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Abstract

Human multimodal emotion recognition involves time-

series data of different modalities, such as natural lan-

guage, visual motions, and acoustic behaviors. Due to

the variable sampling rates for sequences from different

modalities, the collected multimodal streams are usually

unaligned. The asynchrony across modalities increases the

difficulty on conducting efficient multimodal fusion. Hence,

this work mainly focuses on multimodal fusion from un-

aligned multimodal sequences. To this end, we propose

the Progressive Modality Reinforcement (PMR) approach

based on the recent advances of crossmodal transformer.

Our approach introduces a message hub to exchange infor-

mation with each modality. The message hub sends common

messages to each modality and reinforces their features via

crossmodal attention. In turn, it also collects the reinforced

features from each modality and uses them to generate a re-

inforced common message. By repeating the cycle process,

the common message and the modalities’ features can pro-

gressively complement each other. Finally, the reinforced

features are used to make predictions for human emotion.

Comprehensive experiments on different human multimodal

emotion recognition benchmarks clearly demonstrate the

superiority of our approach.

1. Introduction

Human multimodal emotion recognition focuses on rec-

ognizing the sentiment attitude of humans from video

clips [26, 16, 25, 17, 5]. This task involves time-series

∗ Corresponding authors.

data of different modalities, e.g., natural language, facial

gestures, and acoustic behaviors. The multimodal setting

can provide rich information for thorough sentiment under-

standing. In practice, however, the collected multimodal

streams are usually asynchronous, due to the variable sam-

pling rates for sequences from different modalities. For ex-

ample, the video frame with a depressed facial expression

may relate to a negative word spoken in the past. The asyn-

chrony across different modalities can increase the difficulty

on conducting efficient multimodal fusion.

The previous works address the above issues by pre-

defined word-level alignment [22, 13, 19, 24]. To this

end, the visual and acoustic sequences are first manually

aligned in the resolution of the textual words. Multimodal

fusion is then conducted on the aligned time steps. How-

ever, the manual word-alignment process is usually labor-

intensive and requires domain knowledge. Recently, Tsai

et al. propose the Multimodal Transformer (MulT) ap-

proach to fuse crossmodal information from unaligned data

sequences [18]. Their approach introduces the modality

reinforcement unit to reinforce a target modality with in-

formation from a source modality by learning the direc-

tional pairwise attention between elements across modali-

ties (see Fig. 1(a)), based on the recent advances of trans-

former [20]. By exploring the crossmodal interaction be-

tween elements via the crossmodal attention operations,

MulT can implement multimodal fusion from asynchronous

sequences without explicitly aligning the data.

In their approach, however, the modality reinforcement

of each direction is performed independently and does not

exchange information with each other. Hence, the multi-

modal fusion only appears between each directional modal-

ity pair, but not across all the modalities involved in human
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Figure 1: The architecture of the MulT model. MRU
[i]
s→t represents a modality reinforcement unit, in which a source

modality s reinforces a target modality t by attending to the crossmodal interaction between elements. FFL[i] represents

a feed-forward layer. (a) the low-level version in which the target modality is reinforced by repeatedly attending to the

low-level features of the source modality; (b) the high-level version in which the target modality is reinforced by repeatedly

attending to higher-level features of the source modality.

emotion recognition. It is inefficient to fuse the sequences

of multiple modalities by using the pairwise manner. For

example, the redundant information can be introduced by

directly concatenating the visual sequence reinforced by

the language modality and that reinforced by the acoustic

modality. It is crucial to conduct multimodal fusion by con-

sidering the three-way interactions across all the involved

modalities.

Moreover, the independent pairwise fusion approach

fails to exploit the high-level features of the source modal-

ity. For each directional modality pair, as shown in Fig. 1(a),

the target modality is reinforced by repeatedly attending to

the low-level features of the source modality. Intuitively,

the deep interactions cross modalities cannot be explored

via the semi-shallow structure. Their approach also notices

this problem and attempts to implement crossmodal atten-

tion via the high-level features of the source modality by

stacking feed-forward layers over the source modality (see

Fig. 1(b)). However, reduced performance is observed. This

is because that the source branch does not receive clear su-

pervision to update its feed-forward layers, since the modal-

ity reinforcement operations mainly focus on generating a

reinforced target modality. As a result, it is unclear whether

the high-level features of the source modality are better than

the low-level features. Instead, the increased modal com-

plexity can reduce the performance.

