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Abstract

Frame reconstruction (current or future frame) based on

Auto-Encoder (AE) is a popular method for video anomaly

detection. With models trained on the normal data, the re-

construction errors of anomalous scenes are usually much

larger than those of normal ones. Previous methods in-

troduced the memory bank into AE, for encoding diverse

normal patterns across the training videos. However, they

are memory-consuming and cannot cope with unseen new

scenarios in the testing data. In this work, we propose a dy-

namic prototype unit (DPU) to encode the normal dynamics

as prototypes in real time, free from extra memory cost. In

addition, we introduce meta-learning to our DPU to form

a novel few-shot normalcy learner, namely Meta-Prototype

Unit (MPU). It enables the fast adaption capability on new

scenes by only consuming a few iterations of update. Ex-

tensive experiments are conducted on various benchmarks.

The superior performance over the state-of-the-art demon-

strates the effectiveness of our method. Our code is avail-

able at https://github.com/ktr-hubrt/MPN/.

1. Introduction

Video anomaly detection (VAD) refers to the identifica-

tion of behaviors or appearance patterns that do not conform

to the expectation [2, 3, 5, 28]. Recently, there is a growing

interest in this research topic because its key role in surveil-

lance for public safety, e.g. the task of monitoring video

in airports, at border crossings, or at government facilities

becomes increasingly critical. However, the ‘anomaly’ is

conceptually unbounded and often ambiguous, making it

infeasible to gather data of all kinds of possible anomalies.

Anomaly detection is thus typically formulated as an unsu-

pervised learning problem, aiming at learning a model to

exploit the regular patterns only with the normal data. Dur-

ing inference, patterns that do not agree with the encoded

regular ones are considered as anomalies.
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Figure 1: An overview of our approach. (1) We design

a Dynamic Prototype Unit (DPU) to learn a pool of pro-

totypes for encoding normal dynamics; (2) Meta-learning

methodology is introduced to formulate the DPU as a few-

shot normalcy learner – Meta Prototype Unit (MPU). It im-

proves the scene adaption capacity by learning an initializa-

tion of the target model and adjusting it to new scenes with

parameters update during inference. Better viewed in color.

Deep Auto-Encoder (AE) [38] is a popular approach for

video anomaly detection. Researchers usually adopt AEs to

model the normal patterns with historical frames and to re-

construct the current frame [11, 31, 39, 4, 40, 1] or predict

the upcoming frame [22, 34, 24, 26, 10]. For simplicity, we

refer to the two cases as frame prediction. Since the mod-

els are trained with only normal data, higher prediction er-

rors are expected for abnormal (unseen patterns) inputs than

those of the normal counterparts. Previously, many methods

are based on this assumption for anomaly detection. How-

ever, this assumption does not always hold true.

On the one hand, the existing methods rely on large

volumes of normal training data to model the shared nor-

mal patterns. These models are prone to face the ‘over-

generalizing’ dilemma, where all video frames can be pre-

dicted well, no matter they are normal or abnormal, ow-

ing to the powerful representation capacity of convolutional

neural networks (CNNs) [37, 10]. Previous approaches

[37, 10] proposed to explicitly model the shared normal pat-

terns across normal training videos with a memory bank, for
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the propose of boosting the prediction of normal regions in

frames while suppressing the abnormal ones. However, it is

extremely memory-consuming for storing the normal pat-

terns as memory items across the whole training set.

To tackle this limitation, we propose to encode the nor-

mal dynamics in an attention manner, which is proven to

be effective in representation learning and enhancement

[46, 20, 13]. A normalcy learner, named as Dynamic Pro-

totype Unit (DPU), is developed to be easily incorporated

into the AE backbone. It takes the encoding of consecutive

normal frames as input, then learns to mine diverse normal

dynamics as compact prototypes. More specifically, we ap-

ply a novel attention operation on the AE encoding map,

which assigns a normalcy weight to each pixel location to

form a normalcy map. Then, prototypes are obtained as an

ensemble of the local encoding vectors under the guidance

of normalcy weights. Multiple parallel attention operations

are applied to generate a pool of prototypes. With the pro-

posed compactness and diverseness feature reconstruction

loss function, the prototype items are trained to represent di-

verse and compact dynamics of the shared normal patterns

in an end-to-end fashion. Finally, the AE encoding map

is aggregated with the normalcy encoding reconstructed by

prototypes for latter frame prediction.

