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Abstract

In applications such as optical see-through and projec-

tor augmented reality, producing images amounts to solv-

ing non-negative image generation, where one can only add

light to an existing image. Most image generation methods,

however, are ill-suited to this problem setting, as they make

the assumption that one can assign arbitrary color to each

pixel. In fact, naive application of existing methods fails

even in simple domains such as MNIST digits, since one

cannot create darker pixels by adding light. We know, how-

ever, that the human visual system can be fooled by optical

illusions involving certain spatial configurations of bright-

ness and contrast. Our key insight is that one can leverage

this behavior to produce high quality images with negligi-

ble artifacts. For example, we can create the illusion of

darker patches by brightening surrounding pixels. We pro-

pose a novel optimization procedure to produce images that

satisfy both semantic and non-negativity constraints. Our

approach can incorporate existing state-of-the-art methods,

and exhibits strong performance in a variety of tasks includ-

ing image-to-image translation and style transfer.

1. Introduction

The design of images that combine views of the real

world with aligned, overlaid content remains a key chal-

lenge on the path toward widespread adoption of augmented

reality devices. Consider the problem of image genera-

tion in an optical see-through (OST) or projector AR de-

vice, where the image is formed by combining light from

the real world with light generated by a projector; see

Fig. 1. Despite the success of modern image generation

methods in applications including deep image generation

[39, 40, 37], image synthesis [62, 83], image-to-image

translation [87, 51, 35], and style transfer [33, 74], all of

the aforementioned methods assume full control over each

pixel’s color. This assumption, however, is not realistic in

the OST or projector AR setting where one can add, but

*Denotes equal contribution.
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Figure 1. Illustration of the image formation process in augmented

reality settings. Left: optical see-through setting. Right: projector

AR setting. In both settings, the image is created by adding light

to existing light sources from the real world, which motivates the

non-negative image generation problem.

not subtract, light. In fact, naively applying any of the cur-

rent state-of-the-art image generation methods will result in

low-quality images in conflict with the underlying image,

often riddled with ghosting artifacts.

In this work, we focus on the task of image synthesis

under a non-negativity constraint, which limits the types of

images that can be generated. Since we restrict ourselves to

adding a non-negative residual to the input image, we would

in theory only be able to generate images in our half-space.

Intuitively, one cannot add black-framed glasses onto Brad

Pitt’s face, since doing so would require us to attenuate the

light in the desired area, i.e., adding negative light, which

is not physically possible. With such limitations, current

hardware solutions compromise by relying on dimming the

incoming light instead, using methods such as a sunglasses-

like effect for OST and a darkened room for projector AR.

In fact, current solutions use very dark tints, admitting only

15�20% [22, 58] of the light from the original scene. While

this delivers increased control over the pixel dynamic range,

blocking too much light in the scene limits the kind of set-

tings in which OST or projector AR can be applied.

Without the ability to subtract light or dim the scene, is it

still possible to succeed in image-to-image translation tasks

such as turning a day image into a night image? If humans

perceived luminance and chrominance in an objective man-

ner, then this would be virtually impossible. Fortunately,

the human visual system is tolerant to a wide range of pho-

tometric deviations from a “true” image [70, 78], as illus-
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Figure 2. Examples of lightness illusions. Left: the Checker-

shadow illusion [1]. Areas A and B have the same color, yet

B appears brighter. Right: Koffka ring illusion [45]. Both half-

rings have the same color, but the right one looks darker. These

two examples illustrated that human do not perceive brightness in

an absolute way.

trated by popular optical illusions that trick us into seeing

colors or relative brightness orderings that aren’t there (e.g.

Figure 2). These quirks offer us a path to a solution for the

challenging task of non-negative image generation: we can

leverage properties of the human visual system to enlarge

the solution space. For example, lightness constancy [1]

suggests that humans do not perceive light in an absolute

way, but instead take into account many factors such as ge-

ometry, texture, and surrounding neighborhoods. We may

therefore no longer need to block light to create the percep-

tion of a darker pixel – we could instead add light to its pe-

ripheral locations. Another quirk of human vision is that we

are relatively insensitive to visual glitches when we are not

paying attention to them [60]. This allows us to introduce

errors in some non-salient locations without being noticed.