Motivated by the above observations, this work pro-

poses the Progressive Modality Reinforcement (PMR) ap-

proach for multimodal fusion from unaligned multimodal

sequences. Our approach introduces a message hub to

exchange information with each modality. As shown in

Fig. 2, the message hub can send common messages to each

modality in order to reinforce their features via crossmodal

attention. In turn, it also collects the reinforced features

from each modality and uses them to generate an improved

common message. In our approach, hence, the common

message and the modalities’ features progressively comple-

ment each other. Moreover, we introduce a dynamic filter

mechanism in the modality reinforcement unit to dynam-

ically determine the passed proportions of the reinforced

features. Compared with the prior MulT model [18], the ad-

vantage of our approach lies in two aspects. First, the com-

mon message promotes effective information flow across

modalities and encourages the crossmodal attention oper-

ations to explore the element-level dependencies across all

the three modalities instead of the directional pairwise de-

pendencies. Second, the progressive reinforcement strat-

egy provides an effective way to leverage the high-level

features of the source modality for modality reinforcement.

Unlike in Fig. 1(b), the feature of the source modality can

receive clear supervision in the reinforcement unit where

it is considered as the target modality. The superiority of

our approach is verified via extensive empirical experiments

on different human multimodal emotion recognition bench-

marks with both the word-aligned setting and the unaligned

setting.

To sum up, the contributions of this work are mainly

three-fold:

• We introduce the message hub to explore the three-way

interactions across all the involved modalities under

the background of multimodal fusion from unaligned

multimodal sequences.

• We propose the progressive strategy to leverage the

high-level features of the source modality for multi-

modal fusion.
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• Our approach can obtain better results than the exist-

ing state-of-the-art works over different human multi-

modal emotion recognition benchmarks.

2. Related Works

Human multimodal emotion recognition requires to in-

fer the sentiment attitude of humans from video clips [26,

16, 17, 5]. The crucial point lies in multimodal fusion

from data sequences of different modalities such as natu-

ral language, video frames and acoustic signals [19]. Com-

pared to multimodal fusion from static modalities like im-

ages [9, 10, 4, 15], this task requires to fuse crossmodal

information from time-series signals. The early works sim-

ply adopt the early-fusion strategy by concatenating the

input sequences from different modalities [11, 8] or the

late-fusion strategy by combining the high-level informa-

tion learnt from each individual modality [16, 14, 17]. Fur-

thermore, Gan et al. propose to infer the joint representa-

tions of different modalities by probabilistic graphical mod-

els [5]. Although these prior works obtain better perfor-

mance than learning from a single modality, they do not

explicitly consider the inherent dependencies between el-

ements of sequences from different modalities, which are

crucial for efficient multimodal fusion. To this end, the re-

cent works include a manual step to align the visual and

acoustic sequences in the resolution of textual words be-

fore training [19, 21, 13]. These works perform multi-

modal fusion on the word-aligned time steps by hierarchi-

cal attention mechanism [7], nonverbal temporal interac-

tion [21], cyclic translation [13], etc. However, the man-

ual word-alignment process is usually labor-intensive and

time-consuming. Moreover, the word-level multimodal fu-

sion ignores the long-range dependencies between elements

from different modalities.

To fuse information from unaligned multimodal se-

quences, the early work explores the dependencies between

elements across modalities according to the maximum mu-

tual information criterion [25]. However, its performance is

far from satisfactory due to the shallow learning architec-

ture. Recently, Tsail et al. propose the crossmodal attention

mechanism to learn the inherent correlations across modal-

ities [18]. Their approach repeatedly reinforces one modal-

ity with information from the other modalities through

learning the directional pairwise attention between elements

of different modalities.

3. Progressive Modality Reinforcement

3.1. Problem statement

In this work, the human emotion recognition task in-

volves three major modalities, i.e., language (L), video (V ),

and audio (A). Denote by X{L,V,A} ∈ R
T{L,V,A}×d{L,V,A}

the input sequences from the corresponding modalities. T(.)

and d(.) represent the sequence length and feature dimen-

sion, respectively. Our goal is to perform efficient multi-

modal fusion from unaligned multimodal data sequences,

in order to obtain the representation that can produce desir-

able performance in sentiment attitude prediction.