On the other hand, the normal patterns appearing in var-

ious scenes differ from each other. For instance, a person

running in a walking zone is regarded as an anomaly, while

this activity is normal in the playground. Previous meth-

ods [22, 10] assume the normal patterns in training videos

are consistent with those of test scenes in the unsupervised

setting of VAD. However, this assumption is unreliable, es-

pecially in real-world applications where surveillance cam-

eras are installed in various places with significantly differ-

ent scenarios. Therefore, there is a pressing need to develop

an anomaly detector with adaption capability. To this end,

[37] defines a rule for updating items in the memory bank

based on a threshold to record normal patterns and ignore

abnormal ones. However, it is impossible to find a uniform

and optimal threshold for distinguishing the normal and ab-

normal frames under various scenarios.

In this work, we approach this problem from a new per-

spective, motivated by [25], which is the few-shot setting

for video anomaly detection. In the few-shot setting, videos

from multiple scenes are accessible during training, and a

few video frames from target scene are available during

inference. A solution to this problem is using the meta-

learning technique. In this meta-training phase, a few-shot

target model is trained to adapt to a new scene with a few

frames and parameters update iterations. The procedure is

repeated using video data from different scenes for obtain-

ing a model initialization that serves as a good starting point

for fast adaption to new scenes. Therefore, we formulate

our DPU module as a few-shot normalcy learner, namely

Meta Prototype Unit (MPU), for the goal of learning to learn

the normalcy in target scenes. Rather than roughly shift-

ing to the new scene by adjusting the whole network [25],

which may lead to the ‘over-generalizing’ problem, we pro-

pose to freeze the pre-trained AE and only update the pa-

rameters of our MPU. Consuming only a few parameters

and update iterations, our meta-learning model is endued

with the power of fast and effective adaption to the nor-

malcy of unseen scenarios. An overview of our approach

is presented in Fig. 1.

We summarize our contributions as follows: i) We de-

velop a Dynamic Prototype Unit (DPU) for learning to rep-

resent diverse and dynamic patterns of the normal data as

prototypes. An attention operation is thus designed for ag-

gregating the normal dynamics to form prototype items.

The whole process is differentiable and trained end-to-end.

ii) We introduce meta-learning into our DPU and improve

it as a few-shot normalcy learner – Meta Prototype Unit

(MPU). It effectively endows the model with the fast adap-

tion capability by consuming only a few parameters and

update iterations. iii) Our DPU-based AE achieves new

state-of-the-art (SOTA) performance on various unsuper-

vised anomaly detection benchmarks. In addition, experi-

mental results validate the adaption capability of our MPU

in the few-shot setting.

2. Related Work

Anomaly Detection. Due to the absence of anomaly data

and expensive costs of annotations, video anomaly de-

tection has been formulated into several types of learn-

ing problems. For example, the unsupervised setting as-

sumes only normal training data [19, 27, 23], and weakly-

supervised setting can access videos with video-level la-

bels [43, 53, 28]. In this work, we focus on the unsu-

pervised setting, which is more practical in real applica-

tions. For example, the normal video data of surveillance

cameras are easily accessible for learning models describ-

ing the normality. Earlier methods, based on sparse cod-

ing [7, 51, 23], markov random field [14], a mixture of dy-

namic textures [30], a mixture of probabilistic PCA mod-

els [15], etc., tackle the task as a novelty detection prob-

lem [28]. Latter, deep learning (CNNs in particular) has

triumphed over many computer vision tasks including video

anomaly detection (VAD). In [27], Luo et al. propose a tem-

porally coherent sparse coding-based method which can be

mapped to a stacked RNN framework.

Recently, many methods leverage deep Auto-Encoder

(AE) to model regular patterns and reconstruct video

frames [11, 31, 39, 4, 40, 1]. Multiple variants of AE have

been developed to cooperate spatial and temporal informa-

tion for video anomaly detection. In [26, 6], the authors in-

vestigate Recurrent Neural Network (RNN) and Long Short

Term Memory (LSTM) for modeling regular patterns in se-
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quential data. Liu et al. [22] propose to predict the fu-

ture frame with AE and Generative Adversarial Network

(GAN). They assume anomalous frames are unpredictable

in the video sequence. It has achieved superior performance

over previous reconstruction-based methods. However, this

kind of methodology suffers from the ‘over-generalizing’

problem that sometimes anomalous frames can also be pre-

dicted well (i.e. small prediction error) as normal ones.

Gong et al. (MemAE) [10] and Park et al. (LMN) [37]

introduce a memory bank into the AE for anomaly detec-

tion. They record normal patterns across training videos as

memory items in a bank, which brings extra memory cost.

