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Abstract

We propose a novel method for privacy-preserving train-

ing of deep neural networks leveraging public, out-domain

data. While differential privacy (DP) has emerged as a

mechanism to protect sensitive data in training datasets,

its application to complex visual recognition tasks re-

mains challenging. Traditional DP methods, such as

Differentially-Private Stochastic Gradient Descent (DP-

SGD), perform well only on simple datasets and shallow

networks, while recent transfer learning-based DP meth-

ods often make unrealistic assumptions about the availabil-

ity and distribution of public data. In this work, we argue

that minimizing the number of trainable parameters is the

key to improving the privacy-performance tradeoff of DP

on complex visual recognition tasks. Inspired by this argu-

ment, we also propose a novel transfer learning paradigm

that finetunes a very sparse subnetwork with DP. We con-

duct extensive experiments and ablation studies on two vi-

sual recognition tasks: CIFAR-100 ! CIFAR-10 (standard

DP setting) and the CD-FSL challenge (few-shot, multiple

levels of domain shifts) and demonstrate competitive exper-

imental performance.

1. Introduction

As computer vision becomes increasingly ubiquitous,

the robustness and privacy of vision models are a growing

concern. In fact, there are ample examples of privacy at-

tacks on standard deep learning models successfully reveal-

ing the contents of training data [40, 16, 35] – one attack

was able to reconstruct credit card and social security num-

bers [7]. This is particularly concerning in the field of com-

puter vision, where many applications, e.g., medical imag-

ing, work with sensitive and legally-protected data. The

onus of protecting private data falls upon machine learn-

ing practitioners, and, indeed, this responsibility may be

encoded into law by regulations such as the EU’s General

Data Privacy Regulation (GDPR) and the California Con-

sumer Privacy Act [11].

Although many notions of privacy have been proposed,

notably including k-anonymity [43], and its extension l-
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Figure 1. We propose a training framework that improves the

privacy-utility trade-off for deep neural networks on complex vi-

sual recognition tasks. By introducing a novel transfer learning

paradigm, our model trained with differential privacy is able to

achieve a performance comparable to its non-private counterpart.

diversity [31], differential privacy [13] has emerged as the

gold-standard for the field. Differential privacy is a formal-

ization of the notion of data privacy, providing strict upper

bounds on the information about a data record, which may

be obtained from resulting models [13, 9]. This is an at-

tractive guarantee – many applications of computer vision

involve sensitive datasets, which carry a strong obligation

to protect user data in which the exposure of even singular

data records is problematic [42, 3]. Differentially private

models also benefit from several auxiliary guarantees, such

as robustness to adversarial examples [27], and compliance

under data privacy laws [11]. Although differential privacy

is not a concept native to machine learning research, arising

instead from research into database privacy [13], differen-

tially private machine learning has been a burgeoning field

of research [1].

In practice, there are many obstacles to building power-

ful differentially private machine learning systems. There

is an inherent tradeoff between model utility and privacy

[18] – larger networks, in particular, suffer from far greater

disruption during training compared to their non-private
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counterparts, which results in significant penalties to utility.

This is due to the implementation of differentially private

machine learning – namely, differential privacy requires

bounding the influence of each example on the mini-batch

gradient. Given a data sample xi, the DP-SGD [1] algo-

rithm clips the per-sample gradient g(xi) in `2 norm, i.e.,

the gradient vector g is replaced by g/max(1, kgk2

C ) for a

clipping threshold C. It is evident that the norm is propor-

tional to the number of training parameters, and thus will

be large in deep neural networks, which leads to dramati-

cally greater gradient clipping in larger networks. On the

other hand, deep convolutional neural networks have en-

joyed great success in large-scale image and video recog-

nition tasks, and it has been shown that the depth of neural

networks is crucial for the expressive power of deep learn-

ing [23].

