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Abstract

Recognition and reconstruction of residential floor plan

drawings are important and challenging in design, deco-

ration, and architectural remodeling fields. An automatic

framework is provided that accurately recognizes the struc-

ture, type, and size of the room, and outputs vectorized 3D

reconstruction results. Deep segmentation and detection

neural networks are utilized to extract room structural in-

formation. Key points detection network and cluster anal-

ysis are utilized to calculate scales of rooms. The vector-

ization of room information is processed through an itera-

tive optimization-based method. The system significantly in-

creases accuracy and generalization ability, compared with

existing methods. It outperforms other systems in floor plan

segmentation and vectorization process, especially inclined

wall detection.

1. Introduction

Architectural floor plans, scaled drawings of apartments

and building spaces, are utilized to assist users to dec-

orate rooms, design furniture layout and remodel indoor

spaces [14, 22]. Floor plan images, created by specific

professional designers and architects, are rendered from

vector-graphics representation, generated by AutoCAD [1],

Sketchup [7] and HomeStyler [3]. However, after the above

rasterization process, designers cannot modify the structure

of the room and redesign flexibly. Therefore, accurately

recovering vectorized information from pixel images be-

comes an urgent problem to be solved.

The above-mentioned problems have existed for

decades. The generalization ability of traditional methods is

weak, the whole process is difficult to automate, and a large

amount of manual participation is required. The recogni-

tion of floor plans needs to consider various information

as shown in Figure 1, such as room structure, type, sym-

bols, text and scale. In recent years, with the rapid devel-

opment of deep learning technology, related methods have

made great progress in generalization. However, it is still a

challenging problem to organically integrate various infor-

Figure 1. Pixel (top) and vector (bottom) floor plan image. The

pixel floor plan image (top) contains various information, such as

room structural elements (magenta), text (blue), symbols (cyan),

scales (yellow). The original image comes from HomeStyler [3].

mation and perform accurate vector reconstruction of the

actual physical size.

A novel floor plan recognition and reconstruction sys-

tem, based on deep learning, is proposed, which combines

the multi-modal information of floor plan images, such as

room structure, type, symbols, text and scale. The system

significantly outperforms existing methods, as shown in Ta-

ble 1. Furthermore, we propose a dataset containing 7000

annotated images of residential apartments.

Our approach to residential floor plan recognition and

reconstruction includes a number of technical contributions:

• An automatic framework for residential floor plan

recognition and reconstruction that accurately recog-

nizes the structure, type, and size of the room, and out-

puts vectorized 3D reconstruction results.

• An iterative optimization-based vectorization method

for floor plan images that can accurately extract hori-

zontal, vertical and inclined walls.

• A systematic method for recognizing the scale of floor

plan images that can assist the 3D reconstruction of

real physical size.

• The largest residential floor plan image dataset with
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detailed vectorized and pixel annotations.

2. Related work

Floor plan drawings are crucial in real estate and de-

sign area. Systems of analyzing floor plans have existed

for decades. Traditional methods [8, 9, 10] focus on di-

rectly processing low-level features. These systems pro-

duce a large number of hand-designed features and mod-

els. Ahmed et al. [10] introduce the idea of separation

of text and graphics to analyze floor plan. Erosion, dila-

tion and connected components detection are utilized to re-

move noise and extract text features. Wall information is

extracted according to the size of connected components,

vectorized methods, Hough transform and morphological

approaches [8, 13, 25]. Speeded Up Robust Feature (SURF)

is utilized to spot symbols [9], for instance, doors. Those

systems mentioned above bring the problem of insufficient

generalization ability. Thresholds and features are adjusted

frequently by handcrafted operations instead of automatic

methods.

With the development of deep learning techniques, the

method of obtaining room structure has made significant

process in generalization. Convolutional Neural Network

(CNN) can create and extract advanced features to enhance

the recognition performance of room elements [22, 29, 33].

Liu et al. [22] illustrate junctions of floor plans, for ex-

ample, corners of walls, could be recognized by CNN.