While we propose to learn the normalcy with an attention

mechanism to measure the normal extent. The learning pro-

cedure is fully differentiable and the prototypes are dynam-

ically learned with the benefits of adapting to the current

scene spatially and temporally, compared with querying

and updating the memory bank with pre-defined rules for

recording rough patterns cross the training data in [10, 37].

Moreover, the prototypes are automatically derived based

on the real-time video data during inference, without ref-

erencing to the memory items collected from the training

phase [10, 37]. For adaption to test scenes, Park et al. [37]

further expand the update rules of the memory bank by us-

ing a threshold to distinguish abnormal frames and record

normal patterns. However, it is impossible to find a uniform

and optimal threshold for distinguishing the normal and ab-

normal frames under various scenarios. On the contrary, we

introduce the meta-learning technology into our DPU mod-

ule to enable the fast adaption capacity to a new scenery.

Attention Mechanisms. Attention mechanism [48, 49, 13,

42, 16, 50, 9, 52, 20] is widely adopted in many com-

puter vision tasks. Current methods can be roughly di-

vided into two categories, which are the channel-wise at-

tention [49, 13, 42, 50] and spatial-wise attention [42, 52,

49, 16, 9]. SENet [13] designs an effective and lightweight

gating mechanism to self-recalibrate the feature map via

channel-wise importance. Wang et al. [48] propose a trunk-

and-mask attention between intermediate stages of a CNN.

However, most prior attention modules focus on optimiz-

ing the backbone for feature learning and enhancement. We

propose to leverage the attention mechanism to measure the

normalcy of spatial local encoding vectors, and use them to

generate prototype items which encode the normal patterns.

Few-Shot and Meta-learning. In few-shot learning, re-

searchers aim to mimic the fast and nimble learning ability

of humans, which can quickly adapt to a new scenario with

only a few data examples [18]. Generally, meta-learning

has been developed to tackle this problem. The meta-

learning methods mainly fall into three categories: metric-

based [17, 47, 44], model-based [41, 33] and optimization-

based approaches [8]. These methods can quickly adapt to

a new task through the meta-update scheme among mul-
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Figure 2: The framework of DPU-based model. The pro-

posed Dynamic Prototype Unit (DPU) is plugged into an

Auto-Encoder (AE) to learn prototypes for encoding nor-

mal dynamics. The prototypes are obtained from the AE

encoding with the guidance of normalcy weights and the

normalcy weights of the AE encoding are generated in a

fully differentiable attention manner. Then an normalcy en-

coding map (green color) is reconstructed as an encoding

of learned prototypes. It is further aggregated with the AE

encoding map for latter frame prediction.

tiple tasks during parameter optimization. However, most

of the approaches above are designed for simple tasks like

image classification. Recently, Lu et al. [25] follow the

optimization-based meta-learning approach [8] and apply it

to train a model for scene-adaptive anomaly detection. They

simply set the whole network as the few-shot target model

for meta-learning, for learning an initialization parameter

set of the entire model. However, in this work, we learn two

sets of initial parameters and update step sizes separately

for an elaborate updating of designed module in our model

with fewer parameters and update iterations.

3. Method

In this section, we elaborate the proposed method for

VAD. First, we describe the learning process of normal dy-

namics in the Dynamic Prototype Unit (DPU) in Sec. 3.1,

and we explain the objective functions of the framework in

Sec. 3.2. Then in Sec. 3.3, we present the details of the

few-shot normalcy learner. Finally in Sec. 3.4, we detail the

training and testing procedures of our VAD framework.

3.1. Dynamic Prototype Unit

The framework of the DPU-based AE is shown in Fig. 2.

DPU is trained to learn and compress normal dynamics of

real-time sequential information as multiple prototypes and

enrich the input AE encoding with normal dynamics infor-

mation. Note that, DPU can be plugged into different places

(with different resolutions) of the AE. We conduct ablation

studies in Sec. 4.4 to analyze the impact of DPU position.

Let’s first consider an AE model takes as inputs the T
observed video frames (Ik−T+1, Ik−T+2, ..., Ik), simplified
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as xk. Then the selected hidden encoding of AE is feed for-

ward into our DPU Pτ : Rh×w×c → R
h×w×c. Finally, the

output encoding of DPU is run through the remaining AE

layers (after DPU) for predicting upcoming ground-truth

frame yk = Ik+1. We denote the frame sequence as an

input&output pair (xk, yk) of the k-th moment.