In this work, we propose a novel solution to improve the

privacy-utility tradeoff in deep neural networks with differ-

ential privacy (Figure 1). Our key idea is to leverage ad-

ditional, public, datasets to instill strong representations in

large models, which are then adapted to private datasets at

a minimal privacy cost. To further minimize the negative

effect of differential privacy, we minimize the number of

trainable parameters to only those necessary for effective

transfer learning. Not all neurons are created equal – in

particular, we identify normalization parameters [8, 51, 5]

as carrying domain-specific information, and find that the

domain gap between public and private datasets can be sig-

nificantly minimized by only finetuning these parameters.

Besides, we draw insights from model pruning [15] and

propose a novel approach to selecting and finetuning a very

small subset of parameters in convolutional layers.

In summary, our key contributions are as follows:

1. We develop a method for effectively scaling differen-

tial privacy to large neural networks, by leveraging out-

of-domain transfer learning and sparse network fine-

tuning.

2. We enable differential private training of models on ex-

tremely small (few-shot) private datasets at a reason-

able privacy cost.

3. We achieve state-of-the-art performance with a smaller

privacy budget on CIFAR-10, a prototypical bench-

mark for differentially private machine learning.

2. Related Work

The challenge of scaling up machine learning models

with limited access to data is not a new problem; in this

section, we review recent discoveries in the fields of non-

private few-shot learning and domain adaptation and draw

parallels to our work.

2.1. Differential privacy

Differential privacy was first proposed in the context of

securing statistical databases [13, 2] against user queries,

but quickly gained traction in the machine learning commu-

nity in the context of adversarial privacy attacks; formally, a

model acts as a database to which an adversary may submit

an arbitrary number of queries.

Research in differentially private machine learning mod-

els tracks a relaxed variant of differential privacy, known as

Renyi differential privacy (RDP) [32]. Deep learning mod-

els attain RDP guarantees via two alterations to the training

process: the clipping of per-sample gradients, and the ad-

dition of Gaussian noise to gradients, collectively known

as DP-SGD [14, 1, 20]. Since the amount of noise added

is a function of the number of parameters in the model,

the large model architectures favored in non-private set-

tings often do poorly under the regime of differential pri-

vacy. Furthermore, privacy guarantees decay as the number

of training iterations increases, so previous work in differ-

ential privacy has focused primarily on lightweight archi-

tectures which may be trained rapidly, on relatively simple

datasets [33, 44].

2.2. Differential privacy with additional data

One promising avenue of research has been the applica-

tion of representation learning and transfer learning to dif-

ferentially private training. A good initial representation,

garnered via pre-training on a public dataset, can often offer

reasonable accuracy on the target task with minimal training

time, and thus minimizing exposure to noise and to private

data.

Generally, the private data is assumed to be small, and

the task is to produce a model that achieves reasonable ac-

curacy on a large public dataset in the same domain as the

private data, minimizing the privacy leakage of the training

data by leveraging a learned representation. PATE trained

an ensemble of teacher models, which was then used to

train a student model, where ensemble voting and selective

response to student queries provided a suitable degree of

obfuscation [39]. Similarly, Private-KNN trained a feature

extractor on private data and classified queries via the k-

nearest neighbors in the feature space, where a random sub-

sampling of private data was used to augment the privacy

guarantee [55].

2.3. Few-shot learning

In settings where our private dataset is small, finetuning

models on this private data incurs a large privacy cost, as

individual data samples may be seen many times over the

course of finetuning the model up to a reasonable accuracy.

This is quite similar to the setting considered in few-shot

learning, where the goal is to quickly achieve competitive
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and generalizable performance with exposure to only a few

examples of each class.

Much of the research in few-shot learning has focused

on meta-learning [53, 30, 54, 41]. Although these meta-

learning methods can be successfully applied under the set-

ting of differential privacy, the construction and use of a

meta-learner incurs an additional privacy cost [28]. How-

ever, recent work [45] suggests that the performance of

these meta-learning algorithms has yet to outperform sim-

ple finetuning on top of a pre-trained embedding, and that

a good representation space produces a strong few-shot

learner.

