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Abstract

Autonomous driving can benefit from motion behavior

comprehension when interacting with diverse traffic partic-

ipants in highly dynamic environments. Recently, there has

been a growing interest in estimating class-agnostic mo-

tion directly from point clouds. Current motion estimation

methods usually require vast amount of annotated train-

ing data from self-driving scenes. However, manually la-

beling point clouds is notoriously difficult, error-prone and

time-consuming. In this paper, we seek to answer the re-

search question of whether the abundant unlabeled data

collections can be utilized for accurate and efficient motion

learning. To this end, we propose a learning framework

that leverages free supervisory signals from point clouds

and paired camera images to estimate motion purely via

self-supervision. Our model involves a point cloud based

structural consistency augmented with probabilistic motion

masking as well as a cross-sensor motion regularization to

realize the desired self-supervision. Experiments reveal that

our approach performs competitively to supervised meth-

ods, and achieves the state-of-the-art result when combin-

ing our self-supervised model with supervised fine-tuning.

1. Introduction

Understanding the motion of various traffic agents is cru-

cial for self-driving vehicles to be able to safely operate in

dynamic environments. Motion provides pivotal informa-

tion to facilitate a variety of onboard modules ranging from

detection, tracking, prediction to planning. A self-driving

vehicle is typically equipped with multiple sensors, and the

most commonly used one is LiDAR. How to represent and

extract temporal motion from point clouds is therefore one

of the fundamental research problems in autonomous driv-

ing [9, 20, 39]. This is however challenging in the sense

that (1) there exist numerous agent categories and each cat-

egory exhibits specific motion behavior; (2) point cloud is

sparse and lacks of exact correspondence between sweeps;

and (3) estimating process is required to meet tight runtime

constraint and limited onboard computation.

This work was done while C. Luo was interning at QCraft.

Figure 1. An overview of the proposed self-supervised pillar mo-

tion learning by our designed free supervisory signals from point

clouds and paired camera images. (a) illustrates a point cloud in

BEV with the dotted gray lines showing the field of view of the

back right camera. (b) shows the projected points with color en-

coding optical flow (ego-motion factorized out) on the back right

camera image. Note that the white points are static. We attach the

original optical flow of this image on bottom right for reference.

(c) is the predicted pillar motion field, where hue and saturation

correspond to motion direction and magnitude, and the gray are

static pillars. (d) demonstrates a zoomed-in area of (c).

A traditional autonomy stack usually performs motion

estimation by first recognizing other traffic participants in

the scene and then predicting how the scene might progress

given their current states [9, 18]. However, most recogni-

tion models are only trained to classify and localize objects

from a handful of known categories. This closed-set sce-

nario is apparently insufficient for a practical autonomy sys-

tem to perceive motion of a large diversity of instances that

are not seen during training. As the lower-level informa-

tion compared to object semantics, motion should be ide-

ally estimated in an open-set setting irrespective of whether

objects belong to a known or unknown category. One ap-

pealing way to predict class-agnostic motion is to estimate

scene flow from point clouds by estimating the 3D veloc-

ity of each point [20, 24]. Unfortunately, this dense motion

filed prediction is currently computationally prohibitive to
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process one complete LiDAR sweep, ruling out the practi-

cal use for self-driving vehicles that require real-time and

large-scale point cloud processing.

Another possibility to represent and estimate motion is

based on bird’s eye view (BEV). In this way, a point cloud

is discretized into grid cells, and motion information is de-

scribed by encoding each cell with a 2D displacement vec-

tor indicating the position into the future of the cell on the

ground plane [8, 17, 39]. This compact representation suc-

cessfully simplifies scene motion as the motion taking place

on the ground plane is the primary concern for autonomous

driving, while the motion in the vertical direction is not as

much important or useful. Additionally, point clouds rep-

resented in this form are efficient since all key operations

can be conducted via 2D convolutions that are extremely

fast to compute on GPUs. Recent works also show that this

representation can be readily generalized to class-agnostic

motion estimation [8, 17]. However, they have to rely on

large amounts of annotated point cloud data with object de-

tection and tracking as proxy motion supervision, which is

expensive and difficult to obtain in practice.