In this paper, we approach the novel task of non-

negative image generation by designing a framework that

can take advantage of both existing image-to-image transla-

tion methods and human visual perception quirks. Specifi-

cally, we first incorporate existing image-to-image transla-

tion models to generate a proposal image that satisfies the

task, but is not necessarily feasible in the non-negative gen-

eration setting. We then finetune the proposal image so that

it can be produced by adding non-negative light to the in-

put image while remaining perceptually unchanged. Our

method is compatible with almost all existing image-to-

image translation methods, thereby permitting its applica-

tion to a wide variety of tasks. While we mainly appeal to

lightness constancy in this paper, our framework can be ex-

tended to model other types of perceptual illusions, which

we leave to future explorations. We empirically show that

our method outperforms all strong baselines that naively

adapt state-of-the-art models on this task, both quantita-

tively and qualitatively, even in settings when much more

light is allowed in the optical combiner. Finally, we provide

detailed analysis of how – and when – our method works.

2. Non-negative Image Generation

We now specify the non-negative image generation prob-

lem, in which the model can only add light to the input im-

age when producing the output image. We narrow our scope

to the specific problem of producing an image that fulfills a

certain semantic or style category, as opposed to any arbi-

trary image. This is motivated by the idea that AR users

are more likely to specify a category instead of a detailed

image.

During training, one is provided with samples from PX

and PY , the distributions of the images of the input domain

and target domain, respectively. The goal is to learn a model

that can take an input image x ⇠ PX and produce a non-

negative residual Rθ(x) that can be combined with the input

to produce an image in PY . Formally, non-negative image

generation amounts to solving the following constrained op-

timization problem:

argmax
θ

Ex⇠PX
[logPY (αx+ βRθ(x))]

s.t. 8i, j, 0  Rθ(x)i,j  1,
(1)

where α,β 2 [0, 1] are parameters controlling influence

from the input image and the predicted residual, respec-

tively, and (with a slight abuse of notation) Rθ(x)i,j denotes

the i- by j-th pixel of residual Rθ(x).
While the problem formulation in Equation 1 can be

used in a number of AR settings, we focus on the optical

see-through (OST) case. Here, α represents the amount of

light transmitted through the semi-transparent mirror. At

the same time, the amount of light reflected from the semi-

transparent mirror is 1�α, so the upper bound is β = 1�α.

We refer to this simplified optical formulation for the rest

of the work. Note that under this formulation, when α = 0,

the problem reduces to the video see-through (VST) set-

ting, i.e., the traditional unconstrained version. The higher

the value of α, the harder the problem becomes, since the

amount of light at the disposal of the generator Rθ becomes

more limited.

3. Method

In developing our proposed method, we aim to draw

upon the strengths of state-of-the-art image generation

methods while availing ourselves of degrees of freedom

provided by the human visual system.

3.1. A two stage approach

To make a model compatible with existing image genera-

tors and adaptable to quirks of human visual perception, we

propose to break down the non-negative image generation

problem into two steps. The first step is to solve the image

generation problem without the non-negativity constraint.

In the second step, we finetune the image produced by the
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Figure 3. Illustration of our two-stage training pipeline. Our framework’s overall schematic consists of the image proposal step and

semantic-preserving generator step for the residual. The final output is an optical combination between the input and residual, clipped to

be physically feasible. We rely on very few parameters for efficient training.

first step with the aim of making it perceptually unchanged

under the non-negativity constraint.

Formally, we assume that we can produce a model G⇤

that takes an image from domain X and outputs one that

is in domain Y while preserving the structure of the input

images. Specifically, we take a model G⇤ that minimizes

the following objective:

min
G

Ex⇠X [S(G(x), x)� logPY (G(x))] , (2)

where S(·, ·) returns the structural similarity between two

images. Most image-to-image translation works such as

Pix2Pix [36] and CycleGAN [87] can achieve this step.

At this point, we can produce an image proposal y =
G⇤(x) for any input image x. The image proposal y is a

good solution as long as it can be feasibly produced under

the non-negativity constraints imposed by Equation 1. The

end goal, however, does not require the output image to be

exactly the same as y — in fact, any image that is percep-

tually indistinguishable from y should suffice. Therefore,

the second step can be formulated as finding a target image

such that it is perceptually similar to input image x while

being physically realizable in the non-negative image gen-

eration regime. Formally, for each pair of input image x and

image proposal y, we want to find an image Fθ(x, y) that

optimizes the following objective and constraints:

min
θ

Lsim(Fθ(x, y), y)

s.t. 8i, j, 0  Fθ(x, y)i,j � αxi,j  β,
(3)

where Lsim(·, ·) measures the perceptual similarity be-

tween two images. For example, if y0 represents y al-

tered by perturbations undetectable to the human eye, then

Lsim(y0, y) = 0. Prior works have studied measuring

perceptual similarity for a variety of applications includ-

ing lossy image compression [57, 66] and image genera-

tion [85]. In the following sections, we will show how to de-

sign Lsim to encode lightness constancy, and how to solve

this problem by optimizing a few parameters using stochas-

tic gradient descent.

