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Abstract

We present an unsupervised learning approach for opti-

cal flow estimation by improving the upsampling and learn-

ing of pyramid network. We design a self-guided upsample

module to tackle the interpolation blur problem caused by

bilinear upsampling between pyramid levels. Moreover, we

propose a pyramid distillation loss to add supervision for

intermediate levels via distilling the finest flow as pseudo

labels. By integrating these two components together, our

method achieves the best performance for unsupervised op-

tical flow learning on multiple leading benchmarks, includ-

ing MPI-SIntel, KITTI 2012 and KITTI 2015. In particu-

lar, we achieve EPE=1.4 on KITTI 2012 and F1=9.38% on

KITTI 2015, which outperform the previous state-of-the-art

methods by 22.2% and 15.7%, respectively.

1. Introduction

Optical flow estimation has been a fundamental com-

puter vision task for decades, which has been widely used

in various applications such as video editing [14], behavior

recognition [31] and object tracking [3]. The early solutions

focus on minimizing a pre-defined energy function with op-

timization tools [4, 33, 30]. Nowadays deep learning based

approaches become popular, which can be classified into

two categories, the supervised [11, 26] and unsupervised

ones [29, 37]. The former one uses synthetic or human-

labelled dense optical flow as ground-truth to guide the

motion regression. The supervised methods have achieved

leading performance on the benchmark evaluations. How-

ever, the acquisition of ground-truth labels are expensive.

In addition, the generalization is another challenge when

trained on synthetic datasets. As a result, the latter category,

i.e. the unsupervised approaches attracts more attentions re-

cently, which does not require the ground-truth labels. In

unsupervised methods, the photometric loss between two

images is commonly used to train the optical flow estima-
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Figure 1. An example from Sintel Final benchmark. Compared

with previous unsupervised methods including SelFlow [22], Epi-

Flow [44], ARFlow [20], SimFlow [12] and UFlow [15], our ap-

proach produces sharper and more accurate results in object edges.

tion network. To facilitate the training, the pyramid network

structure [34, 10] is often adopted, such that both global

and local motions can be captured in a coarse-to-fine man-

ner. However, there are two main issues with respect to the

pyramid learning, which are often ignored previously. We

refer the two issues as bottom-up and top-down problems.

The bottom-up problem refers to the upsampling module

in the pyramid. Existing methods often adopt simple bi-

linear or bicubic upsampling [20, 15], which interpolates

cross edges, resulting in blur artifacts in the predicted op-

tical flow. Such errors will be propagated and aggregated

when the scale becomes finer. Fig. 1 shows an example. The

top-down problem refers to the pyramid supervision. The

previous leading unsupervised methods typically add guid-

ance losses only on the final output of the network, while

the intermediate pyramid levels have no guidance. In this

condition, the estimation errors in coarser levels will accu-

mulate and damage the estimation at finer levels due to the

lack of training guidance.

To this end, we propose an enhanced pyramid learning

framework of unsupervised optical flow estimation. First,

we introduce a self-guided upsampling module that sup-

ports blur-free optical flow upsampling by using a self-

learned interpolation flow instead of the straightforward in-
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terpolations. Second, we design a new loss named pyramid

distillation loss that supports explicitly learning of the inter-

mediate pyramid levels by taking the finest output flow as

pseudo labels. To sum up, our main contributions include:

• We propose a self-guided upsampling module to

tackle the interpolation problem in the pyramid net-

work, which can generate the sharp motion edges.

• We propose a pyramid distillation loss to enable ro-

bust supervision for unsupervised learning of coarse

pyramid levels.

• We achieve superior performance over the state-of-the-

art unsupervised methods with a relatively large mar-

gin, validated on multiple leading benchmarks.

