with the performances of most top-down methods.

Source codes are available at https://github.com/

greatlog/SWAHR-HumanPose.

1. Introduction

Multi-person human pose estimation (HPE) aims to lo-

cate skeletal keypoints of all persons in a given RGB image.

It has been widely applied in human activity recognition,

human computer interaction, animation etc. Current human

pose estimation methods fall into two categories: top-down

∗This work is done when Zhengxiong is an intern at MEGVII Research.
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Figure 1. Top row: the noses of different persons are covered by

gaussian kernels with the same standard deviation. Bottom row:

the standard deviations for keypoints of different persons are adap-

tively adjusted in SAHR.

and bottom-up. In top-down methods, all persons are firstly

cropped out by a human detector and then resized to the

same size before they are input to the keypoints detector.

Oppositely, bottom-up methods directly detect keypoints of

all persons simultaneously. It is more light-weight fast but

suffers from various human scales.

Heatmap regression is widely used in both top-down

and bottom-up HPE methods. The ground-truth heatmaps

are constructed by putting 2D Gaussian kernels on all key-

points. They are used to supervise the predicted heatmaps

via L2 loss. This method is easy to be implemented and

has much higher accuracy than traditional coordinate re-

gression [35, 34, 30]. However, in current practice, different

keypoints are covered by gaussian kernels with the same

standard deviation [36, 6, 25], which means that different

keypoints are supervised by the same constructed heatmaps.
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We argue that this is unreasonable in two aspects. Firstly,

keypoints of different scales are semantically discriminative

in regions of different spatial sizes. It may cause confusion

to put the same gaussian kernel on all keypoints. As shown

in the top row of Figure 1, the noses of different persons

are covered by gaussian kernels with the same deviation

(σ = 2). In (a), the covered region is restricted on the top

of the nose. But in (b), the Gaussian kernel could cover the

face, and in (c), the whole head is even covered. The various

covered regions for the same keypoint may cause semantic

confusion. Secondly, even humans could not label the key-

points with pixel-wise accuracy, and the ground-truth co-

ordinates may have inherent ambiguities [13, 8]. Thus the

keypoints could be treated as distributions (instead of dis-

crete points) centered around the labeled coordinates. Their

standard deviations represent their uncertainties and should

be proportion to the labeling ambiguities. However, current

practice keeps the standard deviations fixed. It seems to

have ignored the influence of various labeling ambiguities

of different keypoints.

From the above discussion, the standard deviation for

each keypoint should be related to its scale and uncertainty.

A straightforward way to solve these issues is manually

labeling different keypoints with different standard devia-

tions. However, this work is extremely labor-intensive and

time-consuming. Besides, it is difficult to define customized

standard deviations for different keypoints. Towards this

problem, we propose the scale-adaptive heatmap regression

(SAHR), which can adaptively adjust the standard deviation

for each keypoint by itself.

Specifically, we firstly cover all keypoints by Gaussian

kernels of the same base standard deviation σ0. We add

a new branch to predict scale maps s, which are of the

same shape as ground-truth heatmaps. Then we modify

the original standard deviation for each keypoint to σ0 · s
by a point-wise operation. Thus to some extent, s rep-

resents the scales and uncertainties of corresponding key-

points. In this way, the suitable standard deviations for

different keypoints could be adaptively learned, and thus

SAHR may be more tolerant of various human scales and

labeling ambiguities. However, as shown in the bottom

row of Figure 1, SAHR may aggravate the imbalance be-

tween fore-background samples, which potentially restricts

the improvements of SAHR [21, 19]. Motivated by focal

loss for classification [21], we further introduce the weight-

adaptive heatmap regression (WAHR), which can automati-

cally down-weight the loss of relatively easier samples, and

focus more on relatively harder samples. Experiments show

that the improvements brought by SAHR can be further ad-

vanced by WAHR.

Our contributions can be summarized as four points:

1. To the best of our knowledge, this is the first paper that

focuses on the problems in heatmap regression when

tackling large variance of human scales and labeling

ambiguities. We attempt to alleviate these problems

by scale and uncertainty prediction.

2. We propose a scale-adaptive heatmap regression

(SAHR), which can adaptively adjust the standard de-

viation of the Gaussian kernel for each keypoint, en-

abling the model to be more tolerant of various human

scales and labeling ambiguities.