2.4. Transfer learning and domain adaptation

To produce a good representation, we naturally wish to

leverage large public datasets; transfer learning is a well-

known method in which external datasets are used to pre-

train models, leading to faster convergence and greater

utility resulting from a strong initial representation space

[4, 36]. These large datasets are generally quite different in

domain from our private data, particularly when our private

dataset is small or specialized. To tackle this, we turn to

the sizable corpus of work in domain adaptation. There are

three main tracks of research in this area [50]: methods in-

centivizing the learning of domain-agnostic features via di-

rect optimization [17], adversarial approaches [47, 25], and

data-reconstruction approaches [6]. Most of these methods

involve whole-model retraining and sizable data from the

target domain, making them impractical under the regime

of differential privacy.

There is promise in retraining only some part of the

model; in particular, the tuning of normalization layers has

been shown to improve model robustness [5], and indeed,

improve domain adaptation [8, 49]. This method is encour-

aging because it is lightweight – normalization layers con-

tain a minuscule fraction of the total parameters of a model

– but also maintains representational power, as the bulk of

network parameters are isolated from the noise introduced

by DP-SGD.

3. Groundwork

Definition 1 (Differential Privacy). Suppose a model

M : D ! R is trained on two datasets, D,D0 2 D,

which differ only by a single data record. Then, for any

subset of outputs R 2 R, the model is said to satisfy (✏, �)-
differential privacy [13] if

Pr[M(D) 2 R]  e✏ · Pr[M(D0) 2 R] + �.

In other words, ✏ bounds the privacy loss on any individual

sample, and � is the probability that this bound does not

hold.

Definition 2 (Rényi Differential Privacy). Rényi Dif-

ferential Privacy (RDP) is a generalization of (✏, �)-
Differential Privacy that uses Rényi divergence as a distance

metric. The Rényi divergence of order ↵ between two dis-

tributions P and Q is defined as:

D↵(PkQ) =
1

↵� 1
logEx⇠P

"

✓

P (x)

Q(x)

◆↵�1
#

.

A model satisfies (↵, ✏)-RDP if

D↵(M(D)kM(D0))

=
1

↵� 1
logEx⇠M(D)

"

✓

Pr[M(D) = x]

Pr[M(D0) = x]

◆↵�1
#

 ✏.

It can be shown [32] that pure (✏, 0)-differential privacy is

equivalent to (1, ✏)-RDP, and, further, that if a model M

satisfies (↵, ✏)-RDP, then M also satisfies
⇣

✏+ log 1/�
↵�1 , �

⌘

-

differential privacy for any � 2 (0, 1).

RDP in machine learning. The implementation of RDP-

certifiable training methods in machine learning depends on

two components: per-sample gradients are clipped at some

fixed L2 norm threshold C, and Gaussian noise of magni-

tude �
2C2 is added to the gradient updates for a cleverly

chosen noise scale parameter �. This training procedure,

discussed in greater detail in Section 4.1, is critical to our

method’s inspiration.

Definition 3 (Moments Accountant). The moments ac-

countant is a method to measure the privacy cost ✏ incurred

in the training of a model according to the DP-SGD algo-

rithm summarized above, and discussed in detail by Abadi

et al [1]. Suppose a model M is trained for T steps with a

batch size L on a dataset of size N . Then, there exists two

constants c1, c2 for which for any ✏ < c1L
2T

N2 , the model is

(✏, �)-differentially private for any � > 0 if we choose the

noise scale � to be

� � c2
L
p

T log(1/�)

N✏
.

Note that as the number of training steps T increases, or

as the size of the dataset N decreases, the privacy cost ✏

increases, making small, challenging datasets particularly

difficult in the differentially private setting.