3.2. Preliminary ­ crossmodal attention.

The crossmodal attention operation reinforces the target

modality with information from a source modality by learn-

ing the directional pairwise attention between them [18].

Denote by Xs ∈ R
Ts×ds the data sequence from the source

modality and Xt ∈ R
Tt×dt the data sequence from the

target modality, where s, t ∈ {L, V,A}. Similar to the

self-attention mechanism, the crossmodal attention unit in-

volves Querys, Keys, and Values, which are defined as

Qt = XtWQt
with WQt

∈ R
dt×dk , Ks = XsWKs

with

WKs
∈ R

ds×dk , and Vs = XsWVs
with WVs

∈ R
ds×dv ,

respectively. One individual head of crossmodal attention is

defined as:

Yt = CAs→t(Xs, Xt)

= softmax(
QtK

T
s√

dk
)Vs

= softmax(
XtWQt

WT
Ks

XT
s√

dk
)XsWVs

,

where Yt ∈ R
Tt×dv . The full crossmodal attention opera-

tion with h heads is represented as Yt = CAmul
s→t(Xs, Xt),

where Yt ∈ R
Tt×hdv . The target modality is reinforced by

encouraging the model to attend to crossmodal interaction

between elements.

3.3. Model overview

Our model is trained in an end-to-end manner. Follow-

ing [18], we use a 1D temporal convolutional layer to pro-

cess the input sequences and then augment them by the po-

sitional embedding. Denote by Z{L,V,A} ∈ R
T{L,V,A}×d

the processed sequences. Note that the 1D temporal con-

volutional layer projects the features of different modali-

ties to the identical dimension by controlling the kernel size

used for each modality. The common message is initial-

ized by concatenating the low-level sequence from each

modality: ZC = [ZL, ZV , ZA], where ZC ∈ R
TC×d

and TC = TL + LV + LA. Immediately, the modal-

ity reinforcement layers will repeatedly reinforce ZC and

Z{L,V,A} by exploiting the correlations between elements

across modalities. Fig. 2 displays the information flow

across the modality reinforcement layers. We then concate-

nate the reinforced features as [ZC , ZL, ZV , ZA] ∈ R
2TC×d

and pass it through a transformer layer. Finally, several

fully-connected layers are included to make the predictions

for human emotion.
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Figure 2: The information flow across the modality rein-

forcement layers of the proposed model. MUM[i] repre-

sents the message update module in which the common

message is reinforced by the reinforced modalities’ features

from the next layer. MRU
[i]
C→∗ represents the modality rein-

forcement unit in which the corresponding target modality

is reinforced by the common message.

3.4. Progressive modality reinforcement

Initially, both the modalities’ features Z{L,V,A} and the

common message ZC do not carry information about the

interactive relationship between different modalities, which

is crucial for efficient multimodal fusion. In the modality

reinforcement layers, ZC and Z{L,V,A} progressively com-

plement each other by exploiting the inherent correlations

between elements across modalities. To be specific, each

layer includes three modality reinforcement units for updat-

ing the modalities’ features Z{L,V,A} and one message up-

date module for updating the common message ZC . Denote

by MUM[i] the message update module and MRU
[i]
C→∗ the

modality reinforcement unit for the corresponding modal-

ity, where ∗ ∈ {L, V,A}. The superscript [i] indicates the

i-th modality reinforcement layer.

Modality reinforcement unit. The architecture of

the modality reinforcement unit MRU
[i]
C→∗ is shown in

Fig. 3(a). It takes Z
[i]
C and Z

[i]
∗ as its inputs and outputs

the reinforced features Z
[i+1]
∗ :

Z
[i+1]
∗ = MRU

[i]
C→∗(Z

[i]
C , Z

[i]
∗ ),

where ∗ ∈ {L, V,A} and Z
[i+1]
∗ ∈ R

T∗×d. Unlike in MulT,

all the three modalities will participate in a single modality

reinforcement unit via the common message.