3. We propose a weight-adaptive heatmap regression

(WAHR) to alleviate the severe imbalance between

foreground and background samples. It could automat-

ically focus more on relatively harder examples and

fully exploit the superiority of SAHR.

4. Our model outperforms the state-of-the-art model by

1.5AP and achieves 72.0AP on COCO test-dev2017,

which is comparable with the performances of most

top-down methods.

2. Related Works

2.1. Bottom­up Human Pose Estimation

Bottom-up HPE methods firstly detect all identity-free

keypoints and then group them into individual persons.

Compared with recent top-down HPE methods [6, 37, 33,

3], bottom-up methods are usually inferior on accuracy.

However, since they do not rely on human detectors and

could decouple the runtime with the number of persons,

bottom-up methods may have more potential superiority on

speed [4]. But on the other hand, bottom-up methods have

to tackle the grouping problem and large variance of human

scales.

Recent works about bottom-up HPE mostly focus on

developing better grouping methods [24, 27, 19, 17, 38].

In [17], a Part Intensity Field (PIF) and a Part Association

Field (PAF) are used to localize and associate body parts.

In [19], the body parts are learned in the same way as key-

points by heatmaps. And in [38], keypoints are grouped ac-

cording to their offsets from corresponding center points. In

this paper, we use associative embedding proposed in [24],

which simple yet proved to be effective for points group-

ing [1, 10, 18]. Although the grouping method has been

advanced a lot, few works are done about the various hu-

man scales. In this paper, we mainly focus on the problems

in bottom-up HPE when tackling large variance of human

scales.

2.2. Heatmap Regression

Heatmap regression is widely used for semantic land-

marks localization, such as keypoints of human faces [2],

hands [32], bodies [36, 25] and household objects [29]. The
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ground-truth heatmaps are constructed by putting 2D Gaus-

sian kernels on the labeled points. The pixel values on the

heatmaps are usually treated as the probabilities of corre-

sponding pixels being the keypoints. This method is easy

to be implemented and could potentially attain pixel-wise

accuracy. Thus heatmap regression has become the domi-

nant method for HPE. However, current methods typically

cover all keypoints by Gaussian kernels with the same stan-

dard deviations. It may work well for top-down methods,

in which all persons are resized to the same size. But in

bottom-up methods, in which persons are of various scales,

it seems to be more desirable to adjust the standard devia-

tion for each keypoint according to the scale of the corre-

sponding person.

2.3. Uncertainty Prediction

Recently, uncertainty prediction has become an impor-

tant method for many tasks [5, 15, 11, 31]. As there

are usually inevitable labeling ambiguities in the training

datasets [31], it is better to explicitly model the uncer-

tainty for predictions. In [13], He et al. treat the positions

of ground-truth bounding boxes as Gaussian distributions

around the labeled coordinates, and use KL loss [23] to su-

pervise the model. In [8], a similar idea is adopted to predict

the coordinates and objecting scores of bounding boxes. For

HPE, inherent ambiguities may also exist in ground-truth

keypoint, such as inaccurate labeling, occlusion, or ambigu-

ous cases. Original heatmap regression covers keypoints by

Gaussian kernels while keeping standard deviations fixed.

In that case, the ambiguities of different keypoints are as-

sumed to be the same. This implicit assumption may be

too strong and potentially hurt the performance. In this

paper, the scale-adaptive heatmap regression alleviates this

problem by introducing scale maps to adaptively modify the

standard deviation for each keypoint.

3. Proposed Method

3.1. Formulation

Suppose Cp
k = {xp

k, y
p
k} denotes the coordinate of the

kth keypoint of the pth person, and h
p denotes its corre-

sponding ground-truth heatmap, then the covered region for

Cp
k is written as

h
p
k,i,j = e−((i−xp

k)
2+(j−yp

k)
2)/2σ2

s.t. ‖i− xp
k‖1 ≤ 3σ ‖j − ypk‖1 ≤ 3σ,

(1)

where σ denotes the standard deviation, and {k, i, j} in-

dicates the position of pixel on h
p. For ‖i − xp

k‖>3σ or

‖j−ypk‖>3σ, we have h
p
k,i,j = 0. If the number of persons

is N , then the overall ground-truth heatmaps are

H
σ = max{h1,h2, . . . ,hN}, (2)

where max is pixel-wisely operated.