4. Our Approach

Our method aims to improve the privacy-utility trade-

off of deep learning models trained on private datasets. In

Section 4.1, we explain why it is difficult to apply differen-

tial privacy on large-scale visual recognition tasks. Then,
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Figure 2. An overview of our method. A model is first pre-trained on public data (left). Then, convolution parameters ✓conv and nor-

malization parameters ✓norm are transferred to private data (middle). We also construct a sparse mask mconv representing the important,

high-magnitude convolution parameters. During private data finetuning, only classifier parameters ✓
prv

cls , normalization parameters ✓norm

and unmasked convolution parameters mconv

J
✓conv , in red, receive gradient updates (right).

in Section 4.2, we discuss a naive solution – vanilla trans-

fer learning – that inspired our approach. Finally, in Sec-

tion 4.3, we introduce our solution by first explaining our

overall framework, and then the technical components that

facilitate differentially private training.

Notation. We introduce a transfer learning algorithm

which transfers information from a large, public dataset

Ds = {(Xs, ys)} to a small, private dataset Dt =

{(Xt, yt)}. We first pre-train the model fpub
✓

(x) with pa-

rameters ✓ = [✓1, ✓2] on the public dataset with an opti-

mizer O1, then fine-tune a subset of the model parameters

✓1 with an differentially-private optimizer O2 to produce a

private model fprv
✓

(x).

4.1. Challenges of deep private models

In the realm of non-private learning, it is well known

that more complex tasks require deeper, larger, and more

expressive models. However, larger models are not favored

in the differential privacy literature, and state-of-the-art re-

sults have largely been with small models on simple datasets

[33]. The lackluster performance of large models is because

as the number of trainable parameters increases, so too does

the overall L2 norm of the per-sample gradient. This means

that for a fixed clipping magnitude C, the gradient on each

weight must be clipped more aggressively, often leading

to the added Gaussian noise overwhelming the gradient on

each weight.

To demonstrate this phenomenon, suppose we naively

train a ResNet-18 (⇡ 11 million parameters) on CIFAR-10

under DP-SGD with a generously low noise scale of � = 1,

which only allows for 13 epochs before we breach ✏ > 2.0.

Even so, since the number of parameters is so large, the

magnitude of the clipped gradients on each weight is signif-

icantly smaller than the magnitude of the noise we add (Fig-

ure 3), which leads to poor performance compared to shal-

low networks. In short, an increase in the number of train-

able parameters dramatically increases the amount of train-

ing disruption caused by DP-SGD. Thus, in order to make

differentially private models competitive on large datasets,

our goal is to minimize the number of trainable parameters

during differentially-private training, while maintaining the

expressive power of deep networks.

4.2. Transfer learning

Transfer learning from a public dataset to a private

dataset is a natural solution in the context of learning with

differential privacy [37]. Previous studies have shown that

transfer learning can reduce the generalization error as well

as increase the convergence speed, effectively reducing the

spent privacy budget. In our parlance, transfer learning con-

siders a model fpub
✓

(x) composed of encoder parameters

✓enc and classifier parameters ✓
pub
cls . First, f✓(x) is trained
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Figure 3. The noise to gradient ratio in each layer. While training

ResNet-18 on CIFAR10 with differential privacy, we see that the

magnitude of Gaussian noise added greatly overwhelms that of the

clipped gradients in convolution layers (blue) and normalization

layers (green), and slightly overwhelms that of the classification

layer (red).

Figure 4. The percentage of training parameters in each layer of

ResNet-18 during finetuning. Our method chooses to finetune the

first few layers and all three 1×1 convolutional layers heavily and

while keeping most of the parameters in deeper layers frozen. This

coincides with the findings in domain adaptation that the earlier

layers are critical for handling domain shift.

on Ds, and then the transfer model fprv
✓

(x) = {✓enc, ✓
prv
cls },

composed of the source model’s encoder parameters and a

fresh set of classifier parameters, is finetuned on Dt. We

consider both classifier finetuning, in which only ✓
prv
cls is

trained on Dt, and whole-network finetuning, as bench-

marks for our method. Unfortunately, these vanilla trans-

fer learning methods are generally uncompelling; the for-

mer suffers from a low model utility, while the latter suffers

from high privacy cost (Section 5.7).