Combined with integer programming, a vectorized output

is achieved. However, the approach has limitations, for

instance, it is not able to detect inclined walls. Zeng et

al. [33] improve performance of system by improving the

loss function and adjusting the architecture of the deep neu-

ral network. Especially, room-boundary guided attention

mechanism is developed and utilized to enhance the perfor-

mance of pixel classification of floor plan images. Zhang et

al. [34] adopt direction-aware kernels and Generative Ad-

versarial Networks (GAN) to improve the efficiency and

accuracy of image segmentation tasks. The disadvantage

of [33] and [34] is that those methods do not obtain vector-

ized results that users can utilize. Also, text and symbols

information are not detected and utilized sufficiently.

Methods for extracting text and symbolic information

have developed significantly these years. Traditional meth-

ods [8, 10, 9] spend a huge amount of resources to elim-

inate noise before detecting symbols and text. However,

CNN proves that it is able to extract important features au-

tomatically. Generally, Faster R-CNN [27] is used to detect

sofa, closestool and other symbols [14, 29]. The disadvan-

tage is that it is difficult to detect small objects, which leads

to a decrease in network performance. Text is recognized

by optical character recognition (OCR) frameworks, such

as EAST [35] and CTPN [31]. Those OCR frameworks are

composed of LSTM [15] network and CNN, bringing com-

plexity to system.

Scale is a crucial part of a floor plan. Dodge et al. [14]

illustrate a method to recognize the area of a room through

text recognition. Combining with image segmentation re-

sults, scale could be calculated. This process may cause

additional errors due to incorrect pixel classification.

A few datasets are available for recognition of floor plan

images. Cubi-Casa5K [17], a dataset contains 5000 floor

plan images of Finland, is wildly used to train and evalu-

ate floor plan systems. However, the style is different from

Asian regions hugely. Rent3d (R3D) dataset [21] collects

215 floor plans drawing for researchers. Liu et al. [22] men-

tion they annotate 870 floor plan images manually to form a

dataset, named R2V. The number of images in dataset R3D

and R2V is far less than ours dataset.

3. RFP dataset

We have crawled 7,000 Residential Floor Plan (RFP)

data from Internet search engines, which are mainly home

floor plans of Chinese urban buildings. We manually

marked the starting endpoints, ending endpoints and thick-

ness of walls. Each part of the wall is represented by a

line with a width. We also marked the starting points, end-

ing points and thickness of doors, windows and doorways.

Doors, windows and doorways are all located on specific

walls. Each room is surrounded by multiple parts of walls,

and we manually marked the room type. Room types in-

clude living room, bedroom, bathroom, balcony, kitchen, li-

brary and others. We use rasterization to convert current an-

notations into pixel-by-pixel annotations, where each pixel

represents a type. Please refer to the supplementary material

for detailed annotations and statistics of the RFP dataset.

In the RFP dataset, 5,600 pictures were randomly se-

lected as the training set, and the remaining 1,400 pictures

were used as the test set. In addition, we selected 1,000 pic-

tures with a text description of the room type and marked

the room type. 1,000 pictures with furniture tags were se-

lected for manual annotation for the training and evaluation

of the symbol recognition model. 1,000 images with scales

were labeled to train and verify the scale calculation mod-

ule.

4. Method

Figure 2 is the schematic diagram of the entire recog-

nition and reconstruction system. Our system is divided

into two parts: recognition and reconstruction. The recog-

nition part is responsible for detecting the area of the floor

plan (Section 4.1), and identifying structural elements of

the building (Section 4.2), auxiliary text and symbols (Sec-

tion 4.3 ), and related scale information (Section 4.4) from

image pixels. The reconstruction part includes converting

the information obtained above into a vectorized expression
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Figure 2. System overview, which combines the multi-modal information of the floor plan, such as room structure, text, symbols and scale.

The original image comes from Lianjia [5]

(Section 4.5), and finally using a rule-based post-processing

method (Section 4.6) to determine the type of doors and

windows.