Statistics finds that a self-driving vehicle generates over

1 terabyte of data per day but only less than 5% of the data

is used [1]. Thus, learning without requiring manual la-

beling is of critical importance in order to fully harness the

abundant data. While the recent years have seen growing in-

terests in self-supervised learning for language [5, 15] and

vision [14, 34], self-supervision for point clouds still falls

behind, yet has great potential to open up the possibility to

utilize practically infinite training data that is continuously

collected by the world-wide self-driving fleets.

In light of the above observations, we propose a self-

supervised learning framework that exploits free supervi-

sory signals from multiple sensors for open-set motion es-

timation, as shown in Figure 1. To take advantage of the

merits of motion representation in BEV, we organize a point

cloud into pillars (i.e., vertical columns) [16], and refer to

the velocity associated with each pillar as pillar motion.

We introduce a point cloud based self-supervision by as-

suming pillar or object structure constancy between two

consecutive sweeps. However, this does not hold in most

cases due to the lack of exact point correspondence caused

by the sparse scans of LiDAR. Our solution towards miti-

gating this difficulty is to make use of optical flow extracted

from camera images to provide self-supervised and cross-

sensory regularization. As illustrated in Figure 2, this de-

sign leads to a unified learning framework that subsumes

the interactions between LiDAR and the paired cameras: (1)

point clouds facilitate factorizing ego-motion out from opti-

cal flow; (2) image motion provides auxiliary regularization

for learning pillar motion in point clouds; (3) probabilis-

tic motion masking formed by back-projected optical flow

promotes structural consistency in point clouds. Note that

the camera-related components are only used in training and

discarded for inference, thus no additional computations are

introduced for the camera modality at runtime.

To our knowledge, this work provides the first learning

paradigm that is able to perform pillar motion prediction

in a fully self-supervised framework. We propose novel

self-supervisory and cross-sensory signals by tightly inte-

grating point clouds and paired camera images to achieve

the desired self-supervision. Experiments show that our ap-

proach compares favorably to the existing supervised meth-

ods. Our code and model will be made available at https:

//github.com/qcraftai/pillar-motion.

2. Related Work

Motion Estimation. This task aims to estimate motion dy-

namics and predict future locations of various agents via

past observations. Traditional approaches typically formu-

late this task as a trajectory forecasting problem that hinges

on perception outputs from 3D object detection and track-

ing [9, 18]. As a result of the dependence on the related

modules, such a paradigm is prone to detection and track-

ing errors [17] and lacks the ability to tackle unknown ob-

ject classes [38]. Another active research line is to estimate

scene flow from point clouds to understand the dense 3D

motion field [11, 20]. However, current methods often take

hundreds of milliseconds to process a partial point cloud,

which is even though significantly subsampled. Moreover,

the dense supervision of ground truth scene flow is hard to

acquire in real data [24, 40]. Thus, these methods operate

on either synthetic data (FlyingThings3D [23]) or densely

processed data (KITTI Scene Flow [10]), where dense point

correspondences are mostly available. However, for the raw

point clouds scanned by LiDAR, such correspondences usu-

ally do not exist, making it more difficult to directly esti-

mate scene flow from LiDAR.

Several recent methods are proposed to explore estimat-

ing motion in BEV to simplify the understanding of scene

motion. MotionNet is proposed in [39] to perform joint per-

ception and motion prediction based on a spatio-temporal

pyramid network with three correlated heads. A differen-

tiable ego-motion compensation layer [8] is introduced to

augment a recurrent convolutional network [42] for tem-

poral context aggregation. In [17] an optical flow network

adapted from [32] is used to learn correspondence matching

between two consecutive point clouds. Compared to these

works that rely on large labeled training data with 3D de-

tection and tracking to approximate motion supervision, we

aim to learn pillar motion from unlabeled data collections

in a fully self-supervised manner.