Specifically, MRU
[i]
C→∗ reinforces Z

[i]
∗ by two branches,

including a self-attention one and a crossmodal attention

one:

Z
[i]
C→∗ = CAmul

C→∗(LN(Z
[i]
C ),LN(Z

[i]
∗ )),

Z
[i]
∗ = SAmul(LN(Z

[i]
∗ )),

where Z
[i]
C→∗, Z

[i]
∗ ∈ R

T∗×d, CAmul and LN represent the

multi-head self-attention operation and the layer normal-

ization operation, respectively. Immediately, the reinforced

features Z
[i]
∗ and Z

[i]
C→∗ are processed via the following dy-

namic filter mechanism:

G
[i]
∗ = sigmoid(Z

[i]
∗ ·W [i]

∗ + Z
[i]
C→∗ ·W

[i]
C→∗ + b

[i]
∗ ),

Z
[i]
∗ = G

[i]
∗ ⊙ Z

[i]
∗ + (1−G

[i]
∗ )⊙ Z

[i]
C→∗,

where W
[i]
∗ ∈ R

d×d, W
[i]
C→∗ ∈ R

d×d, and b
[i]
∗ ∈ R

T∗×d.

The passed proportions of each branch can be dynamically

determined via the learnable parameters W
[i]
∗ and b

[i]
∗ . This

operation enables to filter information produced by incor-

rect crossmodal interactions. Finally, as in the transformer

model [20], a position-wise feed-forward layer with skip

connection will process Z
[i]
∗ and generate Z

[i+1]
∗ for the next

modality reinforcement layer.

Message update module. The reinforced features

Z
[i+1]
{L,V,A} will also be used to reinforce the common mes-

sage Z
[i]
C in the previous modality reinforcement layer. The

architecture of MUM[i] is displayed in Fig. 3(b). It takes

Z
[i]
C and Z

[i+1]
{V,L,A} as its inputs and outputs the reinforced

common message Z
[i+1]
C :

Z
[i+1]
C = MUM[i](Z

[i+1]
V , Z

[i+1]
L , Z

[i+1]
A , Z

[i]
C ).

Specifically, the message update module includes three

modality reinforcement units, each of which reinforces

the common message Z
[i]
C by one modality. Denote by

MRU
[i]
∗→C the corresponding modality reinforcement unit,

where ∗ ∈ {V, L,A}. In MRU
[i]
∗→C , Z

[i]
C is reinforced by

attending to the elements of Z
[i+1]
∗ :

Z
[i]
∗→C = MRU

[i]
∗→C(Z

[i+1]
∗ , Z

[i]
C ),

where Z
[i]
∗→C ∈ R

TC×d. The three-way interactions across

all the involved modalities can be explored via the self-

attention operation over Z
[i]
C (see Fig.3(a)). Immediately,

Z
[i]
∗→C is fused into Z

[i]
C via an attention layer. To this end,

we first obtain a reshaped counterpart of Z
[i]
∗→C : Ẑ

[i]
∗→C ∈

R
TC ·d×1 and then process them as follows:

µ
[i]
∗→C = UT tanh(W

[i]
∗→C · Ẑ [i]

∗→C + b
[i]
∗→C),

α
[i]
∗→C =

exp(µ
[i]
∗→C)∑

∗∈{L,V,A} exp(µ
[i]
∗→C)

,

Z
[i]
C =

∑

∗∈{V,L,A}

α
[i]
∗→C ⊙ Z

[i]
∗→C ,
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Figure 3: (a) The modality reinforcement unit in which the features of a target modality are reinforced by a source modality

via crossmodal attention. PFF represents the positionwise feed-forward layer. CAmul
s→t represents the crossmodal attention

operation. SAmul represents the self-attention operation. (b) The message update module in which the common message is

updated by the reinforced features of each modality.

where U ∈ R
TC ·d×1, W

[i]
∗→C ∈ R

TC ·d×TC ·d and b
[i]
∗→C ∈

R
TC ·d×1 are learnable parameters. The attention layer can

dynamically control the passed information in Z
[i]
∗→C and

generate an informative common message. Finally, we pass

Z
[i]
C through a position-wise feed-forward layer with skip

connection and obtain the output Z
[i+1]
C .

In the next modality reinforcement layer, Z
[i+1]
C will

again reinforce Z
[i+1]
∗ via the MRU

[i+1]
C→∗ unit. Compared

with the prior MulT model [18] which reinforces the tar-

get modality by repeatedly attending to the low-level fea-

tures of the source modality, our approach enables Z∗ and

ZC to progressively complement each other, i.e., ZC rein-

forces Z∗, and in turn, the reinforced Z∗ reinforces ZC to

produce a better common message. We also note that our

approach will contain fewer modality reinforcement units

at each layer if more modalities are involved (i.e., A2
n for

MulT and 2n for our approach with n indicating the modal-

ity number). Algorithm 1 displays the information flow

across the modality reinforcement layers.