4.3. Network Sparsity

The mission is clear – we want to pick some subset of

model parameters to train under differential privacy. Choos-

ing larger subsets increases the adaptability of the model,

but also increases the amount of disruption in training; we

think that finding the balance between these two factors is a

field of research unto itself.

At first glance, the minimal set of parameters we must

tune are the classifier parameters ✓
prv
cls , i.e., vanilla trans-

fer learning. As demonstrated in Table 1, however, this ap-

proach fails to bridge the domain gap, leading to low accu-

racy.

In this work, we pilot two simplistic ways of selecting

a subset of trainable parameters inspired by other fields of

research. First, we finetune only the normalization and clas-

sification parameters under differential privacy. This is in-

spired by work in domain adaptation that found retraining

only normalization layers could capture the vast majority of

the performance of whole-network finetuning [8, 51, 45],

and indeed, that even simply recomputing the running data

statistics of normalization layers can effectively close the

gap [29]. We note that although prior work largely consid-

ers adaption of batch normalization layers, batch normal-

ization is incompatible with the computation of per-sample

gradients in DP-SGD, and so we tune group normalization

as a close analog. The parameters in normalization layers

generally account for a minuscule proportion (⌧ 1%) of

the total parameter count in these models, which makes this

methodology particularly lightweight; the amount of addi-

tional training disruption as compared to vanilla classifier

finetuning is negligible.

Second, we finetune a subset of convolution parameters,

in addition to tuning normalization and classification pa-

rameters. The convolution parameters make up the bulk of

total model parameters in image recognition models, and

tuning all convolution parameters leads to high training dis-

ruption, as demonstrated in Figure 3. Not all parameters are

created equal; our method selects a small subset of convo-

lution parameters to finetune.

4.4. Selecting transfer parameters

Formally, we consider a vision model f✓(x) composed

of convolution parameters ✓conv , normalization parameters

✓norm, and classifier parameters ✓cls. As a generalization

of vanilla transfer learning, we first train a source model

fpub
✓

(x) = {✓conv, ✓norm, ✓pubcls }

on Ds, and then construct a transfer model

fprv
✓

(x) = {✓conv, ✓norm, ✓prvcls }.

Then, we choose some subset ⌧ ⇢
S

{✓conv, ✓norm, ✓prvcls }
to finetune on Dt, while freezing the rest of the parameters.
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For those parameters not in ⌧ , we still compute their gradi-

ents during the backward pass, but we simply do not update

those model parameters, thereby not increasing the norm of

the effective gradient update.

Procedure 1: Normalization layer transfer. First, we

take ⌧ = ✓norm
S

✓
prv
cls . When tuning normalization lay-

ers, we first pre-train models with group normalization on

our public dataset, and then finetune the normalization lay-

ers on our private dataset, both tuning normalization param-

eters, as well as recomputing running normalization statis-

tics. This approach errs on the side of minimal training dis-

ruption, at the cost of model expressiveness.

Procedure 2: Convolution parameter transfer. We re-

fine our first approach by choosing a small set of convolu-

tion parameters ✓̂conv ⇢ ✓conv , to tune in addition to tuning

normalization and classification parameters. We pick

✓̂conv := {✓ : ✓ 2 ✓conv, k✓k > t}

for some magnitude threshold t > 0. We select t dynami-

cally so that we isolate out some fixed proportion of param-

eters p, i.e. |✓̂conv| = p|✓conv|, and in doing so, we create a

mask mconv over ✓conv so that ✓̂conv = mconv

J

✓conv .