Self-Supervised Learning. To take advantage of the vast

amount of unlabeled images and videos, numerous meth-

ods have been developed for different tasks using various

self-supervised losses. For the feature representation learn-
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Figure 2. A schematic overview of the proposed self-supervised learning framework for pillar motion estimation. We introduce a point

cloud based structural consistency augmented with a probabilistic motion masking and a cross-sensor motion regularization to achieve the

desired self-supervision. To illustrate the effect of factorizing out ego-motion, we plot such projected points on the original optical flow for

comparison. Note that the bottom branch of the camera related components are discarded after training.

ing, geometric or color transformation [14, 34], contrastive

learning [44], frame interpolation [26], and sequence order-

ing [7] have been widely explored. As for optical flow es-

timation [37], photometric constancy over time and spatial

smoothness of flow fields are also well studied. In [45] the

differentiable rendering and autoencoding reconstruction

are applied to discover object attributes, such as 3D shape,

landmarks, part segmentation, and camera viewpoint.

All these studies are conducted in the context of im-

ages and videos, while self-supervision in point clouds has

been less explored. PointContrast [41] presents a unified

triplet of architecture and contrastive loss for pre-training,

and transfers the learned 3D feature representations to point

cloud segmentation and detection tasks. Mittal et al. [24]

present a method to train scene flow by combining two self-

supervised losses based on nearest neighbors and tempo-

ral consistency. It is proposed in [40] to further incorpo-

rate smoothness constraints and Laplacian coordinates to

preserve local structure for scene flow training. Different

from the previous works, we focus on pillar motion learning

and leveraging complementary self-supervision from point

clouds and associated camera images.

LiDAR and Camera Fusion. A large family of the multi-

sensor fusion research is about 3D object detection. For

object-centric methods [4], fusion is conducted at the object

proposal level by roi-pooling features from separate back-

bone networks of camera and LiDAR. In [19] continuous

feature fusion is developed to allow feature sharing across

all levels of the backbones of two modalities with a sophis-

ticated mapping between point clouds and images. A detec-

tion seeding scheme is employed in [28] to extract image

semantics from detection or segmentation to seed detection

in point clouds. PointPainting [35] presents a simple and

sequential fusion method that projects points onto the out-

put of an image based semantic segmentation network and

appends the class scores to each point.

Some recent works employ very sparse (hundreds to

thousands) LiDAR measurements to enhance image based

dense scene flow estimation. Sparse LiDAR is integrated

with stereo images in [2] to resolve the lack of information

in challenging image regions caused by shadows, poor illu-

mination, and textureless objects. Rishav et al. [29] further

extend this method to a monocular camera setup through a

late feature fusion at multiple scales and demonstrate supe-

rior performance over image-only methods. In contrast, we

propose a cross-sensor based self-supervision to regularize

motion learning in point clouds by alleviating the lack of

exact correspondences between sweeps.

3. Method

As illustrated in Figure 2, the proposed motion learn-

ing approach tightly couples the self-supervised structural

consistency from point clouds and the cross-sensor motion

regularization. Our regularization involves factorizing out

ego-motion from optical flow and enforcing motion agree-

ment across sensors. We also introduce a probabilistic mo-

tion masking based on the back-projected optical flow to

enhance structural similarity matching in point clouds.

3.1. Problem Formulation

Given a temporal sequence of self-driving keyframes, we

denote the point cloud and the paired camera images cap-

tured at time t as Pt = {P t
i }

Nt

i=1
and It = {Iti}

Nc

i=1
, where

P t
i indicates a point and Nt is the number of received points,

3185



Iti denotes an image and Nc is the number of cameras in

the sensor suite mounted on a self-driving vehicle. In the

following we omit the camera index and use It to indicate

any camera image for brevity. Pt is discretized into non-

overlapping pillars {ρti}
Np

i=1
, where ρti denotes a pillar index

and Np is the number of pillars. We define the pillar motion

field Mt = {M t
i }

Np

i=1
as the movement of each pillar to its

corresponding position at next timestamp: ρ̃t+1

i = M t
i (ρ

t
i),

M t
i ∈ R

2. Mt is defined such that ρti and ρ̃t+1

i represent

the same part of a scene moving in time. Mt is a locally

rigid and non-deforming motion field, which assumes that

all dynamics are on ground plane and the motion is consis-

tent for every point inside a pillar.

3.2. LiDAR based Structural Consistency

According to the above definition of pillar motion Mt,

we assign the motion vector M t
i of each pillar ρti to all the

points within the pillar to obtain the per point motion, and

simply set the motion along the vertical direction to be zero.