The forward pass of DPU is realized by generating a

pool of dynamic prototypes in a fully differentiable atten-

tion manner, then reconstructing a normalcy encoding by

retrieving the prototypes, and eventually aggregating the in-

put encoding with the normalcy encoding as the output. The

whole process can be broken down into 3 sub-processes,

which are Attention, Ensemble and Retrieving.

Concretely, the t-th input encoding map Xt = fθ(xt) ∈
R

h,w,c from AE is first extracted, viewed as N = w ∗h vec-

tors of c dimensional, {x1t , x
2
t , ..., x

N
t }. In the sub-process

of Attention, a quantity of M attention mapping functions

{ψm : R
c → R

1}Mm=1 are employed to assign normalcy

weights to encoding vectors, w
n,m
t ∈ Wm

t = ψm(Xt). On

each pixel location, the normalcy weight measures the nor-

malcy extent of the encoding vector. Here, Wm
t ∈ R

h×w×1

denotes the m-th normalcy map, generated from the m-th

attention function. Then one unique prototype pmt is de-

rived as an ensemble of N encoding vectors with normalized

normalcy weights in sub-process Ensemble as:

pmt =
N∑

n=1

w
n,m
t∑N

n′=1 w
n′,m
t

xnt . (1)

Similarly, M prototypes are derived from multiple attention

functions to form a prototype pool, Pt = {pmt }Mm=1.

Finally, in the Retrieving sub-process, input encoding

vectors xnt (n ∈ N) from the AE encoding map are used

as queries to retrieve relevant items in the prototype pool

for reconstructing a normalcy encoding X̃t ∈ R
h×w×c. For

every obtained normalcy encoding vector, this proceeds as:

x̃nt =

M∑

m=1

β
n,m
t pmt , (2)

where β
n,m
t =

xn

t
pm

t∑
M

m′=1
xn

t
pm′

t

denotes the relevant score be-

tween the n-th encoding vector xnt and the m-th prototype

item pmt . The obtained normalcy map is aggregated with

the original encoding X as the final output using a channel-

wise sum operation. The key idea is to enrich the AE encod-

ing with the normalcy information to boost the prediction of

normal parts of video frames while suppressing the abnor-

mal parts. The output encoding of DPU goes through the

remaining AE layers for later frame prediction.

3.2. VAD Objective Functions

In this section, we present the objective functions in

the pipeline, which enable the prototype learning for nor-

malcy dynamics representation, feature reconstruction for

normalcy enhanced encoding, and frame prediction for

anomaly detection. To train our model, the overall loss

function L consists of a feature reconstruction term Lfea

and a frame prediction term Lfra. These two terms are bal-

anced by weight λ1 as:

L = Lfra + λ1Lfea. (3)

Frame Prediction Loss is formulated as the L2 distance

between ground-truth yt and network prediction ŷt:

Lfra = ‖ŷt − yt‖2. (4)

Feature Reconstruction Loss is designed to make the

learned normal prototypes have the properties of compact-

ness and diversity. It has two terms Lc and Ld, aiming at

the two properties respectively, and is written as:

Lfea = Lc + λ2Ld, (5)

where λ2 is the weight parameter. The compactness term

Lc is for reconstruction of normalcy encoding with com-

pact prototypes. It measures the mean L2 distance of input

encoding vectors and their most-relevant prototypes as:

Lc =
1

N

N∑

n=1

‖xnt − p∗t‖2, (6)

s.t., ∗ = argmax
m∈[1,M ]

β
n,m
t , (7)

where βn,m is the relevant score mentioned in Eq. 2. Note

that, argmax is only used to obtain indices of the most

relevant vector, and not involved in the back-propagation.

We further promote the diversity among prototype items by

pushing the learned prototypes away from each other. The

diversity term Ld is expressed as:

Ld =
2

M(M − 1)

M∑

m=1

M∑

m′=1

[−||pm − pm′ ||2 + γ]+. (8)

Here, γ controls the desired margin between prototypes.

Taking benefits of above two terms, the prototype items are

encouraged to encode compact and diverse normalcy dy-

namics for normal frame prediction.

3.3. Meta­learning in Few­shot VAD

Generally, the AEs take consecutive video frames as

inputs and reconstruct the current frame or predict the

subsequent frame. In this work, we focus on the latter

paradigm. We first consider a VAD architecture formulated

as fθ(Eη(x)) = Dδ(Pτ (Eη(x))), where η, δ denote the

parameters of the AE encoding/decoding functionE,D, re-

spectively. The designed model takes as input a sequence of

frame samples x. Then the AE encoding X = Eη(x) is fed
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into the DPU module Pτ . DPU learns to encode the normal

dynamics information in consecutive video frames with the

parameter set τ . Our few-shot target model fθ(X ), namely

Meta-Prototype Unit (MPU), consists of the main module

DPU and the AE decoder with parameter set θ = τ ∪ δ.