Suppose the predicted heatmaps are P, then the regres-

sion loss is

Lregressoin = ‖P−H
σ‖22. (3)

3.2. Scale­Adaptive Heatmap Regression

In previous methods, the standard deviation σ is fixed

as σ0 for all keypoints, in which case the ground-truth

heatmaps are denoted as H
σ0 . However, keypoints of dif-

ferent scales have semantically discriminative regions, thus

they are expected to be covered by Gaussian kernels with

different deviations. Since it is hard to manually label each

keypoint, we hope that the model could learn to adjust σ by

itself.

We add a new branch to predict the scale maps s, which

are of the shape with ground-truth heatmaps. For keypoint

Cp
k = {xp

k, y
p
k}, we modify the standard deviation to σ0 ·

sk,xp
k,y

p
k
. then the covered region for Cp

k becomes

h
p
k,i,j = e

−((i−xp
k)

2+(j−yp
k)

2)/2(σ0·sk,x
p
k
,y

p
k
)2

s.t. ‖i− xp
k‖1 ≤ 3σ ‖j − ypk‖1 ≤ 3σ.

(4)

Since the covered region is relatively small, we may have

sk,xp
k,y

p
k
≈ sk,i,j for ‖i− xp

k‖1 ≤ 3σ and ‖j − ypk‖1 ≤ 3σ.

Thus, for simplicity, the modification can be written as an

element-wise operation:

h
p
k,i,j = e−((i−xp

k)
2+(j−yp

k)
2)/2(σ0·sk,i,j)

2

s.t. ‖i− xp
k‖1 ≤ 3σ ‖j − ypk‖1 ≤ 3σ.

(5)

We denote the modified heatmaps as H
σ0·s. If we express

H
σ0·s by original heatmaps Hσ0 , then we have

H
σ0·s

k,i,j =

{

(Hσ0

k,i,j)
1/sk,i,j H

σ0

k,i,j > 0

H
σ0

k,i,j H
σ0

k,i,j = 0.
(6)

H
σ0·s is what we call scale-adaptive heatmaps. It can

be attained from an element-wise operation over original

heatmaps, thus it is also easy to be implemented.

For keypoints whose scale factors are larger than 1, their

corresponding standard deviation will be larger than σ0,

which means that the region covered by this Gaussian ker-

nel will also become larger. Otherwise the reverse. Thus,

to some extent, the scale factor may reflect the scale of the

corresponding person.

Furthermore, some changes need to be made to stabilize

the training. Firstly, we add a regularizer loss for the pre-

dicted scale maps:

Lregularizer = ‖(1/s− 1)1
Hσ0/s>0‖22, (7)

in which 1Hσ0·s>0 denotes the mask that keeps only regions

covered by gaussian kernels. Secondly, we transform the
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Figure 2. During training, the ground-truth heatmaps are firstly scaled according to predicted scale maps and then are used to supervise

the whole model via weight-adaptive loss. During testing, the predicted heatmaps and associative embeddings are used for grouping of

individual persons.

Minimize

L2 Loss

(a) (b)

Figure 3. L2 loss cannot appropriately measure the difference be-

tween two distributions. Even if the loss is reduced a lot, the center

points of these two distributions may keep unchanged. Thus orig-

inal heatmap regression has to fix the standard deviation for all

keypoints, and our scale-adaptive heatmap regression needs to add

regularizer loss for scale map.

exponential form of Hσ0·s into a polynomial series by Tay-

lor expansion at s = 1. We omit terms higher than the

second order and have:

H
σ0·s

k,i,j =






1

2
H

σ0

k,i,j(1 + (1 +αk,i,j ln(H
σ0

k,i,j))
2) H

σ0

k,i,j > 0

0 H
σ0

k,i,j = 0,

(8)

where α = 1/s− 1. Then, the total loss is written as:

Ltotal = Lregressoin + λLregularizer

= ‖P−H
σ0·s‖22 + λ‖α1

Hσ0/s>0‖22,
(9)

where λ is the weight for regularizer term. In practice, we

use λ = 1. This is what we call scale-adaptive heatmap

regression (SAHR).