2. Related Work

2.1. Supervised Deep Optical Flow

Supervised methods require annotated flow ground-truth

to train the network [2, 43, 39, 40]. FlowNet [6] was the

first work that proposed to learn optical flow estimation by

training fully convolutional networks on synthetic dataset

FlyingChairs. Then, FlowNet2 [11] proposed to iteratively

stack multiple networks for the improvement. To cover the

challenging scene with large displacements, SpyNet [26]

built a spatial pyramid network to estimate optical flow in a

coarse-to-fine manner. PWC-Net [34] and LiteFlowNet [9]

proposed to build efficient and lightweight networks by

warping feature and calculating cost volume at each pyra-

mid level. IRR-PWC [10] proposed to design pyramid net-

work by an iterative residual refinement scheme. Recently,

RAFT [35] proposed to estimate flow fileds by 4D correla-

tion volume and recurrent network, yielding state-of-the-art

performance. In this paper, we work in unsupervised setting

where no ground-truth labels are required.

2.2. Unsupervised Deep Optical Flow

Unsupervised methods do not need annotations for train-

ing [1, 42], which can be divided into two categories: the

occlusion handling methods and the alignment learning

methods. The occlusion handling methods mainly focus on

excluding the impact of the occlusion regions that cannot

be aligned inherently. For this purpose, many methods are

proposed, including the occlusion-aware losses by forward-

backward occlusion checking [24] and range-map occlusion

checking [37], the data distillation methods [21, 22, 28],

and augmentation regularization loss [20]. On the other

hand, the alignment learning methods are mainly devel-

oped to improve optical flow learning under multiple im-

age alignment constrains, including the census transform

constrain [29], multi-frame formulation [13], epipolar con-

strain [44], depth constrains [27, 45, 41, 19] and feature

similarity constrain [12]. Recently, UFlow [15] achieved

the state-of-the-art performance on multiple benchmarks by

systematically analyzing and integrating multiple unsuper-

vised components into a unified framework. In this paper,

we propose to improve optical flow learning with our im-

proved pyramid structure.

2.3. Image Guided Optical Flow Upsampling

A series of methods have been developed to upsample

images, depths or optical flows by using the guidance in-

formation extracted from high resolution images. The early

works such as joint bilateral upsampling [16] and guided

image filtering [8] proposed to produce upsampled results

by filters extracted from the guidance images. Recent

works [18, 38, 32] proposed to use deep trainable CNNs to

extract guidance feature or guidance filter for upsampling.

In this paper, we build an efficient and lightweight self-

guided upsampling module to extract interpolation flow and

interpolation mask for optical flow upsampling. By insert-

ing this module into a deep pyramid network, high quality

results can be obtained.

3. Algorithm

3.1. Pyramid Structure in Optical Flow Estimation

Optical flow estimation can be formulated as:

Vf = H(θ, It, It+1), (1)

where It and It+1 denote the input images, H is the esti-

mation model with parameter θ, and Vf is the forward flow

field that represents the movement of each pixel in It to-

wards its corresponding pixel in It+1.

The flow estimation model H is commonly designed as a

pyramid structure, such as the classical PWC-Net [34]. The

pipeline of our network is illustrated in Fig. 2. The network

can be divided into two stages: pyramid encoding and pyra-

mid decoding. In the first stage, we extract feature pairs

in different scales from the input images by convolutional

layers. In the second stage, we use a decoder module D
and an upsample module S↑ to estimate optical flows in a

coarse-to-fine manner. The structure of the decoder mod-

ule D is the same as in UFlow [15], which contains fea-

ture warping, cost volume construction by correlation layer,

cost volume normalization, and flow decoding by fully con-

volutional layers. Similar to recent works [10, 15], we also

make the parameters of D and S↑ shared across all the pyra-

mid levels. In summary, the pyramid decoding stage can be

formulated as follows:

V̂ i−1
f = S↑(F

i
t , F

i
t+1, V

i−1
f ), (2)

V i
f = D(F i

t , F
i
t+1, V̂

i−1
f ), (3)

where i ∈ {0, 1, ..., N} is the index of each pyramid level

and the smaller number represents the coarser level, F i
t and
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Figure 2. Illustration of the pipeline of our network, which contains two stage: pyramid encoding to extract feature pairs in different scales

and pyramid decoding to estimate optical flow in each scale. Note that the parameters of the decoder module and the upsample module are

shared across all the pyramid levels.