3.2. Perceptual similarity

The simplest (and strictest) formulation for Lsim is that

two images are the same only if the pixel values match ev-

erywhere (i.e., Lsim(a, b) = ka� bk2). We instead propose

to relax this by incorporating the notion of lightness con-

stancy. Formally, we define the similarity metric as:

Lsim(a, b) = kN(a)�N(b)k2, (4)

where N(·) is a normalization function that brings two

perceptually similar images closer together. For example,

to capture the idea that humans are visually insensitive to

global lightness changes, which in part explains lightness

constancy, we normalize the dynamic range the image by

using Color Histogram Stretching [81]:

N(x) =
x� xmin

xmax � xmin

, (5)

where xmin and xmax are the smallest and largest pixel

values in image x, respectively. For RGB images, we

apply such normalization independently to all three chan-

nels. With this operation in place, adding a constant to

every pixel in the image will not affect the output since

N(ax + b) = N(x). While Equation 4 is not restricted

to just one normalization method or just one notion of per-

ceptual quality, we will focus on the lightness constancy

property and will assume the use of Equation 5 unless spec-

ified otherwise. Figure 4 shows how loss with normalization

leads to feasible solutions and outputs with less artifacts.

3.3. Soft Constraint Loss

The above expression of perceptual similarity with nor-

malization makes the constrained optimization problem in

Equation 3 non-convex, and thereby a more more challeng-

ing problem. As mentioned in Section 1, we are not sen-

sitive to minor changes in color, especially in high texture
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Oθ(x, y) No normalization Minima With normalization L2-Normed Minima

Figure 4. Visualizations of our Semantic-Preserving Generator outputs (Left). By varying the θ parameters, we can control the brightness

and contrast of the final output image. We visualize the Perceptual Similarity loss with and without normalization (Middle and Right

respectively), and outline the region of parameters corresponding to physically realizable residuals in red. Darker color indicates larger

loss. The output image of the minimum of the two losses are shown to the right of the loss contour. Observe that normalizing the images

accomplishes two things: 1. the loss contour changes to include the physically feasible region, and 2. the perceptual quality of the image

is improved and the output exhibits less “ghosting” artifacts from the input image.

Algorithm 1: Semantics-Preserving Generator

Result: Output image Oθ(x, y)
Input: Device parameters α, β, image x, proposal

y, learning rate lr ;

Initialize θ = [1, 0];
while not converged do

Fθ(x, y) = θ1y + θ2;

r = Fθ(x, y)� αx;

Oθ(x, y) = min(max(r, 0),β) + αx;

L(θ) Lsim(Oθ(x, y), y) + Lconst(r, 0,β);
θ  Adam(rθL(θ), lr);

end

regions of a natural image. This allows our system to make

some mistakes by making the target Fθ(x, y) not completely

physically realizable at all pixels, as long as the error be-

tween the actual output and the target output is relatively

small. Thus, we relax the hard constraint on the residual r

into minimizing the following soft constraint:

Lconst(r, a, b) = γ
X

i,j

|max(min(ri,j , b), a)� ri,j |, (6)

where γ > 0 is a hyper-parameter that controls the trade-off

between perceptual similarity and residual constraint satis-

faction. This soft constraint loss gives a continuous penalty

to places where the pixel is not physically realizable, and it

is differentiable everywhere except at a or b. By using the

soft constraint as a loss function, we get the added benefit

of penalizing the values depending on how infeasible they

are. This allows the model to balance between producing

a strictly physically realizable image and producing an im-

age that is perceptually similar to the image proposal, albeit

containing a few errors.