3.3. Relation to Uncertainty Prediction

In [13], He et al. argue that there are inherent label-

ing ambiguities of box coordinates in some cases. Thus

they treat both the predicted and ground-truth coordinates

as Gaussian distributions, and the standard deviations could

represent the uncertainties of the coordinates. The loss is

constructed as KL loss [23]:

L ∝ ‖Xp −Xg‖22
2σ2

+
1

2
log(σ2), (10)

where Xp and Xg denote the predicted and ground-truth

coordinates respectively. And σ, which is predicted by the

model, denotes the standard deviations of assumed Gaus-

sian distributions. The former and later terms of this loss

could also be treated as regression and regularizer loss re-

spectively. It will automatically down-weight the regression

loss of coordinates with relatively larger uncertainties, and

thus could be more tolerant of various labeling ambiguities.

The success of the original heatmap regression could

also be partially explained by the same idea. But heatmap

regression uses L2 loss instead of KL loss to measure the

difference between two distributions. As shown in Figure 3,

simply minimizing L2 loss could not lead the model ap-

propriately. Thus, original heatmap regression has to fix

the standard deviations. However, the fixed value maybe

not suitable for all keypoints and potentially hurt the per-

formance. We still use L2 loss in SAHR. But instead of

keeping the standard deviations fixed, we add a regularizer

term to help lead the model to converge to the desired di-

rection. SAHR combines the merits of both heatmap and

coordinate regression.

From this perspective, the scale factor sk,i,j could also

represent the uncertainty of the corresponding keypoint.

While in the previous section we infer that scale factors

indicate the scales of corresponding persons. These two

statements may be consistent. The relation is also intuitive:

larger persons are more likely to be labeled with larger ab-

solute error, and thus the scale factors may be proportional

to the uncertainties of corresponding persons.
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Methods Backbone Input Size #Params GFLOPs AP AP 50 AP 75 APM APL

w/o mutli-scale test

OpenPose [4] - - - - 61.8 84.9 67.5 57.1 68.2
Hourglass [25] Hourglass 512 277.8 206.9 56.6 81.8 61.8 49.8 67
PersonLab [27] ResNet-152 1401 68.7 405.5 66.5 88.0 72.6 62.4 72.3

PifPaf [17] - - - - 66.7 62.4 72.9
HrHRNet [7] HRNet-W32 512 28.5 47.9 66.4 87.5 72.8 61.2 74.2

HrHRNet [7] + SWAHR HRNet-W32 512 28.6 48.0 67.9 88.9 74.5 62.4 75.5
HrHRNet [7] HRNet-W48 640 63.8 154.3 68.4 88.2 75.1 64.4 74.2

HrHRNet [7] + SWAHR HRNet-W48 640 63.8 154.6 70.2 89.9 76.9 65.2 77.0
w/ mutli-scale test

Hourglass [25] - 512 277.8 206.9 63.0 85.7 68.9 58.0 70.4
PersonLab [27] - 1401 68.7 405.5 65.5 86.8 72.3 60.6 72.6
HrHRNet [7] HRNet-W48 640 63.8 154.3 70.5 89.3 77.2 66.6 75.8

HrHRNet [7] + SWAHR HRNet-W48 640 63.8 154.6 72.0 90.7 78.8 67.8 77.7

Table 1. Results on COCO test-dev2017. Top: without multi-scale test. Bottom: with multi-sale test (scale factors are 0.5, 1.0, and 1.5).

3.4. Weight­Adaptive Heatmap Regression

We experimentally find that SAHR may aggravate the

imbalance between fore-background samples in heatmap

regression. This imbalance may restrict the improvement

of SAHR. Most values in H
σ0·s are zero, which may lead

the model to overfit on background samples. In [21], Lin

et al. propose focal loss to alleviate a similar problem in

classification. It could adaptively down-weight the loss of

well-classified samples and thus help the model to focus on

relatively harder samples.