Bilinear Interpolation Interpolation flow

Figure 3. Illustration of bilinear upsampling (left) and the idea of

our self-guided upsampling (right). Red and blue dots are motion

vectors from different objects. Bilinear upsampling often produces

cross-edge interpolation. We propose to first interpolate a flow

vector in other position without crossing edge and then bring it to

the desired position by our learned interpolation flow.

F i
t+1 are features extracted from It and It+1 at the i-th level,

and V̂ i−1
f is the upsampled flow of the i− 1 level. In prac-

tice, considering the accuracy and efficiency, N is usually

set to 4 [10, 34]. The final optical flow result is obtained

by directly upsampling the output of the last pyramid level.

Particularly, in Eq. 2, the bilinear interpolation is commonly

used to upsample flow fields in previous methods [10, 15],

which may yield noisy or ambiguity results at object bound-

aries. In this paper, we present a self-guided upsample mod-

ule to tackle this problem as detailed in Sec. 3.2.

3.2. Selfguided Upsample Module

In Fig. 3 left, the case of bilinear interpolation is illus-

trated. We show 4 dots which represent 4 flow vectors,

belonging to two motion sources, marked as red and blue,

respectively. The missing regions are then bilinear interpo-

lated with no semantic guidance. Thus, a mixed interpo-

lation result is generated at the red motion area, resulting

in cross-edge interpolation. In order to alleviate this prob-

lem, we propose a self-guided upsample module (SGU) to

Bilinear

upsample

Fusion

Dense Blockwarp

warp

Figure 4. Illustration of our self-guided upsample module. We first

upscale the input low resolution flow V
i−1

f by bilinear upsampling

and use a dense block to compute an interpolation flow U
i
f and an

interpolation map B
i
f . Then we generate the high resolution flow

by warping and fusion.

change the interpolation source points by an interpolation

flow. The main idea of our SGU is shown in Fig. 3 right.

We first interpolate a point by its enclosing red motions and

then bring the result to the target place with the learned in-

terpolation flow (Fig. 3, green arrow). As a result, the mixed

interpolation problem can be avoided.

In our design, to keep the interpolation in plat areas from

being changed and make the interpolation flow only applied

on motion boundary areas, we learn a per-pixel weight map

to indicate where the interpolation flow should be disabled.

Thus, the upsampling process of our SGU is a weighted
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Figure 5. Visual example of our self-guided upsample module (SGU) on MPI-Sintel Final dataset. Results of bilinear method and our SGU

are shown. The zoom-in patches are also shown on the right of each sample for better comparison.

combination of the bilinear upsampled flow and a modified

flow obtained by warping the upsampled flow with the in-

terpolation flow. The detailed structure of our SGU module

is shown in Fig. 4. Given a low resolution flow V i−1
f from

the i − 1-th level, we first generate an initial flow V
i−1

f in

higher resolution by bilinear interpolation:

V
i−1

f (p) =
∑

k∈N (p/s)

w(p/s,k)V i−1
f (k), (4)

where p is a pixel coordinate in higher resolution, s is the

scale magnification, N denotes the four neighbour pixels,

and w(p/s,k) is the bilinear interpolation weights. Then,

we compute an interpolation flow U i
f from features F i

t and

F i
t+1 to change the interpolation of V

i−1

f by warping:

Ṽ i−1
f (p) =

∑

k∈N (d)

w(d,k)V
i−1

f (k), (5)

d = p+ U i
f (p), (6)

where Ṽ i−1
f is the result of warping V

i−1

f by the interpo-

lation flow U i
f . Since the interpolation blur only occurs in

object edge regions, it is unnecessary to learn interpolation

flow in flat regions. We thus use an interpolation map Bi
f to

explicitly force the model to learn interpolation flow only in

motion boundary regions. The final upsample result is the

fusion of Ṽ i−1
f and V

i−1

f :

V̂ i−1
f = Bi

f ⊙ V
i−1

f + (1−Bi
f )⊙ Ṽ i

f , (7)

where V̂ i−1
f is the output of our self-guided upsample mod-

ule and ⊙ is the element-wise multiplier.