Taking the subsequent frame sample y as the ground-truth,

the target model is updated based on the objective functions

defined in Sec. 3.2. The process is denoted as the update

function U with frame pair (x, y).
During inference, short normal clips of test videos are

available for adjusting the model to the new scenery in the

few-shot setting of VAD. To mimic this adaption process,

meta-training strategy is implemented in the training phase.

In meta-training, a good initialization θ0 is pursued so that

the target model, starting from θ0 and applying one or a few

iterations of update function U , can quickly adapt to a new

scenery with limited data samples. We adopt the gradient-

descent style update function [21, 36] which is parameter-

ized by α. Then the function U is formulated as:

U(θ,∇θL;α) = θ − α⊙∇θL. (9)

L is the designed loss function (Eq. 3) for the target model.

⊙ denotes the element-wise product. α is the parameter that

controls the step size of one update iteration, and it is set to

the same size as parameter set θ.

To ensure the robustness of scene adaption, during meta-

training, the target model is updated and supervised based

on the error signals from different input&output pairs in one

scene. The key idea is that the target model should also

generalize to other frames in the same scene, not only sev-

eral frames which the model is trained on. Given a random

input&output pair (xk, yk) from a normal video, one update

step of the target model with initialization θ0 is derived as:

θi+1
0 = U(θi0,∇θi

0

L(yk, fθ0(Eη(xk)))). (10)

After T update iterations, scene-adapted model parameters

θ̂ are obtained. We denote the round of T update iterations

as an episode. The iterations number T in an episode is

set to 1, to guarantee a fast adaption capability. Then we

evaluate the model with θ̂ to minimize the scene error sig-

nal by running the network through a randomly sampled

input&output pair (xj , yj) in the same scene as (xk, yk).
The gradients of function of gradients algorithm [32, 29,

8, 36] is applied to compute the gradients of above objective

function for obtaining a good initialization model θ∗0 and

update step size α∗ as:

θ∗0 , α
∗ = argmin

θ0,α

E[L(yj , fθ̂(Eη(xj)))]. (11)

3.4. Video Anomaly Detection Pipeline

We first explain the details of the whole network archi-

tecture and how anomaly scores are generated. Then we

describe the training and testing phases of our framework.

Network Architecture Details. Our framework is imple-

mented as a single end-to-end network illustrated in Fig. 2.

We adopt the same network architecture in [22, 37] as the

backbone of AE to facilitate a fair comparison. In the DPU

module,M attention mapping functions are implemented as

fully connected layers to generate a series of normalcy maps

and further to form a pool of dynamic prototypes. The out-

put encoding of DPU is put forward through the decoder of

AE for frame prediction. In addition, the DPU module is

meta-trained as a few-shot learner, i.e. Meta Prototype Unit

(MPU). The details are explained below.

Anomaly Score. To better quantify the anomalous ex-

tent of a video frame during inference, we investigate the

two cues of feature reconstruction and frame prediction.

Since the normal dynamics items in the dynamic proto-

type pool are learned to encode the compact representa-

tions of the normal encoding as in Eq. 5, during inference,

an anomaly score can be naturally obtained by measuring

the compactness error of feature reconstruction term as:

Sfea = Lc(Xt,Pt). Xt and Pt denote the input encoding

map and the dynamic prototype pool of the t-th moment,

respectively. As in previous methods [22, 10, 37], frame

prediction error is also leveraged as an anomaly descriptor:

Sfra = Lfra(ŷt, yt). Thus we obtain above two kinds of

anomaly scores and combine them with a balance weight

λs as: S = Sfra + λsSfea.

Training Phase. Before meta-training, the AE back-

bone is first pre-trained using only frame prediction loss

(Eq. 4). Then, in a meta-training episode, we ran-

domly sample K tuples of double input&output pairs

{[(xi, yi), (xj , yj)]i 6=j}
K
k=1 from a video – K-shot, for pa-

rameter update in Eq. 10 and signal backward in Eq. 11.

Multiple episodes with K-shot data sampled from different

videos are constructed as a training mini-batch. After sev-

eral times of training epochs with frame pairs sampled from

videos of diverse scenes, an initialization parameter set θ∗0
is obtained, ready for scene adaption.

Testing Phase. In the testing phase, given a new test se-

quence, we simply use the first several frames of the se-

quence to construct K-shot input&output frame pairs for

updating model parameters. The same procedure is used

in the meta-training phase. The updated model is used for

detecting anomalies afterwards.