After having the per point motion, we can transform the

original point cloud Pt to the next timestamp and get P̃t+1.

Since there is no ground truth motion available, we instead

to seek to use the structural consistency between the trans-

formed point cloud P̃t+1 and the real point cloud Pt+1 as

free supervision to guide the pillar motion learning.

We take inspiration from the chamfer matching for im-

age registration [12] and measure the structural similarity

between two point clouds P̃ and P as:

Lconsist =
∑

P̃i∈P̃

min
Pj∈P

‖P̃i−Pj‖+
∑

Pj∈P

min
P̃i∈P̃

‖Pj−P̃i‖. (1)

Here we leave out the time index t for brevity. Conceptually,

this self-supervised structural consistency loss makes use of

the nearest neighbor distances between transformed points

and real points of the two point clouds P̃t+1 and Pt+1 to

approximate the pillar motion filed.

Apparently this structural consistency relies on the ex-

istence of corresponding points between two consecutive

point clouds Pt and Pt+1. However, for the raw scans of

LiDAR, this assumption does not usually hold for a num-

ber of cases. For example, the corresponding points cannot

be exactly re-scanned at the next timestamp, and they can

be occluded or fall out of the sensor range. These scenar-

ios become even worse for the objects at distance, where

the points are extremely sparse. As can be seen from the

projected points on the two camera images in Figure 2, the

scanned points on the back of the distant bus over the two

sweeps do not correspond exactly. And the nearest neighbor

matching can be ambiguous within cluster of points. There-

fore, we argue that directly forcing the model to conduct

the nearest neighbor based structural matching between two

point clouds would inevitably introduce noise.

3.3. Cross­Sensor Motion Regularization

As aforementioned, the nearest neighbor based structural

consistency can cause ambiguity when point clouds are suf-

ficiently sparse, as is common for the widely used sparse

LiDAR. On the other hand, cameras in a sensor suite pro-

vide complementary appearance cues and more dense in-

formation. Thus, it would be helpful to incorporate image

information along with LiDAR. One solution is to estimate

scene flow from images also in an self-supervised manner.

However, estimating scene flow directly from camera im-

ages is still hard and inaccurate, while optical flow estima-

tion is relatively more precise and mature. So we instead

relax the regularization by projecting predicted pillar mo-

tion onto image planes and utilize optical flow for the self-

supervised motion regularization across sensors.

However, it is infeasible to directly use optical flow to

render additional motion supervision of a scene as optical

flow is contaminated with both ego-motion and object mo-

tion. So we need to first factorize ego-motion out from opti-

cal flow. Let F t denote the optical flow estimated from two

images It and It+1, and at each pixel (u, v) the optical flow

can be decomposed into two parts:

F t(u, v) = F t
ego(u, v) + F t

obj(u, v), (2)

where F t
ego(u, v) is the motion caused by ego-vehicle mo-

tion, and F t
obj(u, v) is the true object motion. Given a point

P t
i ∈ R

3 from Pt that is associated with It, the projected

camera image location can be written as:

(ui, vi) = KTL→CP
t
i , (3)

where K is the camera intrinsic parameters and TL→C is

the relative pose between LiDAR and the camera. We can

then compute the optical flow part induced by ego-motion

at location (ui, vi) by:

F t
ego(ui, vi) = KTL→CTt→t+1P

t
i −KTL→CP

t
i , (4)

where Tt→t+1 is the ego-vehicle pose change. By combin-

ing Eqs. (2, 4), we can factorize the ego-motion F t
ego out

and obtain the pure object motion F t
obj to regularize the pre-

dicted pillar motion. Note that we only compute F t
obj at the

pixels that have corresponding projected points as we can

only compensate accurate F t
ego on these points.

All the points within a pillar ρti share the same predicted

motion vector M t
i . Again by using the projection function

in Eq. (3), we can project the motion vector of each point

onto the corresponding image plane and get the projected

optical flow F̃ t(ui, vi). By taking advantage of the projec-

tion relationship between point clouds and camera images,

we establish the connection between pillar motion and op-

tical flow, and thus enforce F̃ t to be close to F t
obj:

Lregular =
∑

i

‖F̃ t(ui, vi)− F t
obj(ui, vi)‖1. (5)
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Figure 3. Illustration of the probabilistic motion masking. Left:

the projected points with color encoding optical flow (ego-motion

factorized out) on the front image. Right: part of the point cloud

and the probabilities of nonempty pillars being static.