To produce the interpolation flow U i
f and the interpola-

tion map Bi
f , we use a dense block with 5 convolutional

layers. Specifically, we concatenate the feature map F i
t

and the warped feature map F i
t+1 as the input of the dense

block. The kernel number of each convolutional layer in

the dense block is 32, 32, 32, 16, 8 respectively. The out-

put of the dense block is a tensor map with 3 channels. We

use the first two channels of the tensor map as the inter-

polation flow and use the last channel to form the interpo-

lation map through a sigmoid layer. Note that, no super-

vision is introduced for the learning of interpolation flow

and interpolation map. Fig. 5 shows an example from MPI-

Sintel Final dataset, where our SGU produces cleaner and

sharper results at object boundaries compared with the bi-

linear method. Interestingly, the self-learned interpolation

map is nearly to be an edge map and the interpolation flow

is also focused on object edge regions.

3.3. Loss Guidance at Pyramid Levels

In our framework, we use several losses to train the pyra-

mid network: the unsupervised optical flow losses for the

final output flow and the pyramid distillation loss for the

intermediate flows at different pyramid levels.

3.3.1 Unsupervised Optical Flow Loss

To learn the flow estimation model H in unsupervised set-

ting, we use the photometric loss Lm based on the bright-

ness constancy assumption that the same objects in It and

It+1 must have similar intensities. However, some regions

may be occluded by moving objects, so that their corre-

sponding regions do not exist in another image. Since the

photometric loss can not work in these regions, we only add

Lm on the non-occluded regions. The photometric loss can

be formulated as follows:

Lm =

∑
p Ψ

(
It(p)− It+1

(
p+ Vf (p)

))
·Mt(p)

∑
p M1(p)

, (8)

where Mt is the occlusion mask and Ψ is the robust penalty

function [21]: Ψ(x) = (|x| + ǫ)q with q, ǫ being 0.4

and 0.01. In the occlusion mask Mt, which is estimated

by forward-backward checking [24], 1 represents the non-

occluded pixels in It and 0 for those are occluded.

To improve the performance, some previously effective

unsupervised components are also added, including smooth

loss [37] Ls, census loss [24] Lc, augmentation regulariza-

tion loss [20] La, and boundary dilated warping loss [23]
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(a) Visual comparison on KITTI 2012 (first two rows) and KITTI 2015 (last two rows).

(b) Visual comparison on Sintel Clean (first two rows) and Sintel Final (last two rows).

Figure 6. Visual comparison of our method with the state-of-the-art method UFlow [15] on KITTI (a) and Sintel (b) benchmarks. The error

maps visualized by the benchmark websites are shown in the last two columns with obvious difference regions marked by yellow boxes.

Lb. For simplicity, we omit these components. Please re-

fer to previous works for details. The capability of these

components will be discussed in Sec. 4.3.

3.3.2 Pyramid Distillation Loss

To learn intermediate flow for each pyramid level, we pro-

pose to distillate the finest output flow to the intermediate

ones by our pyramid distillation loss Ld. Intuitively, this

is equivalent to calculating all the unsupervised losses on

each of the intermediate outputs. However, the photometric

consistency measurement is not accurate enough for optical

flow learning at low resolutions [15]. As a result, it is in-

appropriate to enforce unsupervised losses at intermediate

levels, especially at the lower pyramid levels. Therefore,

we propose to use the finest output flow as pseudo labels

and add supervised losses instead of unsupervised losses for

intermediate outputs.

To calculate Ld, we directly downsample the final output

flow and evaluate its difference with the intermediate flows.