To apply similar idea in heatmap regression, the straight-

forward way is defining a weight tensor W for original L2

loss:

Lregression = W · ‖P−H‖22, (11)

And W can be defined as

Wk,i,j =

{

(1−Pk,i,j) {k, i, j} is positive sample

Pk,i,j {k, i, j} is negative sample
(12)

However, in heatmap regression, the pixel values are con-

tiguous, instead of discrete 1 or 0, thus it is difficult to de-

termine which are positive (negative) samples.

Towards this issue, we propose a weight-adaptive

heatmap regression (WAHR), in which the loss weights are

written as:

W = (H)γ · ‖1−P‖+ ‖P‖ · (1− (H)γ) (13)

where γ is the hyper-parameter that controls the position

of a soft boundary. And the soft boundary is defined as a

threshold heatmap value p, where 1−pγ = pγ . For samples

with heatmap values larger than p, their loss weights are

more close to (1 − P), otherwise are more close to P. We

can get the threshold p = 2−
1

γ . In practice, we use γ =
0.01.

Experiments in Sec 4.2 show that WAHR can further ad-

vance the improvement of SAHR. When SAHR and WAHR

are used together, we call it the scale and weight adaptive

heatmap regression (SWAHR).

Methods AP AP 50 AP 75 APM APL

Top-down methods

Mask-RCNN [12] 63.1 87.3 68.7 57.8 71.4
G-RMI [28] 64.9 85.5 71.3 62.3 70.0

Sun et al. [34] 67.8 88.2 74.8 63.9 74.0
G-RMI [28] + extra data 68.5 87.1 75.5 65.8 73.3

CPN [6] 72.1 91.4 80.0 68.7 77.2
RMEPE [9] 72.3 89.2 79.1 68.0 78.6
CFN [14] 72.6 86.1 69.7 78.3 64.1

CPN(ensemble) [6] 73.0 91.7 80.9 69.5 78.1
SimpleBaseline [37] 73.7 91.9 81.1 70.3 80.0

HRNet-W48 [33] 75.5 92.5 83.3 71.9 81.5
Bottom-up methods

OpenPose [4] 61.8 84.9 67.5 57.1 68.2
Hourglass [25] 65.5 86.8 72.3 60.6 72.6

PifPaf [17] 66.7 - - 62.4 72.9
SPM [26] 66.9 88.5 72.9 62.6 73.1

PersonLab [27] 68.7 89.0 75.4 64.1 75.5
HrHRNet-W48 [7] 70.5 89.3 77.2 66.6 75.8

HrHRNet-W48 [7] + SWAHR 72.0 90.7 78.8 67.8 77.7

Table 2. Results on COCO test-dev2017. Top: top-down methods.

Bottom: bottom-up methods (with multi-scale test).

3.5. Implementation Details

In this paper, we mainly implement the proposed

heatmap regression on HrHRNet [7], which is a HRNet [33]

with deconvolution modules. As shown in Figure 4, it

predicts multi-scale heatmaps, which are 1/4 and 1/2
sizes of the original image respectively. During training,

these two branches are independently supervised by dif-

ferent heatmaps. During testing, it aggregates multi-scale

heatmaps to form the final predictions. The larger size of

heatmaps largely benefits the accuracy of keypoints detec-

tion, and the heatmaps aggregation helps the model achieve

remarkable results with only a single-scale test. The group-

ing is done by associate embedding [24]. For SAHR we

add an extra branch to predict scale maps, and the model is

denoted as HrHRNet + SAHR. If only WAHR is used, the

model is denoted as HrHRNet + WAHR. And if both meth-

ods are used, the model is denoted as HrHRNet + SWAHR.
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Figure 4. Implementation of scale and weight adaptive heatmap

aggregation on HrHRNet.

4. Experiments

4.1. COCO Keypoint Detection

Dataset. Most of our experiments are done COCO

dataset [22], which contains over 200K images and 250K

person instances. Our models are trained on COCO

train2017 (57K images), and evaluated on COCO val2017

(5K images) and COCO test-dev (20K images).