4.1. ROI detection

We observe that the effective floor plan area in the input

picture may only account for <50% of the area. Please refer

to the attachment for statistics on the percentage of effective

floor plan area. Thereby, a detection network is utilized to

obtain a compact floor plan area, which is different from

previous related work [22, 33]. Most of the state-of-the-art

object detectors utilize deep learning networks. Consider-

ing the detection efficiency and accuracy, YOLOv4 [11] is

used as our basic detection model of region of interest (ROI)

detection module. It is a lightweight and widely used deep

neural architecture. The floor plan areas are detected by

ROI detection module, then cropped as the input of the next

modules.

4.2. Structural elements extraction

Similar to previous articles [33, 34], various kinds of

structural floor plan elements (walls, doors, windows, door-

ways, etc.), especially for nonrectangular shapes and walls

of nonuniform thickness, are expected to be recognized, as

well as rooms types in floor plans, e.g. living room, bed-

room, bathroom. Furthermore, the endpoints of doors, win-

dows and doorways are expected to be identified accurately.

The DeepLabv3+ [12] is adopted as our basic network.

The aspect ratio of ROI of images should be maintained

during resizing process. The input should be resized to

w × h. We set w = h = 512. The system takes a color

image of size w × h × 3 as input and outputs a feature

map of size w × h × (C + K). The first C dimensions

(C = 12 for background, wall, door, window, doorway, liv-

ing room, bedroom, kitchen, bathroom, library, balcony and

other room) represent the prediction probability in seman-

tic segmentation; the last K dimensions (K = 3 for door,

window and doorway) represent the heatmap in endpoint

regression. Cross-entropy loss is frequently used in seman-

tic segmentation tasks, which lacks spatial discrimination

ability to distinguish between similar or mixed pixels [18].

We introduce affinity field loss [18] to incorporate struc-

tural reasoning into semantic segmentation. At the same

time, we use opening regression loss to regress the bound-

aries of different elements (doors, windows, doorways). Fi-

nally, a method, using a network to learn weights between

different tasks, is utilized [20]. It avoids those complex

and time-consuming manual adjustment steps. Specifically,

those weights are implicitly learned for each task through

the homoscedastic uncertainty term.

• Cross entropy loss: Lce =
∑

i

∑C

c −yi log pi(c)
where yi is the label of the i-th floor plan element and

pi(c) is the prediction probability of i-th pixel in cate-

gory c.

• Affinity field loss: If pixel i and its neighbor j have the

same categorical label, a grouping force is imposed to

encourage network predictions at i and j to be simi-
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lar. Otherwise, a separating force pushes their label

predictions apart.

Lic
group =

∑

j∈N (i)

(1− wij)DKL(pi(c)||pj(c)) (1)

Lic
separate =

∑

j∈N (i)

wij max{0,m−DKL(pi(c)||pj(c))}

(2)

wij =

{

1 if yi 6= yj

0 otherwise
(3)

Laffinity =
∑

i

∑

c

(Lic
group + Lic

separate) (4)

where N (·) denotes the neighborhood. DKL is the

Kullback-Leibler divergence between two distribu-

tions. The overall loss is the sum of Lic
group and Lic

separate

over all categories and pixels.

• Opening regression loss: The set S = (S1, S2, ..., SK)
has K heatmaps, one per category, where Sk ∈ R

w×h.

Lregression =
∑

q

K
∑

k

||Sk(q)− S∗
k(q)||

2
2 (5)

Among them, S∗
k(q) and Sk(q) are the ground truth

heatmap and predicted heatmap of location q ∈ R
2 in

the category k, respectively. We generate individual

heatmap S∗
k(q) for each category k. Let xi,k ∈ R

2 be

the ground truth position of i-th opening endpoint of

category k. The value of location p ∈ R
2 in S∗

k(q) is

defined as

S∗
k(q) = max

i
exp(−

||q − xi,k||
2
2

σ2
) (6)

where σ controls the spread of the peak. In order to

distinguish adjacent peaks, we use the maximum value

(rather than the average) of a single heatmap as the

ground truth heatmap.

• Multi task loss: We add automatic weight adjustments

for each loss and rewrite them, as explained in the sup-

plementary material. The final loss is the sum of all

losses.

L = Lce + Laffinity + Lregression (7)

4.3. Text and symbols detection

The text could provide extra information to refine room

types. The text features of the same room area are the same

between different images. Our system is simplified to a text

detection model, instead of a redundant OCR framework.