Since occlusion regions are excluded from Lm, flow estima-

tion in occlusion regions is noisy. In order to eliminate the

influence of these noise regions in the pseudo label, we also

downsample the occlusion mask Mt and exclude occlusion

regions from Ld. Thus, our pyramid distillation loss can be

formulated as follow:

Ld =

N∑

i=0

∑

p

Ψ
(
V i
f − S↓(si, Vf )

)
· S↓(si,Mt), (9)

where si is the scale magnification of pyramid level i and

S↓ is the downsampling function.

Eventually, our training loss L is formulated as follows:

L = Lm + λdLd + λsLs + λcLc + λaLa + λbLb, (10)

where λd, λs, λc, λa and λb are hyper-parameters and we

set λd = 0.01, λs = 0.05, λc = 1, λa = 0.5 and λb = 1.

4. Experimental Results

4.1. Dataset and Implementation Details

We conduct experiments on three datasets: MPI-

Sintel [5], KITTI 2012 [7] and KITTI 2015 [25]. We use
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Method
KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

train test train test (F1-all) train test train test

S
u

p
er

v
is

ed

FlowNetS [6] 8.26 – – – 4.50 7.42 5.45 8.43

FlowNetS+ft [6] 7.52 9.1 – – (3.66) 6.96 (4.44) 7.76

SpyNet [26] 9.12 – – – 4.12 6.69 5.57 8.43

SpyNet+ft [26] 8.25 10.1 – 35.07% (3.17) 6.64 (4.32) 8.36

LiteFlowNet [9] 4.25 – 10.46 – 2.52 – 4.05 –

LiteFlowNet+ft [9] (1.26) 1.7 (2.16) 10.24% (1.64) 4.86 (2.23) 6.09

PWC-Net [34] 4.14 – 10.35 – 2.55 – 3.93 –

PWC-Net+ft [34] (1.45) 1.7 (2.16) 9.60% (1.70) 3.86 (2.21) 5.13

IRR-PWC+ft [10] – – (1.63) 7.65% (1.92) 3.84 (2.51) 4.58

RAFT [35] – – 5.54 – 1.63 – 2.83 –

RAFT-ft [35] – – – 6.30% – 2.42 – 3.39

U
n

su
p

er
v

is
ed

BackToBasic [42] 11.30 9.9 – – – – – –

DSTFlow [29] 10.43 12.4 16.79 39% (6.16) 10.41 (6.81) 11.27

UnFlow [24] 3.29 – 8.10 23.3% – 9.38 (7.91) 10.22

OAFlow [37] 3.55 4.2 8.88 31.2% (4.03) 7.95 (5.95) 9.15

Back2Future [13] – – 6.59 22.94% (3.89) 7.23 (5.52) 8.81

NLFlow [36] 3.02 4.5 6.05 22.75% (2.58) 7.12 (3.85) 8.51

DDFlow [21] 2.35 3.0 5.72 14.29% (2.92) 6.18 (3.98) 7.40

EpiFlow [44] (2.51) 3.4 (5.55) 16.95% (3.54) 7.00 (4.99) 8.51

SelFlow [22] 1.69 2.2 4.84 14.19% (2.88) 6.56 (3.87) 6.57

STFlow [36] 1.64 1.9 3.56 13.83% (2.91) 6.12 (3.59) 6.63

ARFlow [20] 1.44 1.8 2.85 11.80% (2.79) 4.78 (3.87) 5.89

SimFlow [12] – – 5.19 13.38% (2.86) 5.92 (3.57) 6.92

UFlow [15] 1.68 1.9 2.71 11.13% (2.50) 5.21 (3.39) 6.50

Ours 1.27 1.4 2.45 9.38% (2.33) 4.68 (2.67) 5.32

Table 1. Comparison with previous methods. We use the average EPE error (the lower the better) as evaluation metric for all the datasets

except on KITTI 2015 benchmark test, where the F1 measurement (the lower the better) is used. Missing entries ‘−’ indicates that the

result is not reported in the compared paper, and (·) indicates that the testing images are used during unsupervised training. The best

unsupervised results are marked in red and the second best are in blue. Note that, for results of the supervised methods, ‘+ft’ means the

model is trained on the target domain, otherwise, the model is trained on synthetic datasets such as Flying Chairs [6] and Flying Chairs

occ [10]. For unsupervised methods, we report the performance of the model trained using images from target domain.