Evaluation metric. We use the standard evaluation met-

ric Object Keypoint Similarity (OKS) to evaluate our mod-

els. OKS =
∑

i exp(−d2

i /2s
2k2

i )δ(vi>0)
∑

i δ(vi>0) , where di is the

Euclidean distance between the detected keypoint and its

corresponding ground-truth, vi is the visibility flag of the

ground-truth, s denotes the person scale, and ki is a per-

keypoint constant that controls falloff. We report the stan-

dard average precision (AP ) and recall, including AP 50

(AP at OKS=0.5), AP 75, AP (mean of AP scores from

OKS=0.50 to OKS=0.95 with the increment as 0.05, APM

(AP scores for person of medium sizes) and APL (AP
scores for persons of large sizes).

Training. Following the setting of [24, 7], we augment

the data by random rotation ([−30◦, 30◦]), random scaling

([0.75, 1.25]), random translation ([−40, 40]) and random

horizontal flip. The input image is then cropped to 512×512
(or 640× 640).

The models are optimized by Adam [16] optimizer, and

the initial learning rate is set as 2 × 10−3. Each model is

trained for 300 epochs and the learning rate will linearly

decay to 0 in the end.

Testing. Following the setting of [7], the input image is

firstly padded to square and then resize the short side to 512
(or 640). We also perform heatmap aggregation by averag-

ing output heatmaps of different sizes. The flip test is also

performed in all experiments. For the multi-scale test, we

resize the original image by scale factor 0.5, 1.0, and 1.5
respectively, and then aggregate the heatmaps as the final

prediction.

Results on COCO test-dev2017. We firstly make com-

parisons with the state-of-the-art bottom-up HPE methods.

Results are shown in Table 1. As one can see, with the

help of SWAHR, HrHRNet can achieve the best results with

or without multi-scale test. And if with multi-scale test,

it can finally achieve 72.0 AP score on test-dev2017. On

the other hand, SWAHR can bring steady improvements

to HrHRNets with different backbones and different input

sizes, while introducing only marginal computational cost.

Then we make comparisons with recent top-down HPE

methods. Results are shown in Table 2. As one can see,

with the help of SWAHR, HrHRNet-W48 has exceeded

many early top-down methods. CPN [6] is the champion of

COCO Keypoint Challenge in 2017, and our method gets

nearly the same results as it.

4.2. Analysis

Ablation study. We design comparative experiments to

validate the improvement brought by SAHR and WAHR re-

spectively. We use HrHRNet-W32 as the baseline model,

and validate these models on COCO val2017 dataset with-

out multi-scale test. As we can see in Table 3, SAHR

can bring an improvement of +0.7AP . If WAHR is fur-

ther added, they together could bring an improvement of

+1.8AP . Also, WAHR alone can bring improvement of

+1.3AP improvements respectively. This is because the

server imbalance between fore-background samples also

exists in original heatmap regression.

Looking into the improvements on different scales, we

can see that WAHR can largely benefit the keypoints de-

tection of both medium and large persons. This is easy to

understand: the severe imbalance between fore-background

samples exists both for large and medium persons, thus

WAHR could benefit both. Since the original base stan-

dard deviation is only suitable for relatively larger persons

(Figure 1 (a)), SAHR mainly focuses on adjusting the stan-

dard deviations for relatively smaller persons. Thus, the im-

provements brought by SA are mainly attributed to better

performance on medium persons.

SAHR WAHR AP APM APL

67.1 61.5 76.1√
68.4 62.5 77.0√
67.8 62.5 76.1√ √
68.9 63.0 77.5

Table 3. Ablation study on SAHR and WAHR respectively. The

results are reported on COCO val2017 dataset. Single-scale test

only.

Visualizing scale maps. We visualize the learned scale

maps 1/s in Figure 5. We resize the maps to the same size

as the original image, take mean values along the channel

dimension, and normalize the maps along spatial dimen-

sions. The colormaps are drawn as that redder pixels indi-

cate larger values, which also means smaller scale factors.

As one can see, on the whole, smaller persons usually have

smaller scale factors. For the scales of persons in boxes A,

B, and C, we have A>B>C. While for scale factors in
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Figure 5. Visualization of 1/s. Redder pixels indicate larger values i.e. smaller scale factors. Within each image, the order of person scales

(A>B>C) is usually the same as the order of scale factors (A>B>C).

these boxes, we can also get the same order. It suggests that

SAHR adaptively down-scales the standard deviations for

keypoints of smaller persons, while up-scales that for rel-

atively larger ones. Without extra supervision, SAHR has

learned the relationship between human scales and the suit-

able standard deviations.