4. Experiments

4.1. Problem Settings, Datasets and Setups

Problem Settings. For better evaluating the effectiveness

of our approach, we follow two anomaly detection problem

settings, which are the unsupervised setting and few-shot

setting. The first one is widely adopted in existing litera-

ture [37, 10, 22, 19, 23, 27], where only normal videos are

available during training. The trained models are used to
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detect anomalies in test videos. Note that the scenarios of

test videos are seen during training in this setting. The sec-

ond one, for meta-learning evaluation, is based on collecting

training and testing videos from different datasets to make

sure the diversity of scenarios during training and testing.

This setting is also called ‘cross-dataset’ testing in [25]. In

summary, the first setting challenges the approaches for how

well they can perform under one fixed camera, while the

latter setting examines the adaption capability, when given

a new camera. We believe above settings are essential for

evaluating a robust and practical anomaly detection method.

Datasets. Four popular anomaly detection datasets are se-

lected to evaluate our approach under different problem set-

tings. 1) The UCSD Ped1 & Ped2 dataset [19] contains 34

and 16 training videos, 36 and 12 test videos, respectively,

with 12 irregular events, including riding a bike and driv-

ing a vehicle. 2) The CUHK Avenue dataset [23] consists

of 16 training and 21 test videos with 47 abnormal events

such as running and throwing stuff. 3) The ShanghaiTech

dataset [27] contains 330 training and 107 test videos of 13

scenes. 4) The UCF-Crime dataset [43] contains normal and

crime videos collected from a large number of real-world

surveillance cameras where each video comes from a differ-

ent scene. We use the 950 normal videos from this dataset

for meta-training, then test the model on other datasets in

the cross-dataset testing as in [25].

Evaluation Metrics. Following prior works [22, 26, 30],

we evaluate the performance using the area under ROC

curve (AUC). ROC curve is obtained by varying the thresh-

old for the anomaly score for each frame-wise prediction.

Implementation Details. Input frames are resized to the

resolution of 256 × 256 and normalized to the range of

[−1, 1]. During the AE pre-training, the model is trained

with the learning rate as 0.0001 and batch size as 4. In the

default setting, DPU is plugged into the AE after the third

CNN layer counting backwards, with the encoding feature

map of resolution 256 × 256 × 128. Training epochs are

set to 60, 60, 60, 10 on Ped1, Ped2, Avenue and Shanghai

Tech, respectively. During meta training, the AE backbone

is frozen, only the few-shot target model MPU is trained.

The learning rate of the update iteration of the MPU param-

eter set θ is set to 0.00001 for 1000 training epochs. The

mini-batch is set as 10 episodes, and the learning rate of

step size α is 0.00001. The balance weights in the objective

functions are set as λ1 = 1, λ2 = 0.01. The desired margin

γ in feature diversity term is set to 1. Finally, the hyper-

parameter λs is set to 1. The experiments are conducted

with four Nvidia RTX-2080Ti GPUs.

4.2. Comparisons with SOTA Methods

Evaluation under the unsupervised setting. We first per-

form an experiment to show that our proposed backbone

architecture is comparable to the state-of-the-arts. Note that

Table 1: Quantitative comparison with state-of-the-art methods for

anomaly detection. We measure the average AUC (%) on UCSD

Ped1 & Ped2 [19], CUHK Avenue [23], and ShanghaiTech [27]

in the unsupervised setting. Numbers in bold indicate the best

performance and underscored ones are the second best.

Methods Ped1 Ped2 Avenue Shanghai

MPPCA [14] 59.0 69.3 - -

MPPC+SFA [14] 68.8 61.3 - -

MDT [30] 81.8 82.9 - -

MT-FRCN [12] - 92.2 - -

Unmasking [45] 68.4 82.2 80.6 -

SDOR [35] 71.7 83.2 - -

ConvAE [11] 75.0 85.0 80.0 60.9

TSC [27] - 91.0 80.6 67.9

StackRNN [27] - 92.2 81.7 68.0

Frame-Pred [22] 83.1 95.4 85.1 72.8

AMC [34] - 96.2 86.9 -

rGAN* [25] 83.7 95.9 85.3 73.7

rGAN [25] 86.3 96.2 85.8 77.9

MemAE [10] - 94.1 83.3 71.2

LMN [37] - 97.0 88.5 70.5

Ours w/o DPU. 83.2 95.1 84.0 66.7

Ours w DPU. 85.1 96.9 89.5 73.8

this sanity check uses the standard training/test setup (train-

ing set and testing set are provided by the original datasets),

and our model can be directly compared with other exist-

ing methods. Table 1 shows the comparisons among our

proposed architecture and other methods when using the

standard unsupervised anomaly detection setup on several

anomaly detection datasets. MemAE [10] and LMN [37]