the same dataset setting as previous unsupervised meth-

ods [20, 15]. For MPI-Sintel dataset, which contains

1, 041 training image pairs rendered in two different passes

(‘Clean’ and ‘Final’), we use all the training images from

both ‘Clean’ and ‘Final’ to train our model. For KITTI 2012

and 2015 datasets, we pretrain our model using 28, 058 im-

age pairs from the KITTI raw dataset and then finetune

our model on the multi-view extension dataset. The flow

ground-truth is only used for validation.

We implement our method with PyTorch, and com-

plete the training in 1000k iterations with batch size of 4.

The total number of parameters of our model is 3.49M,

in which the proposed self-guided upsample module has

0.14M trainable parameters. Moreover, the running time

of our full model is 0.05s for a Sintel image pair with res-

olution 436 × 1024. The standard average endpoint error

(EPE) and the percentage of erroneous pixels (F1) are used

as the evaluation metric of optical flow estimation.

4.2. Comparison with Existing Methods

We compare our method with existing supervised and

unsupervised methods on leading optical flow benchmarks.

Quantitative results are shown in Table 1, where our method

outperforms all the previous unsupervised methods on all

the datasets. In Table 1, we mark the best results by red and

the second best by blue in unsupervised methods.

Comparison with Unsupervised Methods. On KITTI

2012 online evaluation, our method achieves EPE=1.4,

which improves the EPE=1.8 of the previous best method

ARFlow [20] by 22.2%. Moreover, on KITTI 2015 on-

line evaluation, our method reduces the F1-all value of

11.13% in UFlow [15] to 9.38% with 15.7% improvement.
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CL BDWL ARL SGU PDL
KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

ALL NOC OCC ALL NOC OCC ALL NOC OCC ALL NOC OCC

4.52 1.76 19.63 7.58 2.46 30.43 (3.52) (1.87) (12.93) (4.19) (2.59) (13.64)

! 3.39 1.09 16.58 6.89 2.20 28.12 (3.41) (1.62) (13.51) (3.85) (2.17) (13.71)

! ! 1.42 0.91 4.39 3.00 2.12 6.89 (2.84) (1.50) (10.63) (3.60) (2.28) (11.52)

! ! ! 1.37 0.93 3.98 2.64 1.96 6.01 (2.61) (1.33) (10.14) (3.17) (1.92) (10.70)

! ! ! ! 1.33 0.88 4.00 2.56 1.91 5.35 (2.46) (1.17) (9.89) (2.79) (1.53) (10.28)

! ! ! ! 1.36 0.91 4.03 2.61 1.96 5.52 (2.53) (1.23) (10.12) (2.93) (1.67) (10.38)

! ! ! ! ! 1.27 0.85 3.77 2.45 1.87 5.32 (2.33) (1.07) (9.66) (2.63) (1.39) (9.91)

Table 2. Ablation study of the unsupervised components. CL: census loss [24], BDWL: boundary dilated warping loss [23], ARL: aug-

mentation regularization loss [20], SGU: self-guided upsampling, PDL: pyramid distillation loss. The best results are marked in bold.

On the test benchmark of MPI-Sintel dataset, we achieve

EPE=4.68 on the ‘Clean’ pass and EPE=5.32 on the ‘Final’

pass, both outperforming all the previous methods. Some

qualitative comparison results are shown in Fig. 6, where

our method produces more accurate results than the state-

of-the-art method UFlow [15].