Naive baseline. Although the standard deviation for

each keypoints is not labeled. The scale for each person

could be roughly deduced from the bounding box. As a

comparison, we substitute the scale maps in SAHR with the

deduced scale factor as a naive baseline. We call it scaled

heatmap regression (SHR). Specifically, we manually cal-

culate the scale factor sk,i,j = Wbox/Wbase, where Wbox

denotes the width of the bounding box of corresponding

person, and Wbase is the base width. In practice, we use

Wbase = 256. We use HrHRNet-W32 as the baseline. The

comparative results are shown in Table 4. SHR even hurts

the performance of the original model. This is easy to ex-

plain: the width of bounding boxes can not exactly represent

the person scales, because of various poses and occlusions.

This naive implementation may cause more confusion, and

thus hurt the original performance. Instead, SAHR could

avoid this case by additively learning the scale maps.

Methods AP AP 0.5 AP 0.75 APM APL

baseline 67.1 86.2 73.0 61.5 76.1
SHR 63.9 84.7 68.0 55.5 77.0

SAHR 67.8 86.8 73.7 62.5 76.1

Table 4. Comparison with naive baseline on COCO val2017 with-

out multi-scale test.

Study of λ. In SAHR, there is a hyper-parameter λ,

i.e. the weight for regularizer loss. Larger λ means that

the model has to ‘pay more’ to adjust the standard devia-

tion. It indicates that we are more confident about the man-

ually constructed ground-truth heatmaps. And smaller λ
indicates that we encourage the model to adjust the stan-

λ 0.1 0.5 1.0 +∞
AP 67.6 67.8 67.8 67.1

Table 5. Study of hyper-parameter λ. Results are reported on

COCO val2017 dataset, without WA and multi-scale test.

dard deviation for each keypoint by itself. We compare the

performance of HrHRNet-W32 + SAHR with different λ
on COCO val2017 dataset. As shown in Table 5, when

λ = +∞, which means that the model is not allowed to

adjust the standard deviations, it will degrade to the original

baseline model. On the whole, the improvement brought

by SA is no too sensitive to λ, as the results keep the same

when λ = 1 and λ = 0.5. But when λ becomes too small,

i.e. λ = 0.1, the model may be able to largely adjust the

standard deviations, while the model may be not reliable

enough. In such cases, the improvements may get hurt.

Study of γ. In WAHR, the hyper-parameter γ controls

the soft boundary between positive and negative samples.

Smaller γ indicates that more samples will be determined as

positive ones. To investigate the influence of γ, we compare

the performance of HrHRNet-W32 + WAHR with different

γ on COCO val2017 dataset. As shown in Table 6, when

γ decreases, the AP score firstly grows quickly, and then

get stable at 68.4, when γ = 0.001. As γ decreases, the

threshold value p will also exponentially decrease. When

γ = 0.01, p ≈ 8 × 10−31. In that case, almost all regions

that are covered by gaussian kernels have heatmap values

larger than p. Thus, a further decrement of γ makes little

difference to the final results.

γ 1.0 0.1 0.01 0.001
AP 67.8 68.2 68.4 68.4

Table 6. Study of hyper-parameter γ. Results are reported on

COCO val2017 dataset, without SA and multi-scale test.

Larger receptive filed V.S. Larger σ. The intuitive idea

is that a larger receptive field will benefit the accuracy of
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larger persons. In this section, we experimentally illustrate

that the accuracy of larger persons may be more related to

larger standard deviations that are used to construct ground-

truth heatmaps.

We first compare the results with different receptive

fields. We still use HrHRNet-W32 as the baseline model.

To exclude the influence of heatmaps aggregation, we only

use the results of larger heatmaps (1/2 size of the origi-

nal image). There are 4 residual blocks in this branch. We

change the dilation rates of their convolutional layers to

change the sizes of their receptive fields. Different models

are denoted as dddd, where each d denotes the dilation rates

of the corresponding residual block. The baseline model is

denoted as 1111. Then we change it to 1122 and 2222 to in-

vestigate the influence. As shown in Table 7, as the dilation

rates increases, the AP scores of large persons almost keep

the same. It indicates that the accuracies of large persons

are not restricted by the sizes of receptive fields.