4. Experiments

4.1. Experimental setup

We follow the common protocol of the prior works [18,

19, 21] and conduct experiments on the standard human

multimodal emotion recognition benchmarks, including

Algorithm 1 The forward propagation procedure of the

modality reinforcement layers.

Input: the sequences processed by 1D temporal con-

volution and positional embedding: Z{L,V,A} ∈
R

T{L,V,A}×d; the layer number: D.

Output: the reinforced modalities’ features: Z{L,V,A}; the

reinforced common message: ZC .

1: Initialize the modalities’ features: Z
[0]
{L,V,A} =

Z{L,V,A};

2: Initialize the common message: Z
[0]
C = [ZL, ZV , ZA];

3: i = 0;

4: while i 6 D do

5: Update the modalities’ features: Z
[i+1]
∗ =

MRU
[i]
C→∗(Z

[i]
C , Z

[i]
∗ ), where ∗ ∈ {L, V,A};

6: Update the common message: Z
[i+1]
C =

MUM[i](Z
[i+1]
V , Z

[i+1]
L , Z

[i+1]
A , Z

[i]
C );

7: i = i+ 1;

8: end while

9: ZC = Z
[D+1]
C ; Z{L,V,A} = Z

[D+1]
{L,V,A}.

10: return ZC and Z{L,V,A}.

CMU-MOSI [24], CMU-MOSEI [23] and IEMOCAP [2].

The experiments are conducted on both the word-aligned

and unaligned settings.

CMU-MOSI is a dataset that contains 2,199 samples of
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Table 1: The hyperparameter settings adopted in each hu-

man multimodal emotion recognition benchmark.

Setting
CMU-
MOSEI

CMU-
MOSI

IEMOCAP

Optimizer Adam Adam Adam

Batch size 32 64 32

Learning rate 1e-3 1e-3 1e-3

Epoch number 100 120 60

Feature size d 40 40 40

Attention head h 10 8 8

Kernel size (L/V/A) 3/3/3 3/3/3 3/3/5

Reinforcement layer D 5 4 4

Table 2: Comparison on the CMU-MOSI benchmark under

both the word-aligned setting and the unaligned setting.

Setting Method Acc7(%) Acc2(%) F1(%)

Aligned

EF-LSTM 33.7 75.3 75.2

LF-LSTM 35.3 76.8 76.7

MFM [19] 36.2 78.1 78.1

RAVEN [21] 33.2 78.0 76.6

MCTN [13] 35.6 79.3 79.1

MulT [18] 40.0 83.0 82.8

PMR(ours) 40.6 83.6 83.4

Unaligned

EF-LSTM 31.0 73.6 74.5

LF-LSTM 33.7 77.6 77.8

RAVEN [21] 31.7 72.7 73.1

MCTN [13] 32.7 75.9 76.4

MulT [18] 39.1 81.1 81.0

PMR(ours) 40.6 82.4 82.1

short monologue video clips [24]. Its predetermined data

split includes 1,284 training samples, 229 validation sam-

ples and 686 testing samples. The acoustic features and

the visual features are extracted at the sampling rate of

12.5 and 15 Hz, respectively. Each multimodal sample

has a sentiment score which ranges from -3 (strongly neg-

ative) to 3 (strongly positive). In agreement with the prior

works [18, 19], we evaluate the performance by the follow-

ing metrics: 7-class accuracy (i.e., Acc7), binary accuracy

(i.e., Acc2) and F1 score.

CMU-MOSEI is a dataset that contains 22,856 samples of

movie review video clips from YouTube [23]. Its prede-

termined data split includes 16,326 training samples, 1,871

validation samples and 4,659 testing samples. The acoustic

features and the visual features are extracted at the sam-

pling rate of 20 and 15 Hz, respectively. Likewise, each

multimodal sample has a sentiment score ranging from -3

Table 3: Comparison on the CMU-MOSEI benchmark un-

der both the word-aligned setting and the unaligned setting.