Comparison with Supervised Methods. As shown in

Table 1, representative supervised methods are also re-

ported for comparison. In practical applications where flow

ground-truth is not available, the supervised methods can

only train models using synthetic datasets. In contrast, un-

supervised methods can be directly implemented using im-

ages from the target domain. As a result, on KITTI and

Sintel Final datasets, our method outperforms all the super-

vised methods trained on synthetic datasets, especially in

real scenarios such as the KITTI 2015 dataset.

As for the in-domain ability, our method is also com-

parable with supervised methods. Interestingly, on KITTI

2012 and 2015 datasets, our method achieve EPE=1.4 and

F1=9.38%, which outperforms classical supervised meth-

ods such as PWC-Net [34] and LiteFlowNet [9].

4.3. Ablation Study

To analyze the capability and design of each individual

component, we conduct extensive ablation experiments on

the train set of KITTI and MPI-Sintel datasets following

the setting in[22, 12]. The EPE error over all pixels (ALL),

non-occluded pixels (NOC) and occluded pixels (OCC) are

reported for quantitative comparisons.

Unsupervised Components. Several unsupervised

components are used in our framework including cen-

sus loss [24] (CL), boundary dilated warping loss [23]

(BDWL), augmentation regularization loss [20] (ARL), our

proposed self-guided upsampling (SGU) and pyramid dis-

tillation loss (PDL). We assess the effect of these compo-

nents in Table. 2. In the first row of Table. 2, we only use

photometric loss and smooth loss to train the pyramid net-

work with our SGU disabled. Comparing the first four rows

in Table. 2, we can see that by combining CL, BDWL and

Method KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Bilinear 1.36 2.61 (2.53) (2.93)

JBU [16] 1.51 3.00 (2.66) (2.98)

GF [8] 1.40 2.90 (2.72) (2.92)

DJF [17] 1.36 2.79 (2.75) (3.20)

DGF [38] 1.41 3.14 (2.69) (3.05)

PAC [32] 1.42 2.65 (2.58) (2.95)

SGU-FM 1.35 2.60 (2.52) (2.91)

SGU-M 1.33 2.59 (2.41) (2.86)

SGU 1.27 2.45 (2.33) (2.63)

Table 3. Comparison of our SGU with different upsampling meth-

ods: the basic bilinear upsampling, image guided upsampling

methods including JBU [16], GF [8], DJF [17], DGF [38] and

PAC [32], and the variants of SGU such as SGU-FM, where the

interpolation flow and weight map are both removed, and SGU-

M, where the only the interpolation map is removed.

ARL, the performance of optical flow estimation can be im-

proved, which is equivalent to the current best performance

reported in UFlow [15]. Comparing the last four rows in Ta-

ble. 2, we can see that: (1) the EPE error can be reduced by

using our SGU to solve the bottom-up interpolation prob-

lem; (2) the top-down supervision information by our PDL

can also improve the performance; (3) the performance can

be further improved by combining the SGU and PDL.

Some qualitative comparison results are shown in Fig. 7,

where ‘Full’ represents our full method, ‘W/O SGU’ means

the SGU module of our network is disabled and ‘W/O PDL’

means the PDL is not considered during training. Com-

paring with our full method, the boundary of the predicted

flow becomes blurry when SGU is removed while the error

increases when PDL is removed.

Self-guided Upsample Module. There is a set of meth-

ods that use image information to guide the upsampling

process, e.g., JBU [16], GF [8], DJF [17], DGF [38] and

PAC [32]. We implement them into our pyramid network

and train with the same loss function for comparisons. The

average EPE errors of the validation sets are reported in Ta-

ble. 3. As a result, our SGU is superior to the image guided

upsampling methods. The reason lies in two folds: (1) the

guidance information that directly extracted from images
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Figure 7. Visual results of removing the SGU or PDL from our full method on Sintel Clean (the first sample) and Sintel Final (the second

sampe). The room in flows and error maps are shown in the right corner of each sample.