This procedure is inspired by work done in model prun-

ing. Pruning is an active area of research focused on

decreasing the memory footprint of models at a minimal

penalty to model utility. Pruning has been fairly successful;

the Lottery Ticket Hypothesis paper found that by staged

pruning of convolution parameters with low magnitude,

models could be reduced by one to two orders of magni-

tude with a little-to-no decrease in model utility [15]. While

the original methodology in the non-private setting simply

trains the network on the target dataset, we note that prun-

ing based on the target private dataset incurs an additional

privacy cost [19]. Instead, we identify important parame-

ters (i.e., those with large magnitudes) based on single-stage

model training on our public dataset, under the hypothe-

sis that sub-networks that are valuable on the public dataset

will continue to be useful on the private data. Then, rather

than pruning out unimportant parameters, we instead freeze

them during training on the private data, masking out their

gradient updates with mconv , so that they may still provide

some model utility without exacerbating training disruption.

This procedure can be summarized as follows:

1. Train the source model f✓(x) on our public dataset

from scratch.

2. Select p% of convolution parameters with the highest

magnitude, creating a mask mconv .

3. Identify the set of transfer parameters ⌧ , composed of

our selected convolution parameters, as well as nor-

malization and classifier parameters.

4. Finetune only the set of transfer parameters ⌧ with DP-

SGD on the private dataset, to produce a differentially

private transfer model f 0
✓
(x).

We emphasize that under the paradigm of DP-SGD, the

privacy ✏ is independent of the choice of sparsity param-

eter p; however, higher sparsity reduces the magnitude of

noise and severity of clipping done during training, leading

to faster convergence and thus smaller ✏.

5. Experiments

We apply our method to two vision tasks: first, we tackle

image classification on CIFAR-10 [26], using CIFAR-100

as the public data. Then, we consider the context of

very small, out-of-domain, private datasets, and attempt

the Cross-Domain Few-Shot Learning (CD-FSL) challenge

[22], with a subset of ImageNet [12] as our public data.

5.1. Datasets

CIFAR-10 and CIFAR-100. CIFAR [26] is a well-

known subset of the 80 million tiny images dataset [46],

which is commonly used as an image classification bench-

mark. There are two disjoint variants: CIFAR-10, which

contains 10 object classes, and CIFAR-100, containing 100

object classes. These datasets each contain 60,000 32x32

RGB images split evenly among their object classes. This

is the standard sandbox for research in differential privacy,

and indeed, shallow networks trained with differential pri-

vacy are able to achieve high accuracies with little difficulty.

CD-FSL. The CD-FSL challenge [22] contains a single

source domain, miniImageNet [48], which is a subset of

ImageNet [12] containing 60,000 84 × 84 RGB images

evenly split among 100 classes. MiniImageNet is com-

monly used for in-memory fast prototyping. The challenge

also contains four target image classification datasets, with

progressively increasing domain differences from miniIm-

ageNet: CropDiseases [34], EuroSAT [24], ISIC2018 [10],

and ChestX [52], which contains images of plant disease,

satellite photography, skin lesions, and X-ray scans, respec-

tively.

We use this challenge to highlight the two main foci

of our method: our approach enables differentially private

models to learn across domain gaps, and with minimal ex-

posure to the private data. This is a close analog to real-

world use cases, where small private datasets, e.g., the chest

X-ray scans of a single clinic, are likely to lack large pub-

lic in-domain datasets, and for which the size of the private

dataset necessitates a few-shot approach.

5.2. Metrics

Since all training tasks are image classification chal-

lenges, we use the top-1 accuracy as our metric for
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model utility. For the CD-FSL challenge, we follow the

challenge’s proposed assessment regime [21], and evalu-

ate 5-way top-1 accuracy under 5, 20, and 50-shot con-

straints. We assess only on the CropDiseases, EuroSAT,

and ISIC2018 datasets, and assess trained models on each

dataset with 60 randomly selected few-shot 5-way classifi-

cation trials.