Small objects detection is very challenging. To this end, in-

dividual characters are combined into words and phrases to

expand the size of an object so that it can contain additional

semantic and contextual information [30]. YOLOv4 [11] is

our basic network.

Symbols detection, as same as text detection, is utilized

to revise types of rooms, for instance, closestool would help

confirm the type of bathroom. Similar to the text detection

above, the combination of symbols can expand the context

information to help improve the detection performance. For

instance, dinner table and chairs could be regarded as din-

ner table combo. The basic network is still YOLOv4 [11],

while different data augmentation strategies need to be de-

signed. Using Mosaic [11] makes networks concentrate on

each part of the entire object, thereby greatly improving the

generalization ability of the model.

4.4. Scale calculation

When it comes to 3D reconstruction of floor plans, scale

information plays an important role. Numbers and lines are

the basic elements of scale calculation system. The method

focuses on four parts: line segments detection, numbers

recognition, lines and numbers matching and scale calcula-

tion. The pipeline is shown in the supplementary material.

Line segments detection. In scale calculation, line seg-

ments detection aims at obtaining the pixel length of line

segments by detecting endpoints. Endpoints are classified

into 4 classes (up, bottom, left and right), according to the

location in floor plan drawings. We formalize the line seg-

ment detection problem as an endpoint heatmap regression

problem, which is similar to the opening regression loss in

Section 4.2. The network is designed to a modified FCN

network [24, 32], and backbone is Resnet50 [16]. The de-

tailed architecture is shown in the supplementary material.

Numbers recognition. The digital recognition module is

composed of number area detection, digital recognition and

digital quantity regression. According to the direction of

number areas, objects are divided into 3 categories: the hor-

izontal direction, rotating 90 degrees counterclockwise to

the horizontal direction, and rotating 270 degrees counter-

clockwise to the horizontal direction. Number areas detec-

tion is achieved by modified YOLOv4 [11]. Then, digits

are also recognized by YOLOv4 [11]. The digits quantity

result is calculated according to outputs of digits recogni-

tion. The other quantity of digits is regressed by modified

VGG16 [28]. The number of areas will only be calculated,

when those two results of quantity of digits are the same.

Matching and calculation. The line segment and number
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region need to be matched. The distance between “line seg-

ment” and “number region” is described as the Euclidean

distance between midpoints of the line segment and centers

points of the number area. Scores of each pair is expressed

as the reciprocal of its distance. A bipartite graph can be

constructed through the relationship of lines and numbers.

The line segments, and number regions are divided into two

vertex sets, which are connected by edges with their scores.

Then, the matching problem is translated to the maximum

weight matching of a bipartite graph, which is solved by

Kuhn-Munkres method. After that, matched pairs are gen-

erated, then scales are calculated. K-means is applied to

those scales, then the largest quantity of class is chosen. Fi-

nal output is averaged scale of the class.

4.5. Vectorization

In this section, we expect to convert raster information

(structural elements, text and symbols) into vector graph-

ics. The segmented floor plan elements can be divided into

two categories [33], one is room-boundary pixels, and the

other is room-type pixels. The room-boundary pixels repre-

sent walls, doors, windows and doorways, while room-type

pixels are living room, bathroom, bedroom, etc. The core

idea is to obtain vectorized contour information of room-

type pixels for each room, then calculate the center line

of the wall based on the contour information and room-

boundary pixels. The room type can be refined by the text

and symbol detection results. The position information of

the doors, windows and doorways can be obtained accord-

ing to the segmentation and regression results. Detailed

steps are shown in Algorithm 1.

Algorithm 1 Algorithm for vectorization

1: Initialization;

2: /* Room contour optimization */ ;

3: for each room region C ∈ connected components do

4: while (condition a)or(condition b) do

5: Polygon vertex coordinate optimization;

6: Polygon vertex number reduction;

7: end while

8: end for

9: /* Center line optimization */ ;

10: while (condition x)or(condition y) do

11: Wall junction coordinate optimization;

12: Wall junction number reduction;

13: end while

14: Room type refine;

15: Opening endpoints extraction;

Initialization. Based on the results of pixel segmentation,

a general method is utilized to determine the pixel width of

the wall to assist the following calculations. Please refer

to the supplementary material for the specific calculation

method.