This cross-sensory loss serves as an auxiliary and impor-

tant regularization to complement the structural consistency

and mitigate the ambiguity due to large sparsity of point

clouds. Furthermore, the optical flow guided regularization

can be viewed as distilling motion knowledge from cameras

to LiDAR during training. As for the optical flow estima-

tion, we can train an optical flow model using an unsuper-

vised method [37] such that the whole learning framework

enjoys an unified self-supervised setup.

3.4. Probabilistic Motion Masking

After factorizing out the ego-motion, we can use the ob-

ject motion part of optical flow to approximate a probabilis-

tic motion mask to indicate the probability of each pillar be-

ing static or dynamic. Specifically, the probability of each

projected point being static can be computed by:

sti = exp{−αmax(‖F t
obj(ui, vi)‖ − τ, 0)}, (6)

where α is a smoothing factor and τ is a stationary toler-

ance. It is then back-projected to the point cloud coordinate,

and we average {sti} of the points within a pillar to indicate

the motion (being static) probability of this pillar, as shown

in Figure 3. When the ego-vehicle (LiDAR) is moving, the

scanned points even from background and static foreground

objects cannot be exactly re-scanned over time. This intro-

duces noise to the static regions when enforcing the nearest

neighbor matching in the structural consistency loss, which

treats all points equally. We can leverage the probabilis-

tic motion mask to downweight the points from static pil-

lars. In practice, we can simply enhance Eq. (1) by adding a

weighting coefficient that is represented as the pillar motion

probability for each point. Furthermore, since static pillars

are often dominant in a scene, this weighting strategy also

helps to balance the contributions of static and dynamic pil-

lars in computing the overall structural consistency loss.

3.5. Optimization

Analogous to the spatial smoothness constraint for opti-

cal flow estimation, we also apply a local smoothness loss

for pillar motion learning:

Lsmooth = |∇xM
x
t |+ |∇yM

x
t |+ |∇xM

y
t |+ |∇yM

y
t |, (7)

where Mx
t and My

t denote the x and y components of the

predicted pillar motion field Mt, and ∇x and ∇y are the

gradients in x and y directions. Intuitively, this smoothness

loss encourages the model to predict similar motion for the

pillars belonging to the same object.

In summary, the total loss is a weighted sum of three

terms including the probabilistic motion masking weighted

structural consistency loss, the cross-sensor motion regular-

ization loss, and the local smoothness loss:

Ltotal = λconsistLconsist+λregularLregular+λsmoothLsmooth, (8)

where λconsist, λregular and λsmooth are the balancing coeffi-

cients to control the importance of the three loss terms. We

train our model to jointly optimize the total loss function.

3.6. Backbone Network

Our proposed self-supervised learning framework is in-

dependent of the backbone network and can be generalized

to various modified spatio-temporal networks [6, 43]. In or-

der to make fair comparisons with the existing supervised

methods, we adopt a similar backbone network as [39]. In

details, we first employ a simple pillar feature encoder [16]

that consists of a linear layer followed by batch normaliza-

tion [13], ReLU [25] and a max pooling to convert a raw

point cloud to a feature map representation in BEV. We

then input the feature map to a U-Net with separated spa-

tial and temporal convolutions as well as lateral connections

between encoder and decoder.

4. Experiments

In this section, we first describe our experimental setup.

A variety of ablation studies are then performed to under-

stand the contribution of each individual design in our ap-

proach. We report comparisons to the state-of-the-art meth-

ods on the benchmark dataset. In the end, we provide in-

depth analysis with qualitative visualization results.

4.1. Experimental Setup

Dataset. We extensively evaluate the proposed approach

on a large-scale autonomous driving dataset: nuScenes [3].

It contains 850 scenes with annotations, and each scene is

around 40s. Following the experimental protocol in Mo-

tionNet [39], we use 500 scenes for training, 100 scenes

for validation and 250 scenes for testing. This dataset pro-

vides a full sensor suite including LiDAR, cameras, radars,

IMU and GPS. We adopt LiDAR and all six cameras during

training, and only use LiDAR for inference. The frequency

of LiDAR and cameras are 20Hz and 10Hz, respectively.