3.4. Semantics-Preserving Generator

The final piece of the puzzle is the design of the genera-

tor Fθ(x, y). Fθ takes the input image x and the semantic

prototype y and aims to predict a target image that looks

similar to y and is also physically realizable by adding light

to αx. The naive solution for Fθ(x, y) is to return y di-

rectly, but such solution is likely to break the constraints

since the brightness of the X domain could be drastically

different from that of the Y domain. In the other extreme,

we can use a universal approximator like a neural network

to approximate the function (i.e., predicting colors of each

pixel). Since such a generator imposes almost no domain

specific knowledge, it contains lots of parameters and can

be empirically difficult to train. In this paper, we propose

a semantics-preserving generator that is flexible enough to

include a physically feasible solution while building upon y

as a very good starting point.

Specifically, we want the generator to be able to explore

images that preserve the structure of the semantic image y

in order to find an image that best respects the physical con-

straints. Note an affine transformation on an image y into

θ1y + θ2 does not change the perceptual loss Lsim since

N(θ1y+ θ2) = N(y) for any scalar θ1 and θ2. This reflects

the assumption that humans have the ability to do white bal-

ancing and adjust to different contrasts. One can potentially

find a physically realizable image by choosing θ = (θ1, θ2).
Formally, we define the target image Fθ(x, y) and the phys-

ically realizable output image Oθ(x, y) as follow:

Fθ(x, y) = θ1y + θ2,

Oθ(x, y) = max(min(Fθ(x, y)� αx,β), 0) + αx.
(7)

We adjust the final objective to also minimize the percep-

tual similarity between the actual output image Oθ and the

image proposal y. This allows Lsim to also provide train-

ing signal, which empirically leads to better performance.
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Satellite!Map [36] Map! Satellite [36] Day! Night [46]

Method FID(#) KID(#) N-PSNR(") FID(#) KID(#) N-PSNR(") FID(#) KID(#) N-PSNR(")

Heuristic 252.33 19.03 20.16 200.96 18.08 33.07 134.97 4.53 39.00

From scratch 268.79 19.38 26.19 305.82 33.29 30.63 218.09 11.75 27.67

Finetuning 254.86 16.22 30.77 265.87 24.97 34.63 195.14 11.86 29.00

Ours 238.93 17.90 23.78 125.75 12.76 68.90 110.83 3.13 47.42

Table 1. Method performances on Map↔Satellite and Day→Night datasets.

Thus, the final training objective is:

L(θ, x, y) =Lsim(Oθ(x, y), y)+

Lconst(Fθ(x, y)� αx, 0,β).
(8)

Note that this objective is differentiable almost everywhere

and can be optimized efficiently using stochastic gradient

descent. Our method is summarized in Algorithm 1, with

hyper-parameters and implementation details provided in

the supplementary material.

4. Experiments

In this section, we begin by empirically evaluating our

proposed method in comparison to baselines in a variety

of tasks in Section 4.1 and Section 4.2. We also conduct

an ablation study on major design choices for our model

(Section 4.3), and provide an analysis of several interest-

ing properties of our method (Section 4.4). We provide

our code at https://github.com/katieluo88/

StayPositive.

Datasets. Most of our experiments are conducted on

datasets from the image translation and image editing lit-

erature, which include semantic label$photo [36, 87],

image!style [34, 87], dog!cat [35], and CelebA-HQ

dataset [71, 74, 38]. For unaligned datasets, we employ the

provided pretrained models to generate a set of targets y.

If the dataset is paired, we will then use the ground truth

images as the proposed image.

Metrics. Following prior works [41, 52, 16, 36], we will

use Frechet Inception Distance (FID) [29], Kernel Inception

Distance (KID) [2], and Peak signal-to-noise ratio (PSNR).

KID computes the squared Maximum Mean Discrepancy of

features extracted from Inception Network [76] while FID

computes the Frechet distance from those features. At the

same time, we also report the PSNR to quantify the similar-

ity between the proposed images and the final output image,

after normalization. All reported numbers are computed by

averaging across multiple α values.

Datasets Baseline Ours

Zebra! Horse 12.63 11.53

Winter! Summer 1.16 1.03

Photo!Monet 1.59 1.38

Photo! Von Gogh 3.27 3.26

Photo! Cezanne 4.70 4.51

Photo! Uyeoko 10.33 9.71

Table 2. Kernel Inception Distance×100 metric on [87]. Our

model outperforms the heuristic baseline on a wide range of tasks.