Room contour optimization. The uncertainty of seg-

mentation results of objects at the boundary is relatively

high [19], so the boundary has a complicated visual contour

shape. In the residential floor plan image, most of the walls

are horizontal and vertical due to aesthetic and architectural

reasons. (If there is an inclined wall, the inclined wall is

usually longer in length.) Therefore, for each connected

area (e.g. a certain room), a simplified polygon is utilized

to represent the contour. Initially, Douglas-Peucker algo-

rithm [26] is utilized to get an initial polygon contour, then

an iterative method is adopted to obtain simplified polygons

from coarse to fine.

• Room contour vertex coordinate optimization: The

polygon P has N vertices and N edges. pi ∈ R
2 rep-

resents the i-th vertex, pipi+1 represents the i-th line

segment, and −−−−→pipi+1 represents the vector from pi to

pi+1. The pixel contour of the room region C is B,

with contour vertex b ∈ R
2.

Lboundary =
∑

b∈B

min
pi∈P

D(pipi+1, b) (8)

Lorthogonal =
∑

pi∈P

|−−−−→pi−1pi ·
−−−−→pipi+1| (9)

LIOU = IOU(Rasterized(P), C) (10)

min
pi∈P

λ1Lboundary + λ2Lorthogonal − λ3LIOU (11)

where D(pipi+1, b) represents the shortest distance

from a point b to a line segment pipi+1. Rasterized(P)
indicates the area covered by polygon rasterization.

It can be implemented by differentiable rendering [6,

23]. IOU means Intersection over Union operation.

Lboundary measures the matching degree between the

optimized polygon and the room contour. LIOU mea-

sures the matching degree between the polygon area

and the interior area of the room. Lorthogonal measures

the orthogonality between polygon edges. The weights

λ1, λ2, λ3 control the importance of each term and are

experimentally set to 1,5,1.

• Room contour vertex number reduction: When the fol-

lowing two conditions are met, we will reduce the ver-

tices of the polygon.

– condition a: ||pi − pi+1||2 < δa
When the distance between two vertices of the

polygon is smaller than δa, the two vertices are

merged into one vertex. The coordinate of the

new vertex are average of the coordinates of the

previous two vertices.
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– condition b: | cos(−−−−→pi−1pi,
−−−−→pipi+1)| > δb

When three adjacent vertices of the polygon

are approximately collinear, the middle vertex is

deleted.

We set δa to half of the wall width, and δb to cos(10◦)

Center line optimization. Generally, two methods are used

to represent the walls in vectorized floor plans. One is to use

the edge line to draw the wall, applied in previously opti-

mized room contour polygon. The other is to use the center

line to draw the wall. In order to facilitate 3D reconstruc-

tion, we introduce how to optimize the center line to draw

the wall. A method, similar to the previous room contour

optimization, is utilized.

We use Pk to represent the k-th polygon previously op-

timized, with K polygons in all. The k-th polygon has Nk

vertexes, represented as pk1 , ..., p
k
i , ..., p

k
Nk . Our goal is to

optimize a graph G with vertices V = {vi|i = 1, .., |V|}
and edges E = {ei|i = 1, ..., |E|}. The vertices of the graph

represent the junctions of the walls, and the edges represent

the center lines of walls. Initially, this graph G is a set of

{Pk|k = 1, ..,K}.

• Wall junction coordinate optimization:

Lcenter =
∑

a∈A

min
ei∈E

D(ei, a) (12)

Lnearby =
K
∑

k

Nk

∑

i

||pki − vL(pk

i
)||

2
2 (13)

Lalignment =
∑

ei∈E

min(|−→ei ·
−−→
[0, 1]|, |−→ei ·

−−→
[1, 0]|) (14)

min
V,E

w1Lcenter + w2Lnearby + w3Lalignment (15)

where L(pki ) is a mapping index that maps an ini-

tial point pki corresponding to the current optimization

point vL(pk

i
).