We can derive the ground truth motion from the original

detection and tracking annotations provided by the dataset.

Unless specified, we only use the motion labeling in the

evaluation stage, while only using the raw sensor inputs and

the calibration data in the training stage.
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Lconsist Lregular Mask
Static Speed ≤ 5m/s Speed > 5m/s Nonempty Foreground Moving

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

(a) X 0.3701 0.0063 0.5014 0.1352 1.9405 1.2760 0.3437 0.0081 0.5936 0.1139 0.7516 0.2359

(b) X 0.0285 0.0002 0.3733 0.0719 4.2954 3.9788 0.0897 0.0020 0.7914 0.0656 1.1267 0.3948

(c) X X 0.1688 0.0389 0.4277 0.1694 1.7603 1.2021 0.3133 0.0062 0.5667 0.1017 0.7064 0.1980

(d) X X 0.0738 0.0038 0.4017 0.1214 1.9384 1.2931 0.1085 0.0007 0.5416 0.0767 0.8064 0.2279

(e) X X X 0.0619 0.0004 0.3438 0.1196 1.7119 1.1438 0.0846 0.0001 0.4494 0.0507 0.5953 0.1612

Table 1. Comparison of our models using different combinations of the proposed structural consistency, cross-sensor regularization, and

probabilistic motion masking. We evaluate each model on the six groups and report the mean and median errors.

Figure 4. Performance improvements of self-supervised motion

estimation evaluated on the foreground and moving groups with

increasing the fraction (%) of total training data.

Implementation Details. We implement our model in Py-

Torch [27], and train the model on 8 GPUs with a batch size

of 64. We train the model for 200 epochs in total, and set the

initial learning rate to be 0.0001 and decay the learning rate

by a factor of 0.9 in every 20 epochs. AdamW [21] is used

as the optimizer. We emperically set α = 0.1 and τ = 5 in

Eq. (6), and λconsist = 1, λregular = 0.01 and λsmooth = 1 in

Eq. (8). We take the current sweep and past four sweeps as

input, and transform the four sweeps from past to the cur-

rent coordinate system through ego-motion compensation.

Our model outputs the displacement for the next 0.5s as the

predicted motion. We follow [39] to crop a point cloud in

the range of [−32m, 32m]× [−32m, 32m], and set the pillar

size to be 0.25m × 0.25m for fair comparisons.

We adopt PWC-Net [33] as the optical flow estimation

network considering its accuracy and efficiency. It is un-

supervised trained on the training images of nuScenes with

occlusion-aware photometric constancy and spatial smooth-

ness losses [37]. We expect more advanced unsupervised

methods such as [22, 36] would improve optical flow qual-

ity and benefit our pillar motion learning further.

Evaluation Metrics. Following MotionNet [39], we report

the mean and median errors measured on the nonempty pil-

lars, which are divided into three speed groups, i.e., static,

slow (≤ 5m/s) and fast (> 5m/s). Additionally, we also

evaluate on all nonempty pillars, all foreground object pil-

lars, and all moving object pillars. The reason for evaluating

on the different groups is that the static regions in a scene

are the majority, which would overwhelm the prediction er-

ror if averaging over the whole scene.

4.2. Ablation Studies

Contribution of Individual Component. We first perform

a variety of combination experiments to evaluate the con-

tribution of each individual component in our design. As

shown in Table 1, the base model (a) trained only with the

structural consistency loss does not perform well for the

static group. This is in accordance with our previous analy-

sis. By using the cross-sensor motion regularization as the

only supervision, model (b) achieves impressive result for

the static group thanks to the accurate ego-motion factoriza-

tion that enables our approach to reliably recover the static

points from optical flow. However, the result of this model

for the fast speed group is far inferior. This is not surprising

since merely having the motion regularization in 2D camera

image space is ambiguous and there exists numerous possi-

ble motion in 3D point cloud space that corresponds to the

same 2D projection. Above limitations of the models (a,

b) together demonstrate the necessity to have motion self-

supervision in both 2D and 3D.