are most-related methods to our approach. They learn a

large memory bank for storing normal patterns across the

training videos. While we propose to learn a few dynamic

normal prototypes conditioned on input data, which is more

memory-efficient. The superior performance also demon-

strates the effectiveness of our DPU module. On ped1 and

Shanghai Tech, AUCs of our approach are lower than those

of rGAN [25]. This is reasonable because the model archi-

tecture of rGAN is more complicated. rGAN uses a ConvL-

STM to retain historical information by stacking AE several

times. However, we only apply a single AE.

Evaluation under the few-shot setting. To demonstrate

the scene adaption capacity of our approach, we conduct

cross-dataset testing by meta-training on the training set of

Shanghai Tech and normal videos of UCF-Crime, and then

using the other datasets (UCSD Ped1, UCSD Ped2, CUHK

Avenue) for validation. The comparison results are reported

in Table 2. As we can see, on most circumstances, the pre-

trained DPU model is more generalizing than rGAN. Fea-

ture reconstruction based on prototypes largely boosts the

robustness of anomaly detection with frame prediction. Fur-

thermore, 4 ∼ 5% gain can be achieved with our MPU (10-

shot to 0-shot) on various benchmarks. The performance

of our MPU-based AE is superior/comparable to the SOTA

few-shot learner (rGAN (Meta)) [25], with a significantly
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Table 2: Comparison of K-shot (K = 0, 1, 5, 10) scene-adaptive anomaly detection under the cross-dataset testing setting.

Note that K = 0 represents the models are only pre-trained without any adaption.

Shanghai Tech

Target Methods 0-shot (K=0) 1-shot (K=1) 5-shot (K=5) 10-shot (K=10)

UCSD Ped 1 rGAN [25] (Finetune) 73.1 76.99 77.85 78.23

rGAN [25] (Meta) 73.1 80.6 81.42 82.38

Ours (Meta) 74.45 78.54 79.35 80.20

UCSD Ped 2 rGAN [25] (Finetune) 81.95 85.64 89.66 91.11

rGAN [25] (Meta) 81.95 91.19 91.8 92.8

Ours (Meta) 90.17 94.46 94.67 95.75

CUHK Avenue rGAN [25] (Finetune) 71.43 75.43 76.52 77.77

rGAN [25] (Meta) 71.43 76.58 77.1 78.79

Ours (Meta) 74.06 78.92 80.25 81.69

UCF crime
Target Methods 0-shot (K=0) 1-shot (K=1) 5-shot (K=5) 10-shot (K=10)

UCSD Ped 1 rGAN [25] (Finetune) 66.87 71.7 74.52 74.68

rGAN [25] (Meta) 66.87 78.44 81.43 81.62

Ours (Meta) 75.52 77.19 78.33 79.53

UCSD Ped 2 rGAN [25] (Finetune) 62.53 65.58 72.63 78.32

rGAN [25] (Meta) 62.53 83.08 86.41 90.21

Ours (Meta) 86.04 88.43 87.83 89.89

CUHK Avenue rGAN [25] (Finetune) 64.32 66.7 67.12 70.61

rGAN [25] (Meta) 64.32 72.62 74.68 79.02

Ours (Meta) 82.26 85.62 85.66 85.91

GT 1/8 1/4 1/2 1/1

Figure 3: Visualization of AE encoding activation maps

from the perspective of L2 norm. GT stands for ground-

truth frame and the annotations of other columns denote the

corresponding ratios of input images resolution (256×256).

faster adaption and inference speed. We provide more de-

tailed model complexity and inference speed in Sec. 4.3.

4.3. Model Complexity and Inference Speed

With a single Nvidia RTX-2080Ti GPU, our model can

run at 166.8 FPS. Note that our DPU module only con-

sumes 1.28K extra parameters (with 10 prototypes). Al-

though the parameter size of MemAE [10] is smaller than

that of ours, the large memory bank used in MemAE leads

to a time-consuming read operation, so as the whole infer-

ence procedure. Apart from model parameters, our model

does not need extra memory space for prototypes, which

can be viewed as latent feature vectors. Moreover, the in-

Table 3: Analysis on the model complexity and inference speed

of various SOTA methods. The inference speed information is

collected by running the official implements on a single Nvidia

RTX-2080Ti GPU on a machine with 4 CPU cores of E5-2650

v4@2.20GHz and 27.5 G memory.