−−→
[0, 1],

−−→
[1, 0] are the horizontal and verti-

cal direction vectors respectively. Lcenter measures how

well the generated wall matches the original wall pix-

els A. Lnearby term constrains v around the vertices

of the initial polygon. Lalignment restricts the edges we

get as horizontal or vertical as possible. The weights

w1,w2 and w3 are set to 1.0,2.0 and 1.0, respectively.

• Wall junction number reduction:

– condition x: ||vi − vj ||2 < δx
When the distance between two vertices

vi, vj(i 6= j) of the graph is smaller than δx, the

two vertices merge into one vertex. The new

coordinates are the average of the coordinates of

the two vertices.

– condition y: D(ei, vj) < δy
The two vertices of i-th edge ei are vs

ei
and

ve
ei

. When the distance between a vertex vj in

the graph and the edge ei is less than a certain

threshold δy , we add this vertex to the edge, and

this edge (vs
ei
, ve

ei
) becomes two edges (vs

ei
, vj) ,

(vj , v
e
ei
)

We set both δx and δy to be half of the wall width.

Room type refine. For semantic segmentation, we can ob-

tain the room type distribution by counting the pixel types

inside the room. In addition, both symbol detection and

text detection provide us with information of the room type.

More specifically, for a certain room, if the center of the

symbol or text box is within the optimized contour polygon,

we vote for the corresponding room type of the box. Then

we normalize to get the distribution of the corresponding

room. If no box center is in the optimized polygon, it will

be treated as a discrete uniform distribution. Finally, we

combine these three distributions to select the most likely

room type.

Opening endpoints extraction. We obtain endpoint can-

didates by performing non-maximum suppression on the

door, window, and doorway heatmaps. After obtaining the

location of the endpoint, we obtain the corresponding rela-

tionship of the endpoint through the semantic segmentation

result. Since the thickness of the wall in the floor plan is

different, we need to calculate the thickness of each part of

the wall. The detailed calculation method can be found in

the supplementary material.

4.6. Reconstruction post­processing

The goal of post-processing is to convert the 3D vector-

ized result into a 3D reconstruction result of real physical

size through scaling. If the scale of the residential floor

plan is not available, the median length of the door is 0.9m

by default, which can be used to calculate scale informa-

tion. In the 3D reconstruction result, the default height of

the wall is 3.2m. Since the real physical size information

of the house has been obtained, the type of doors and win-

dows can be determined according to the length of the doors

and windows. In our implementation, doors with a length of

less than 1.5m are ordinary single doors, those with a length

less than 2m are single swing doors, and those greater than

2m are double sliding doors. A window less than 0.8m in

length is a small window, less than 1.6m is a ordinary win-

dow, less than 2.4m is a large window, and greater than 2.4m

is a floor-based window.
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Figure 3. Floor plan recognition and reconstruction results. From left to right, an input floor plan image, semantic segmentation result with

post-processing, reconstructed vector-graphics representation with room type annotation, the corresponding 3D reconstruction model. The

original images come from Kujiale [4] (top), Lianjia [5] (middle) and Fangtianxia [2] (bottom).

R2V R2VD DFPR DFPRD Ours Ours+

Acc. 0.83 0.91 0.82 0.94 0.96 0.97

Class Acc.

Wall 0.85 0.90 0.83 0.89 0.90 0.92

Door 0.79 0.83 0.80 0.83 0.82 0.87

Window 0.81 0.86 0.79 0.88 0.87 0.90

Doorway 0.55 0.67 0.57 0.65 0.67 0.79

Living room 0.85 0.92 0.81 0.97 0.96 0.96

Bedroom 0.82 0.95 0.80 0.94 0.97 0.97

Kitchen 0.77 0.94 0.85 0.95 0.96 0.95

Bathroom 0.82 0.92 0.81 0.94 0.94 0.95

Library 0.80 0.88 0.79 0.90 0.89 0.89

Balcony 0.86 0.97 0.82 0.95 0.96 0.96

Other 0.72 0.87 0.74 0.83 0.85 0.88

mIoU 0.76 0.80 0.76 0.82 0.84 0.85

fwIoU 0.82 0.90 0.83 0.93 0.95 0.96
Table 1. Quantitative evaluations compared with R2V [22] and DFPR [33]
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5. Experiments