Although model (c) that directly combines the structural

consistency and motion regularization performs well for the

fast speed group, it is still not optimal for the static and slow

speed groups, mainly due to the inconsistency between the

two losses on the static and slow moving regions. By inte-

grating the probabilistic motion masking into model (c), the

full model (e) achieves significant improvements for static

and slow speed groups. This is because by suppressing the

plausible static pillars, the model can be less confused by

the noisy motion caused by the moving ego-vehicle, and

therefore can better focus on learning of the true object mo-

tion. We also experiment with model (d) that is trained only

with the probabilistic motion masking enhanced structural

consistency. Compared to model (a), the improvements on

static and slow speed groups are obvious. However, it is still

inferior to the full model (e), which further validates the ef-

ficacy of the cross-sensor motion regularization to provide

the complementary motion supervision.
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Method
Static Speed ≤ 5m/s Speed > 5m/s

< 10m < 20m < 30m < 10m < 20m < 30m < 10m < 20m < 30m

Lconsist 0.2042 0.2296 0.3701 0.4343 0.4190 0.5014 1.7702 1.8729 1.9405

Lconsist + Lregular 0.1424 0.1602 0.1688 0.4001 0.4167 0.4277 1.7599 1.7576 1.7603

Full Model 0.1036 0.0857 0.0619 0.3348 0.3412 0.3438 1.6904 1.6998 1.7119

Table 2. Comparison of motion estimation results of our approach using the structural consistency, its combination with cross-sensor

regularization, and the full model within different ranges of LiDAR. We report the mean error on the three speed groups.

Method
Static Speed ≤ 5m/s Speed > 5m/s

Time
Mean Median Mean Median Mean Median

FlowNet3D (pre-trained) [20] 2.0514 0.0000 2.2058 0.3172 9.1923 8.4923 0.434s

HPLFlowNet (pre-trained) [11] 2.2165 1.4925 1.5477 1.1269 5.9841 4.8553 0.352s

Ours (self-supervised) 0.1620 0.0010 0.6972 0.1758 3.5504 2.0844 0.020s

FlowNet3D [20] 0.0410 0.0000 0.8183 0.1782 8.5261 8.0230 0.434s

HPLFlowNet [11] 0.0041 0.0002 0.4458 0.0969 4.3206 2.4881 0.352s

PointRCNN [31] 0.0204 0.0000 0.5514 0.1627 3.9888 1.6252 0.201s

LSTMEncoderDecoder [30] 0.0358 0.0000 0.3551 0.1044 1.5885 1.0003 0.042s

MotionNet [39] 0.0239 0.0000 0.2467 0.0961 1.0109 0.6994 0.019s

MotionNet (pillar-based) [39] 0.0258 - 0.2612 - 1.0747 - 0.019s

MotionNet+MGDA [39] 0.0201 0.0000 0.2292 0.0952 0.9454 0.6180 0.019s

Ours (fine-tuned) 0.0245 0.0000 0.2286 0.0930 0.7784 0.4685 0.020s

Table 3. Comparison with the state-of-the-art results. We report the mean and median errors on the three speed groups. Top: we compare

our self-supervised model to the methods that are not trained with the annotations of nuScenes but are supervised pre-trained on two scene

flow datasets. Bottom: we fine-tune our self-supervised model and compare to the methods that are supervised trained on nuScenes.

Amount of Training Data. Next we study how the amount

of training data impacts our self-supervised learning. Since

the foreground and moving objects are more concerned and

challenging, we plot the mean errors of our full model on

the two groups under different percentages of training data

in Figure 4. With the increase of training size from 20% to

100%, our approach can boost the performance from 1.1021
to 0.4494 and 1.1067 to 0.5953 for the foreground and mov-

ing groups. Overall, more unlabeled training data leads to

significantly better prediction results, suggesting the great

potential of our self-supervised approach to harvest the vast

amount of self-driving data that is available today.