4.1. Comparisons

We consider the following three baselines. The first one

clips the difference required to reached the proposed image

before adding to the input images to ensure physical fea-

sibility (Heuristic). The second one trains a Pix2pix [36]

model from scratch to predict non-negative residuals used

to predict the output image (From Scratch). The third

baseline uses our proposed loss to fine-tune a Pix2Pix

generator (Finetune). We train these three baselines and

our methods on three tasks, including generating synthetic

images (satellite!map), generating photorealistic images

(map!satellite), and generating images with less light

(day!night). The results are shown in Table 1 and Figure 5.

Our models out-perform baselines in FID in all tasks, and

all but one task in KID and PSNR. Even though our model

does not lead in these metrics in the task of Satellite!map,

we can see from Figure 5 that our methods produce images

with fewer ghosting artifacts for all three tasks. In addition

to the above mentioned metrics, we also conducted a user

studies using Amazon Mechanical Turk. The results (Fig-

ure 6) suggest that most users chose images by our method

over those from the baselines by a large margin.

4.2. Applications

As mentioned in Section 3.1, our method can be com-

bined with different image translation methods. In this sec-

tion, we quantitatively compare our method with the heuris-

tic baseline on a set of unpaired image translation datasets

listed in Table 2, adapted from CycleGAN [87]. The ta-

ble suggests that our model achieves comparable or bet-
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Input Ground Truth From Scratch Finetuned Heuristic Ours

Figure 5. Visual comparison to the baseline methods. Rows from top to bottom: Map→Satellite, Satellite→Map, Day→Night

Figure 6. Results from user study. We use AMT to recruit users to

answer three questions asking for their preference on “satellite im-

age”, “photo-realistic”, and “detail”. Most users prefer the output

of our model over other baselines by a large margin.

ter KID than the heuristic baseline in all tasks. We also

apply our method in a variety of more difficult datasets

such as high resolution day!night [4], style transfer [34],

sketch to photo [34], dog!cat [35], and face attribute edit-

ing [71, 73]. The qualitative examples of aforementioned

tasks are presented in Figure 7. While the images produced

by the heuristic based method tend to exhibit ghosting ar-

tifacts arising from enforcing non-negativity, our method is

able to avoid such shortcomings and produce high quality

images that can resemble the target.

4.3. Analysis

In this section, we will first conduct an ablation study

to examine our design decisions. Then we will present an

Method FID(#) KID(#) N-PSNR(")

w/o normalization 146.95 13.23 45.86

w/o Lconst 139.95 13.74 69.09

w/o Lsim 145.21 14.57 65.71

Per-pixel prediction 132.82 13.90 78.17

Ours 125.75 12.76 68.90

Table 3. Ablation study on the Map→Satellite task. We explore in

this order: normalization methods, loss function importance, and

our method’s transformation groups.

analysis of how our methods perform according to different

α values. Finally, we will use qualitative examples to illus-

trate how our proposed approach takes advantage of human

perceptual quirks.

Ablations. We evaluate three design decisions: normal-

izing the dynamic range before computing the perceptual

similarity Lsim (Section 3.2), minimizing both percep-

tual similarity Lsim and constraint violation Lconst (Sec-

tion 3.3), and predicting global modification instead of per-

pixel modification (Section 3.4). We run ablations of our

method on the task map!satellite and reported results in

Table 3. It’s interesting to note that predicting per-pixel

modification achieves better PSNR score, which is expected

due to the large amount of parameters, but produces worse

FID and KID, which suggests that the method creates im-
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Day! Night [4] Photo! Style [34] Style! Photo [34] Face! Smile [71] Dog! Cats [35]

Figure 7. We compare our results across a variety of domains. From top to bottom: input (with proposal overlaid), heuristic baseline, our

method. Observe that with our framework, we are able to obtain multimodal outputs from the generative model.

Figure 8. Results on a range of α values for Map→Satellite. We

plot KID metrics on our method vs. heuristic baseline. Our

methods outperforms baselines across almost all α. Visually, our

method also produces less artifacts comparing to the baseline.

ages that are semantically far away from the target domain.

On the other hand, our methods achieve the best FID and

KID among all variants.

Effect of varying α. While previous experiments show

that our methods outperforms the baselines when averaging

across different values of α, it’s thus far unclear how our

method compares to the baselines at different α values. In

Figure 8, we present the change of KID across 10 different

α values between our methods and the heuristic baseline.