5.1. Quantitative evaluations

Comparison with state-of-the-art. We compare our

method with Raster-to-Vector [22] and Deep Floor Plan

Recognition [33] (abbreviated as R2V and DFPR), on RFP

dataset. Due to reliance on Manhattan’s assumption, the

R2V method cannot detect inclined walls. To run R2V, in-

clined walls are deleted when generating the R2V labels,

and a heuristics method is utilized to convert our label to

junction types. For the DFPR method, pixel categories are

divided into room-boundary class and room-type class. For

fairness, the results of the R2V and DFPR methods, with

ROI detection module, are introduced. We use the subscript

D to represent, as shown in Table 1. The results, with (de-

noted with subscript +) and without(w/o) vectorization, are

provided for evaluation on our methods. During the com-

parison, we used the same post-processing strategy in [33]

and followed the rasterization process introduced in [22] to

convert the vectorized output into per-pixel.

For quantitative evaluation, the overall pixel accuracy,

per class pixel accuracy, mean intersection over union, and

frequency weighted intersection over union, abbreviated

as Acc., Class Acc., mIoU and fwIoU, are used as met-

rics [24, 33]. Table 1 shows the quantitative comparison

results. It can be seen that our method can achieve higher

results on most floor plan elements, and vectorization can

further improve our performance.

ROI detection. AP0.5 and AP0.75 are 0.97 and 0.90 respec-

tively. It can be seen from Table 1 that no matter which

method is used, the extraction of the effective area is crucial

for recognition.

Vectorization. In order to quantitatively evaluate vector-

ization results, we use the metric in the R2V paper [22].

Compared with other predictions, if the current prediction

result is the minimum distance to the target and less than the

threshold, the current prediction is correct. For wall junc-

tions, we use the Euclidean distance and the threshold τw.

For opening primitives, the distance between the prediction

and the target is the larger value of the Euclidean distance

between the two pairs of corresponding endpoints, and the

threshold is τo. We set τw = τo = widthwall/2. The re-

sults shows in Table 2. It can be seen from the experimental

results that our method can produce more accurate results.

In order to evaluate the effectiveness of each constraint

in vectorization, we disable one constraint each time and

record the performance. Note that we do not evaluate the

Lboundary and Lcenter constraints, since they are essential. Ta-

ble 2 shows that when full modules are performed, precision

and recall consistently over the other systems are improved.

This reflects that we have obtained an accurate and simpli-

fied junction location. The Lorthogonal constrains the angular

relationship between the sides of the polygon, so as to form

Wall Junction Opening

Acc. Recall Acc. Recall

R2VD 0.95 0.91 0.93 0.92

Ours-Lorthogonal 0.67 0.71 0.97 0.75

Ours-LIOU 0.92 0.90 0.95 0.92

Ours-Lnearby 0.90 0.94 0.95 0.92

Ours-Lalignment 0.95 0.95 0.97 0.93

Ours 0.96 0.94 0.97 0.93
Table 2. Quantitative evaluation of vectorization results

a simplified polygon. Lnearby and LIOU introduce fine-level

constraints to improve wall accuracy. Comparable results

were obtained without Lalignment. However, the optimized

wall has more inclined walls, which is explained in the sup-

plementary material.

Others. Due to space limitations, we have shown other ex-

periments in the supplementary material, such as structural

elements extraction, text and symbols detection, scale cal-

culation.

5.2. Qualitative evaluations

Figure 3 shows an input floor plan image, semantic seg-

mentation result with post-processing, reconstructed vector-

graphics representation with room type annotation, the cor-

responding 3D reconstruction. The different colors of the

segmented and reconstructed vector graphics result repre-

sent different elements, and the palette information can be

found in Figure 2. We evaluate the generalization ability

of the system by processing floor plan images from other

data sources. Please refer to the supplementary material for

more results and analysis.

5.3. Limitation

For an open kitchen, the judgment of the room category

will be wrong, because we assume that the room is sepa-

rated by walls, doors, windows, and doorways. The open

kitchen does not meet such requirements. The scale recog-

nition of inclined walls is not supported. Curved walls can-

not be vectorized well. In the labeling and recognition of the

floor plan, we do not consider the outdoor air-conditioning

platform, which is labeled as AC in most cases.