Performance vs. Distance. Since the point clouds become

more and more sparse with the increasing of distance, we

also study how our model behaves at different ranges of Li-

DAR. As shown in Table 2, we compute the mean errors

of each speed group within the distances of 10m, 20m and

30m, respectively. Specifically, the performance of our full

model degrades 0.0417, 0.0090 and 0.0215 from near to far

regions in the three speed groups, as compared to the much

larger performance drops of 0.1659, 0.0824 and 0.1703 for

the structural consistency only based model. Combining

structural consistency and cross-sensor regularization also

achieves apparent improvement over the base model. This

verifies that optical flow provides more dense information

complementary to point clouds and our full model regular-

ized by optical flow is more robust to the distant pillars.

4.3. Comparison with State­of­the­Art Results

As reported in the ablation studies, our model is trained

to predict the displacements for next 0.5s as the keyframes

are sampled at 2Hz in nuScenes. Here for fair comparisons

with the methods that evaluate for next 1.0s, we simply lin-

early interpolate our predicted displacements to 1.0s by as-

suming constant velocity in a short time frame.

We extensively compare our approach with a variety of

supervised algorithms in Table 3. For our self-supervised

model, we first compare to FlowNet3D and HPLFlowNet,

which are pre-trained on FlyingThings3D and KITTI Scene

Flow. As can be seen in this table, our model largely out-

performs the two methods that are supervised pre-trained

though. Remarkably, our self-supervised model is found to

even outperform or approach some methods that are fully

supervised trained on the benchmark dataset, for instance,

our model performs better than FlowNet3D, HPLFlowNet

and PointRCNN for the fast speed group. All these com-

parisons collectively and clearly show the advantage of

our proposed self-supervisory design and the importance of

self-supervised training on the target domain.

When further fine-tuning our self-supervised model with

the ground truth labels, our approach achieves the state-of-

the-art result. As we can see in Table 3, our fine-tuned

model clearly outperforms the related methods of Motion-

Net for the fast moving objects. In particular, when com-
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Figure 5. Comparison of the predicted pillar motion. We show the ground truth motion field in the first row, the results estimated by

our full model in the second row, and the predictions by the base model using only structural consistency in the third row. Each column

demonstrates one scene. We remove the ground points for better visualization.

pared to the strong MotionNet+MGDA, we perform bet-

ter with a clear margin of 0.1670 mean error and 0.1495
median error for the fast speed group. This indicates that

our self-supervised model provides a better foundation to

allow for more effective supervised training, and the self-

supervised learning gain does not diminish with the sophis-

ticated supervised training design.

4.4. Runtime Analysis

At the inference stage, our whole model runs at 20ms on

a single TITAN RTX GPU. In more details, the point cloud

transformation and voxelization use 10ms, and the network

forward time takes 10ms. As shown in Table 3, compared

with the existing point cloud based motion estimation net-

works, our model is more computational efficient and is ca-

pable of dealing with large-scale point clouds in real time.

4.5. Qualitative Results

Finally, we demonstrate the qualitative results of pillar

motion estimation using different combinations of the pro-

posed self-supervised components. As shown in Figure 5,

these examples present diverse traffic scenes and different

zoom-in scales. In comparison to our full model, the base

model using only structural consistency loss tends to gen-

erate false positive motion predictions in the background

regions (columns 1 and 5) and static foreground objects

(columns 2 and 3). This observation verifies our interpreta-

tion in Section 3.4 that the noise induced by the moving ego-

vehicle is detrimental to the structural consistency matching

when applied in the background and static foreground pil-

lars. Our full model can successfully eliminate most false

positive motion, indicating that the optical flow based regu-

larization and masking are effective to suppress such noise.

Compared to the base model, the full model is also able to

produce spatially smoother motion on the moving objects

(columns 5 and 6). Moreover, as illustrated in column 4, a

moving truck on top right of the scene is missing in the base

model, but it is reasonably well estimated by our full model.

This again validates the efficacy of the distilled motion in-

formation from camera images.

5. Conclusion

In this paper, we propose a self-supervised learning

framework for pillar motion estimation from unlabeled col-

lections of point clouds and paired camera images. Our

model involves a point cloud based structural consistency

that is augmented with probabilistic motion masking and a

cross-sensor motion regularization. Extensive experiments

demonstrate that our self-supervised approach achieves su-

perior or comparable results to the supervised methods, and

outperforms the state-of-the-art methods when our model

is further supervised fine-tuned. We hope these findings

would encourage more research works on pillar motion es-

timation and point cloud based self-supervised learning.
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