When α is small, both the baseline and our method perform

well, as expected, since the task is very similar to the one

without non-negativity constraint. On the other hand, when

α is large, both our method and the baseline tend to perform

badly (though our method still out-performs the baseline),

which is expected since the task is almost impossible. It’s

interesting to note that our method is able to maintain good

performance until after α > 0.5, while the baseline’s perfor-

mance degrades drastically. This suggests that our method

can produce images in harmony with more ambient light.

Visually, the ghosting artifacts from the input image does

not show up in our method until higher α values.

4.4. Leveraging quirks of human perception

In this section we present qualitative examples to demon-

strate how our model benefits from quirks of human visual

perception involving.

Lightness constancy. In Figure 9, we show how our

model turns a daytime image into a nighttime image, along

with the associated color histogram of the input and target

images. Note that such a task is infeasible, at face value,

since the nighttime image contains more pixels with a lower

amount of blue or red light compared to the input image, as

shown in the histogram. Our model is nonetheless capable

of producing an image that looks similar to the target im-

age without subtracting any light. The model achieves this

result by padding the amount of light around the points in

need of darkening, which shifts the whole dynamic range

higher and brighter (i.e., the histogram of the output image
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Input Output Target

Figure 9. Demonstration that our model can leverage the light-

ness constancy produce the appearance of dark pixels through the

addition of light.

Input Output Target

Figure 10. Our model can hide mistakes and non-salient image de-

tails. At first glance, the output image is a normal day photo. The

building lights that are left on are details ignored by our method.

has few pixels with value less than 50). Though the “black”

point in the middle of the image has RGB values greater

than 50, such a change is generally hard to detect without

direct, side-by-side comparison to the target image.

Insensitivity to errors in textured regions. Figure 10

shows examples of our method turning nighttime images to

daytime images of city scenes. The challenge in such tasks

lies in “turning off” streetlamps or office window lights

when subtraction is not allowed. Interestingly, our model

tends not to worry too much about turning off all the lights

since the associated discrepancy is very small and usually

does not attract users’ attention. While all of our output im-

ages appear natural at first glance, upon closer examination,

these simulated daytime images retain evidence of turned-

on lights. However, our visual system is capable of handling

these minor errors.

5. Related Work

Recent deep generative models such as flow-based

model [67, 42, 17], auto-regressive models [59, 69, 63],

VAEs [44, 43, 55, 80], and GANs [25, 65, 5, 26, 39,

40, 13, 38] have contributed to improvements in uncondi-

tional image generation. The literature on conditional im-

age generation explores related tasks including style trans-

fer [23, 79, 14, 34, 19, 4, 8, 61], supervised image transla-

tion [36, 88, 24, 48, 49, 47, 53, 62, 77, 82, 86], unsupervised

image translation [51, 87, 35, 10, 16, 52, 68], and seman-

tic image editing [72, 9]. Please refer to Liu et al [50] for

more details. Despite this progress, the above mentioned

works assume the ability to output any color at any pixel

location, which is ill-suited to our problem setting. In fact,

our method can be combined with all of the above image

translation models. A related constrained image generation

problem is studied by Heim [28]. This work, however, fo-

cuses on semantic constraints, e.g., that the generated image

should be closer to one attribute group than the other. Most

closely related to our present work is the recent literature

on projector compensation [32, 30, 31, 11, 6, 27, 75, 3, 7],

where one updates the projected images to account for the

potentially non-planar and non-uniformly colored projector

surface. Our work focuses instead on the OST setting, in

which the image is formed via semi-transparent glass in-

stead of at the projector surface. In the sense that our our

approach plays with the effective dynamic range and the

contrast of the image, our work is related to tone mapping,

a process of mapping real world colors to a restricted color

space for displaying image while preserving details. Tra-

ditional tone mapping algorithms employ variants of his-

togram equalization [84, 15, 18, 12, 64] to enhance the con-

trast of LDR images. Many recent works [56, 21, 20, 54]

leverage deep learning to recover the missing details in

the over-exposed image regions by expanding the dynamic

range of single LDR images. In our paper, we found that

pairing very simple contrast and dynamic range adjustment

with SGD is sufficient to obtain our desired results.

6. Conclusion

Through this work, we explored the problem of non-

negative image generation and proposed an effective frame-

work that achieves consistently better results than the base-

lines. Possible extensions to this work include exploring ad-

ditional properties of the human visual system and remov-

ing the overly simplistic modeling assumptions. Thus far,

our studies have not included implementation using a real-

world AR rig. We are pursuing the testing of our method in

a physical system in an ongoing work.
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