6. Conclusion

We present an automatic framework for residential floor

plan recognition and reconstruction that accurately recog-

nizes the structure, type, and size of the room, and outputs

vectorized 3D reconstruction results. We believe the frame-

work and sub-modules of the system could be utilized as

benchmarks and make a significant contribution in fields re-

lated to floor plan images.
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and Juho Kannala. Cubicasa5k: A dataset and an improved

multi-task model for floorplan image analysis. In Scandina-

vian Conference on Image Analysis, pages 28–40. Springer,

2019. 2

[18] Tsung-Wei Ke, Jyh-Jing Hwang, Ziwei Liu, and Stella X Yu.

Adaptive affinity fields for semantic segmentation. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 587–602, 2018. 3

[19] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla.

Bayesian segnet: Model uncertainty in deep convolu-

tional encoder-decoder architectures for scene understand-

ing. arXiv preprint arXiv:1511.02680, 2015. 5

[20] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task

learning using uncertainty to weigh losses for scene geome-

try and semantics. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 7482–7491,

2018. 3

[21] Chenxi Liu, Alexander G Schwing, Kaustav Kundu, Raquel

Urtasun, and Sanja Fidler. Rent3d: Floor-plan priors for

monocular layout estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3413–3421, 2015. 2

[22] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-

rukawa. Raster-to-vector: Revisiting floorplan transforma-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2195–2203, 2017. 1, 2, 3, 7, 8

[23] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-

terizer: A differentiable renderer for image-based 3d reason-

ing. In Proceedings of the IEEE International Conference on

Computer Vision, pages 7708–7717, 2019. 5

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 4, 8

[25] Sébastien Macé, Hervé Locteau, Ernest Valveny, and Salva-

tore Tabbone. A system to detect rooms in architectural floor

plan images. In Proceedings of the 9th IAPR International

Workshop on Document Analysis Systems, pages 167–174,

2010. 2

[26] Urs Ramer. An iterative procedure for the polygonal approx-

imation of plane curves. Computer graphics and image pro-

cessing, 1(3):244–256, 1972. 5

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 2

[28] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 4

[29] Ilya Y Surikov, Mikhail A Nakhatovich, Sergey Y Belyaev,

and Daniil A Savchuk. Floor plan recognition and vector-

ization using combination unet, faster-rcnn, statistical com-

ponent analysis and ramer-douglas-peucker. In International

Conference on Computing Science, Communication and Se-

curity, pages 16–28. Springer, 2020. 2

[30] Xu Tang, Daniel K Du, Zeqiang He, and Jingtuo Liu. Pyra-

midbox: A context-assisted single shot face detector. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 797–813, 2018. 4

[31] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao. De-

tecting text in natural image with connectionist text proposal

network. In European conference on computer vision, pages

56–72. Springer, 2016. 2

[32] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines

for human pose estimation and tracking. In Proceedings of

16725

http://www.autodesk.com/products/autocad/overview
http://www.autodesk.com/products/autocad/overview
https://www.fang.com/
https://www.homestyler.com/
https://www.kujiale.com/
https://www.lianjia.com/
https://pytorch3d.org/
https://www.sketchup.com/


the European conference on computer vision (ECCV), pages

466–481, 2018. 4

[33] Zhiliang Zeng, Xianzhi Li, Ying Kin Yu, and Chi-Wing

Fu. Deep floor plan recognition using a multi-task network

with room-boundary-guided attention. In Proceedings of the

IEEE International Conference on Computer Vision, pages

9096–9104, 2019. 2, 3, 5, 7, 8

[34] Yuli Zhang, Yeyang He, Shaowen Zhu, and Xinhan Di. The

direction-aware, learnable, additive kernels and the adversar-

ial network for deep floor plan recognition. arXiv preprint

arXiv:2001.11194, 2020. 2, 3

[35] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang

Zhou, Weiran He, and Jiajun Liang. East: an efficient and

accurate scene text detector. In Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, pages

5551–5560, 2017. 2

16726