Setting Method Acc7(%) Acc2(%) F1(%)

Aligned

EF-LSTM 47.4 78.2 77.9

LF-LSTM 48.8 80.6 80.6

G-MFN [24] 45.0 76.9 77.0

RAVEN [21] 50.0 79.1 79.5

MCTN [13] 49.6 79.8 80.6

MulT [18] 51.8 82.5 82.3

PMR(ours) 52.5 83.3 82.6

Unaligned

EF-LSTM 46.3 76.1 75.9

LF-LSTM 48.8 77.5 78.2

RAVEN [21] 45.5 75.4 75.7

MCTN [13] 48.2 79.3 79.7

MulT [18] 50.7 81.6 81.6

PMR(ours) 51.8 83.1 82.8

to 3. The same performance metrics are employed as in the

above setting.

IEMOCAP is a dataset that contains 4,453 samples of

video clips [2]. Its predetermined data split includes 2,717

training samples, 798 validation samples and 938 testing

samples. The acoustic and visual features are extracted at

the sampling rate of 12.5 and 15 Hz, respectively. Follow-

ing [21], we focus on recognizing 4 kinds of emotions (i.e.,

happy, sad, angry and neutral) in each video clip. More-

over, this setting is established as a multi-label task, since

the sad and the angry emotions can exit in a video clip si-

multaneously. In agreement with the prior works [19, 21],

we evaluate the performance by the binary classification ac-

curacy and the F1 score for each emotion class.

4.2. Implementation details

To extract features of the textual modality, we convert

the video transcripts into the pre-trained Glove model to ob-

tain 300-dimensional word embeddings [12]. For the visual

modality, we process the video frames by Facet to gener-

ate 35 facial action units that represent the facial muscle

movement [1]. To extract features of the acoustic modal-

ity, we process the acoustic signals by COVAREP to obtain

74-dimensional features [3].

Table 1 displays the hyperparameters used in each

benchmark. The kernel size relates to the 1D temporal

convolutional layer which is used to process the input se-

quences. In each benchmark, both the crossmodal atten-

tion operation and the self-attention operation use the same

number of attention heads. The hyper-parameters are deter-

mined on the validation set.
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Table 4: Comparison on the IEMOCAP benchmark under both the word-aligned setting and the unaligned setting. The

performance is evaluated by the binary classification accuracy and the F1 score for each emotion class.

Setting Method
Happy Sad Angry Neutral

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

Aligned

EF-LSTM 86.0 84.2 80.2 80.5 85.2 84.5 67.8 67.1

LF-LSTM 85.1 86.3 78.9 81.7 84.7 83.0 67.1 67.6

MFM [19] 90.2 85.8 88.4 86.1 87.5 86.7 72.1 68.1

RAVEN [21] 87.3 85.8 83.4 83.1 87.3 86.7 69.7 69.3

MCTN [13] 84.9 83.1 80.5 79.6 79.7 80.4 62.3 57.0

MulT [18] 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7

PMR(ours) 91.3 89.2 87.8 87.0 88.1 87.5 73.0 71.5

Unaligned

EF-LSTM 76.2 75.7 70.2 70.5 72.7 67.1 58.1 57.4

LF-LSTM 72.5 71.8 72.9 70.4 68.6 67.9 59.6 56.2

RAVEN [21] 77.0 76.8 67.6 65.6 65.0 64.1 62.0 59.5

MCTN [13] 80.5 77.5 72.0 71.7 64.9 65.6 49.4 49.3

MulT [18] 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7

PMR(ours) 86.4 83.3 78.5 75.3 75.0 71.3 63.7 60.9

Table 5: Ablation study on the CMU-MOSEI benchmark

under the unaligned setting. In each row, the corresponding

component is progressively included into the model.

Model design Acc7(%) Acc2(%) F1(%)

Low-level feature [18] 50.7 81.6 81.6

High-level feature [18] 50.3 80.5 80.6

+ Progressive strategy 51.2 82.4 82.2

+ Message hub 51.6 82.8 82.6

+ Dynamic filter (full model) 51.8 83.1 82.8

4.3. Performance comparison

The proposed approach is compared to the existing

state-of-the-art baselines, including Early Fusion LSTM

(EF-LSTM), Late Fusion LSTM (LF-LSTM), Multi-

modal Factorization Model (MFM) [19], Graph-MFN (G-

MFN) [24], Recurrent Attended Variation Embedding Net-

work (RAVEN) [21], Multimodal Cyclic Translation Net-

work (MCTN) [13], Multimodal Transformer (MulT) [18].