Method
Sintel Clean train Sintel Final train

×1 ×4 ×8 ×16 ×32 ×64 ×1 ×4 ×8 ×16 ×32 ×64

w/o PL (2.46) (2.53) (2.78) (3.38) (4.70) (7.39) (2.79) (2.89) (3.11) (3.73) (5.07) (7.59)

PUL-up (2.45) (2.52) (2.75) (3.35) (4.61) (7.32) (2.77) (2.86) (3.09) (3.68) (5.00) (7.52)

PUL-down (2.49) (2.56) (2.82) (3.43) (4.84) (7.69) (2.80) (2.89) (3.12) (3.74) (5.18) (8.26)

PDL w/o occ (2.37) (2.42) (2.61) (3.15) (4.17) (6.31) (2.73) (2.81) (3.00) (3.59) (4.82) (7.16)

PDL (2.33) (2.37) (2.56) (3.03) (3.88) (5.58) (2.63) (2.69) (2.87) (3.38) (4.43) (6.39)

Table 4. Comparison of different pyramid losses: no pyramid loss (w/o PL), pyramid unsupervised loss by upsampling intermediate flows

to image resolution to compute unsupervised objective functions (PUL-up) and by downsampling images to the intermediate resolution

(PUL-down), our pyramid distillation loss without masking out occlusion regions (PDL w/o occ) and our pyramid distillation loss (PDL).

All the intermediate output flows are evaluated on the train set of Sintel Clean and Final.

may not be favorable to the unsupervised learning of opti-

cal flow especially for the error-prone occlusion regions; (2)

our SGU can capture detail matching information by learn-

ing from the alignment features which are used to compute

optical flow by the decoder.

In the last three rows of Table. 3, we also compare our

SGU with its variants: (1) SGU-FM, where the interpola-

tion flow and interpolation map are both removed so that

the upsampled flow is directly produced by the dense block

without warping and fusion in Fig. 4; (2) SGU-M, where

the interpolation map is disabled. Although the perfor-

mance of SGU-FM is slightly better than the baseline bilin-

ear method, it is poor than that of SGU-M, which demon-

strates that using an interpolation flow to solve the interpo-

lation blur is more effective than directly learning to predict

a new optical flow. Moreover, the performance reduced as

the interpolation map is removed from SGU, which demon-

strates the effectiveness of the interpolation map.

Pyramid Distillation Loss. We compare our PDL with

different pyramid losses in Table. 4, where ‘w/o PL’ means

no pyramid loss is calculated, ‘PUL-up’ and ‘PUL-down’

represent the pyramid unsupervised loss by upsampling in-

termediate flows to the image resolution and by downsam-

ling the images to the intermediate resolutions accordingly.

‘PDL w/o occ’ means the occlusion masks on pyramid lev-

els are disabled in our PDL. In ‘PUL-up’ and ‘PUL-down’,

the photometric loss, smooth loss, census loss and bound-

ary dilated warping loss are used for each pyramid level and

their weights are tuned to our best in the experiments. To

eliminate variables, the occlusion masks used in ‘PUL-up’

and ‘PUL-down’ are calculated by the same method as in

our PDL. As a result, model trained by our pyramid distil-

lation loss can generate better results on each pyramid level

than by pyramid unsupervised losses. This is because our

pseudo labels can provide better supervision on low reso-

lutions than unsupervised losses. Moreover, the error in-

creased when the occlusion mask is disabled in our PDL,

indicating that excluding the noisy occlusion regions can

improve the quality of the pseudo labels.

5. Conclusion

We have proposed a novel framework for unsupervised

learning of optical flow estimation by bottom-up and top-

down optimize of the pyramid levels. For the interpola-

tion problem in the bottom-up upsampling process of pyra-

mid network, we proposed a self-guided upsample module

to change the interpolation mechanism. For the top-down

guidance of the pyramid network, we proposed a pyramid

distillation loss to improve the optical flow learning on in-

termediate levels of the network. Extensive experiments

have shown that our method can produce high-quality op-

tical flow results, which outperform all the previous unsu-

pervised methods on multiple leading benchmarks.
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