Our primary metric for the privacy expenditure of a

model is the tolerance parameter ✏. For models trained un-

der the regime of differential privacy, we report model ac-

curacy at ✏ = {0.5, 1, 1.5}.

5.3. Baselines and prior state-of-the-art

We compare our method against models trained with DP-

SGD from scratch [1], transfer models first trained on pub-

lic data, and with state-of-the-art DP methods that utilize

additional data [55]. We consider two variants of transfer

models: models in which only the classification parameters

are finetuned, and whole-model finetuning. To the best of

our knowledge, Private-KNN is currently the state-of-the-

art for differentially private learning on CIFAR-10, and so

we use this method as our benchmark. Finally, we consider

models trained without differential privacy to be our upper

bound.

5.4. Comparison with state-of-the-art

Our method is architecture-agnostic, so we simply chose

a prominent image recognition architecture – ResNet-18 –

for all of our experiments. As mentioned above, because

batch normalization layers are incompatible with the com-

putation of per-sample gradients necessary for DP-SGD, we

modify our ResNet to use group normalization instead. Our

results are given in Table 1. Our method outperforms pre-

vious methods in both privacy budget usage and accuracy –

we bridge the gap between vanilla DP-SGD and non-private

training.

5.5. Few-shot learning

To show that our method performs well under a low-data

regime, we compare our method against our baselines in

the context of 5, 20, and 50-shot learning (Table 2), on the

CD-FSL challenge. The results show that our differentially

private model achieves compelling results under a low-data

regime, and outperforms state-of-the-art non-private meta-

learning methods for few-shot learning.

5.6. Domain gaps

We also investigate the effect of domain gaps on

our methodology, using the CD-FSL challenge. The

three datasets we consider: CropDisease, EuroSAT, and

ISIC2018, have progressively larger domain gaps from the

source domain, MiniImageNet. The CropDisease dataset

is simply a different classification task than MiniImageNet,

Table 1. CIFAR10 results. Our number for “Ours (public)” was

obtained by finetuning a ResNet-18 without differential privacy

on CIFAR10. Both Private-KNN and the original DP-SGD paper

used CIFAR-100 as an additional dataset for model pre-training.

The model used in the original DP-SGD paper was a 5-layer CNN,

far smaller than our ResNet-18.

Method ✏ Accuracy

DP-SGD [1] 2.00 0.6700

Private-KNN [55] 2.92 0.7080

DP-SGD [1] 4.00 0.7000

Ours (private) 0.50 0.7328

Ours (private) 1.00 0.7664

Ours (private) 1.50 0.8157

Ours (public) 1 0.9410

Figure 5. ✏-accuracy tradeoff of our method on CIFAR10. With

transfer learning and sparse finetuning, our model quickly con-

verges to a reasonable performance at very low privacy budget

(✏ ≈ 0.25).

but still contains RGB images of natural objects with per-

spective. EuroSAT is composed of natural RGB images,

but lacks perspective, and finally, ISIC2018 contains med-

ical RGB images without perspective. The results of our

methodology across these domain gaps is summarized in

Table 2.

5.7. Ablation

We deconstruct the components of our proposed method,

and demonstrate the performance gain from each element

on CIFAR-10 (Table 3). Note that although classifier-only

finetuning converges quickly and at a low privacy budget,

the overall performance of the model is lackluster. We as-

cribe this to the limited ability of the final classification

layer to effectively undertake domain adaptation. Indeed,
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Table 2. Results across domain gaps. MatchingNet, RelationNet, and ProtoNet are non-private meta-learning methods [21].