Of these, MulT and LF-LSTM can be applied directly to

the unaligned setting. For the other methods, we include

the Connectionist Temporal Classification (CTC) alignment

loss [6] into the learning objective, in order to make them

suitable for the unaligned setting.

Word-aligned setting. This setting requires an extra step to

manually align the visual and acoustic streams in the reso-

lution of textual words. The multimodal fusion is then con-

ducted on the word-aligned time steps. We display the ex-

perimental results of each approach in the upper part of Ta-

ble 2 - 4. Compared with the other baselines, our proposed

approach obtains better performance on different metrics

over all the three benchmarks.

Unaligned setting. This setting requires to fuse cross-

modal information directly from the unaligned multimodal

sequences and is more challenging than the word-aligned

setting. We display the comparison of each approach in the

bottom part of Table 2 - 4. We can draw the following ob-

servations. First, except for MulT, most of the compared

baselines obtain poor performance on the unaligned setting

since their models do not consider the crossmodal interac-

tion between elements. Second, our approach can outper-

form MulT on different metrics over all the three bench-

marks. We can see that the performance improvement of

our approach is more significant in the unaligned setting

than in the word-aligned setting. This observation indicates

that the technical superiority of our approach mainly lies in

better capturing the dependencies between elements across

modalities, which is consistent with our motivation.

4.4. Analysis

Ablation study. Table 5 displays the ablation study on the

CMU-MOSEI benchmark. The first two rows display the

performance of the MulT model implemented by the low-

level version (see Fig. 1(a)) and the high-level version (see

Fig. 1(b)), respectively. The high-level version of MulT

is implemented by stacking feed-forward layers over the

source modality. We can see that worse performance is ob-

tained by the high-level version, which seems unreasonable

at first sight. This can be attributed to the reason that the

source modality of each directional modality pair cannot re-
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Figure 4: Visualization for the crossmodal correlations on the CMU-MOSI benchmark. The visualization samples of our

approach and MulT are displayed in the upper part and the bottom part, respectively. We conduct the visualization by ob-

serving the crossmodal attention weights of the corresponding modality reinforcement unit (i.e., MRUC→L for the proposed

approach and MRUV→L for MulT) in the fourth reinforcement layer. The textual words which are closely related to human

emotion recognition are displayed in red. The textual words above the video clips are the corresponding spoken words.

ceive clear supervision to be updated due to the independent

reinforcement structure of MulT.

In the next row, we introduce the progressive reinforce-

ment strategy for each modality pair. To this end, the rein-

forced target modality is in turn used to reinforce the source

modality, e.g., the visual modality and the language modal-

ity progressively reinforce each other. Unlike in MulT, the

source modality can receive clear supervision to be updated

since it is a target modality as well. The progressive re-

inforcement strategy provides an efficient way to leverage

the high-level features of the source modality. The perfor-

mance from the third row clearly verifies the above discus-

sion. Moreover, we introduce the message hub to exchange

information with each modality. Improved performance can

be observed from the fourth row. This component improves

the performance by encouraging the model to explore the

three-way interactions across all the modalities. Finally, we

introduce the dynamic filter mechanism in the modality re-

inforcement unit, which can also make an effective contri-

bution to multimodal fusion.

Qualitative analysis. Fig. 4 displays the visualization for

the crossmodal interaction between elements. The visual-

ization sample of our approach and MulT are displayed in

the upper part and the bottom part, respectively. We can see

that our approach can correlate the emotion related textual

word with the corresponding video clips well. Compared to

MulT, our approach can encourage the model to attend to

more meaningful signals across the two modalities. From

the visualization sample of MulT, the correlations between

the textual words and the video clips are not clear.

5. Conclusion

This work proposes the progressive modality reinforce-

ment approach towards multimodal fusion from unaligned

multimodal sequences, under the background of human

multimodal emotion recognition. To this end, we introduce

a message hub to exchange information with each modal-

ity. The message hub can encourage a more efficient mul-

timodal fusion by exploring the inherent correlations across

all the modalities via the common message. Moreover, the

common message and the modalities’ features progressively

complement each other by attending to the crossmodal in-

teraction between elements. The progressive reinforcement

strategy provides an effective way to leverage the high-level

features of the source modality in modality reinforcement.

The experimental results over different benchmarks clearly

demonstrate that our approach obtains better results than the

existing state-of-the-art works.
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