Then we investigate the influence of standard deviations

that are used to construct the ground-truth heatmaps. Re-

sults of the 1/2 branch of HrHRNet-W32 are reported in

Table 8. As one can see, with an increase of σ, the perfor-

mance on medium persons becomes worse, while the model

performs better on large persons. It suggests that a larger

σ is more suitable for larger persons. This is also con-

sistent with our previous assumption: keypoints of larger

persons have larger semantically discriminative regions and

also larger labeling ambiguities.

dilation 1111 1122 2222
AP 66.6 66.6 66.7
APM 61.3 61.4 61.3
APL 75.0 75.0 75.1

Table 7. Study of receptive fields. Results are reported on COCO

val2017 dataset, without SA and multi-scale test.

σ 2 2.5 3
AP 66.6 66.1 65.4
APM 61.3 60.1 58.3
APL 75.0 75.2 75.4

Table 8. Study of receptive fields. Results are reported on COCO

val2017 dataset, without SA and multi-scale test.

4.3. CrowdPose

We further make comparisons with state-of-the-art HPE

methods on CrowdPose dataset [20]. It has more crow cases

than COCO [22], and thus is more challenging to multi-

person pose estimation. The training, validation, and test-

ing datasets contain about 10000, 2000, and 8000 images

respectively. The evaluation metric almost the same as that

of COCO, but with extra AP scores on relatively easier sam-

ples (APE) and relatively harder samples (APH ).

As shown in Table 9, top-down methods have lost

their superiority in crowd scenes. This is because top-

down methods assume that all persons could be completely

copped by the human detector, and each crop contains

only one person. However, this assumption does not hold

in crowd scenes, where persons are usually heavily over-

lapped. While bottom-up methods do not rely on the human

detector and may be better at tackling crowd scenes.

Based on HrHRNet, SWAHR could bring +5.7AP im-

provements without multi-scale test, and +6.2AP with

multi-scale test. which are much more significant on COCO

test-dev (Table 1). It indicates that SWAHR could bring

more improvements in crowd scenes. This may because that

SWAHR has taken the various human scales into consider-

ations, and this problem is more evident in crow scenes.

Methods AP AP 50 AP 75 APE APM APH

Top-down methods

Mask-RCNN [12] 57.2 83.5 60.3 69.4 57.9 45.8
AlphaPose [9] 61.0 81.3 66.0 71.2 61.4 51.1

SimpleBaseline [37] 60.8 84.2 71.5 71.4 61.2 51.2
Top-down with refinement

SPPE [20] 66.0 84.2 71.5 75.5 66.3 57.4
Bottom-up methods w/o multi-scale testt

OpenPose [4] - - - 62.7 48.7 32.3
HrHRNet-W48 [7] 65.9 86.4 70.6 73.3 66.5 57.9

HrHRNet-W48 [7] + SWAHR 71.6 88.5 77.6 78.9 72.4 63.0
Bottom-up methods w/ multi-scale testt

HrHRNet-W48 [7] 67.6 87.4 72.6 75.8 68.1 58.9
HrHRNet-W48 [7] + SWAHR 73.8 90.5 79.9 81.2 74.7 64.7

Table 9. Comparisons with top-down and bottom up methods on

CrowPose test dataset.

5. Conclusion

In this paper, we mainly focus on the problems in

heatmap regression when tackling various human scales and

labeling ambiguities. We propose a scale-adaptive heatmap

regression (SAHR), which can learn to adjust the standard

deviation for each keypoint by itself. Without extra supervi-

sion, experiments show that the model could learn the rela-

tion between standard deviation and the corresponding hu-

man scales. Also, as SAHR may aggravate the imbalance

between fore-background samples, we propose a weight-

adaptive heatmap regression (WAHR) to alleviate this prob-

lem. WAHR could automatically down-weight the loss of

well-classified samples and focus more on relatively harder

(usually foreground) samples. As a result, we finally out-

perform the state-of-the-art model by +1.5AP and achieve

72.0AP on COCO test-dev2017 dataset, which is compara-

ble with the performances of most top-down methods.
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