Plant Disease (small gap) EuroSAT (medium gap) ISIC2018 (large gap)

Method 5-shot 20-shot 50-shot 5-shot 20-shot 50-shot 5-shot 20-shot 50-shot

MatchingNet 0.6639 0.7638 0.5853 0.6445 0.7710 0.5444 0.3674 0.4572 0.5458

RelationNet 0.6899 0.8045 0.8508 0.6131 0.7443 0.7491 0.3941 0.4177 0.4932

ProtoNet 0.7972 0.8815 0.9081 0.7329 0.8227 0.8048 0.3957 0.4950 0.5199

Ours 0.8715 0.9349 0.9687 0.7933 0.8728 0.9008 0.4648 0.5979 0.6377

Table 3. An ablation study of our method on CIFAR10. We

finetuned only the classification layer, the classification and nor-

malization layers, and the entire method – finetuning classifica-

tion, normalization, and a subset of convolution parameters. All

three methods achieve decent accuracy with a small privacy bud-

get (✏ = 0.5), but the flexibility and expressive power granted

by the finetuning of additional parameters allows our method to

achieve higher accuracies compared to vanilla transfer learning.

Method ✏ = 0.50 ✏ = 1.00 ✏ = 1.50

Cls only 0.7068 0.7128 0.7120

Cls+conv 0.7370 0.7278 0.7621

All 0.7328 0.7664 0.8157

as we enable the finetuning of both the normalization layers

and a subset of convolution parameters, we see that model

utility significantly increases with little cost to privacy.

5.8. Implementation details

We implement our method using the Opacus 1 library.

Here, we describe the implementation details.

Privacy. We hold � constant at 10�5. We use a clipping

threshold of C = 1, and a noise multiplier of � = 15.

Pre-training. For our experiments on CIFAR, ResNet-

18 is first pre-trained on CIFAR-100, while for CD-FSL,

ResNet-18 is pre-trained on MiniImageNet. These models

are pre-trained for 200 epochs, with a batch size of 128.

We optimize the models with SGD with momentum, with

an initial learning rate of 0.1, a momentum coefficient of

0.9, and weight decay of 10�4. We use cosine learning rate

decay over the full 200 epochs.

Finetuning. During private finetuning, we do not perform

any random data augmentation, as DP-SGD is already a

strong regularizer, and augmented data incurs the same pri-

vacy cost with less utility than simply training on unaug-

1https://opacus.ai/

mented images. For finetuning on CIFAR, we take the

ResNet-18 which was pre-trained on CIFAR-100, and fine-

tune it on CIFAR-10; similarly, for CD-FSL, we take the

MiniImageNet-pre-trained ResNet, and finetune it on each

of our three target datasets. Finetuning was done with DP-

SGD for 200 epochs, with a batch size of 5000. Large batch

sizes have been shown to assist differentially private ma-

chine learning [38], and we achieve this batch size via vir-

tual gradient updates. We optimize the model with SGD

with momentum, with an initial learning rate of 0.8 on the

classification parameters and of 0.01 on the normalization

and convolution parameters, a momentum coefficient of 0.9,

and no weight decay. We use linear learning rate warmup

to our initial learning rate during the first epoch, and cosine

learning rate decay over the full 200 epochs.

Pruning. We select the magnitude threshold t so that only

p = 1% of the convolution parameters receive gradient up-

dates from the private data. We note that we cannot tune

over the parameter p without violating the privacy con-

straint, so we selected this setting with heuristics from pre-

vious work [15].

6. Conclusion

We propose a simple yet effective method to scale up

differential privacy to large neural networks at reasonable

privacy budgets. Our key insight was to minimize the num-

ber of trainable parameters during private dataset finetun-

ing, by leveraging additional public data. By pre-training

large models on public data, we obtain a strong representa-

tion at no privacy cost. Next, finetuning a small subset of

parameters on private data, we maintain the expressiveness

of large models while introducing minimal training disrup-

tion during the process of domain adaptation.

We note that our two proposed approaches – normaliza-

tion transfer and convolution parameter transfer – albeit out-

performing previous methods, are naive stabs-in-the-dark;

an exploration into the precise parameter subset to choose

in order to optimize over the fundamental privacy-accuracy

tradeoff in differential privacy is likely to be a fruitful area

of research.
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