Methods Parameters (M) FPS

rGAN [25] 19.0 2.1

MemAE [10] 6.2 86.7

LMN [37] 15.0 126.3

Ours 12.7 166.8

ference speed of our method is almost 80 × faster than

rGAN [25]. The update iteration for scene adaption of our

model (K = 1) takes only 0.04 seconds (23.9 FPS). This

is almost 19 × faster than rGAN [25] (K = 1) which takes

0.75 seconds (1.3 FPS). The fast inference speed makes our

method more favorable in real-world applications.

4.4. Ablation Studies

Model Component Analysis. We first analyze the effec-

tiveness of DPU. We set M = 10 as the default number

of the attention mapping functions in DPU. The results are

listed in Table 4. It is clear that the overall performances on

various benchmarks are boosted with our DPU by a large

margin. We also visualize some example prediction error

maps as well as the normalcy maps in DPU in Fig. 4. To

better analyze the learned normalcy maps, we aggregate all
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(a) (b) (c) (d) (e) (f)

Figure 4: Visualization of some examples of test cases and DPU normalcy maps. The groups of pictures in different columns

denote (a) ground-truth frame, (b) error map, (c) sum of normalcy map in DPU, (d) ∼ (f) various normalcy map, respectively.

Table 4: AUC analysis of the designed DPU module. In the ta-

ble, FR and FP stand for anomaly scores derived from the Feature

Reconstruction and the Frame Prediction, respectively.

Setting Shanghai Avenue Ped2 Ped1

AE baseline (FP) 66.7 83.9 95.1 83.2

AE with DPU (FP) 71.1 85.2 92.6 83.5

AE with DPU (FR) 71.9 87.1 96.2 74.1

AE with DPU (FP & FR) 73.8 89.5 96.9 85.1

Table 5: Analysis on the plugging spot of the DPU module. The

resolution is divided by the resolution of input images (256×256).

Resolution 1/1 1/2 1/4 1/8

AUC 89.19 86.72 84.66 81.18

M maps by the sum operation as in Fig. 4 (c). The normalcy

maps encode diverse normal attributes of the scenes such as

roads, grasses, and buildings, shown in the columns of (d)

∼ (f). Furthermore, the weights in suspicious regions are

far smaller than those in other parts of the map, indicating

that the normal patterns are well encoded as prototypes.

DPU Resolution Analysis. To investigate the effect of the

plugging spot of the DPU module, we carry out experiments

on four positions with encoding maps of different resolu-

tions. The results are listed in Table 5. The AUC results

are derived from the feature reconstruction anomaly score

on Ped2 dataset. The performance increases along with the

resolution. We visualize the activation map of the encoding

using the L2-norm of the spatial encoding vectors in Fig. 3.

The higher the activation value, the more information is in-

cluded in the encoding vector. We find that in the higher

resolution layers of AE, more anomaly cues are included,

which is beneficial for measuring the anomalous extent with

the feature reconstruction.

Prototype Quantity Analysis. To encode the normal dy-

namics as prototypes, we propose to leverage multiple at-

Table 6: AUC analysis on the quantity of prototypes in DPU.

Number 1 5 10 20 40

FR 87.69 90.49 92.59 88.26 84.37

FP 94.86 95.45 96.22 95.70 95.11

Overall 95.22 95.57 96.90 96.03 95.74

tention mapping functions for measuring the normalcy of

encoding vectors and deriving prototypes as ensembles of

the vectors. The number of the attention functions, also de-

noting the quantity of prototypes, serves as the up-bound

of the diverse prototypes needed in one scenario. Experi-

mental results on Ped2 are in Table 6. Based on the results,

M = 10 is an appropriate number of required prototypes.

With the number increasing, more noise information is in-

volved and the diversity of prototype items can not be guar-

anteed, leading to a drastic decline of the performance.

5. Conclusion

In this work, we have introduced a prototype learning

module to explicitly model the normal dynamics in video

sequences with an attention mechanism for unsupervised

anomaly detection. The prototype module is fully differ-

entiable and trained in an end-to-end manner. Without ex-

tra memory consumption, our approach achieves SOTA per-

formance on various anomaly detection benchmarks in the

unsupervised setting. In addition, we improve the proto-

type module as a few-shot normalcy learner with the meta-

learning technology. Extensive experimental evaluations

demonstrate the efficiency of the scene-adaption approach.
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