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Abstract

We present a simple, effective, and general activa-
tion function we term ACON which learns to activate the
neurons or not. Interestingly, we find Swish, the recent
popular NAS-searched activation, can be interpreted as a
smooth approximation to ReLU. Intuitively, in the same
way, we approximate the more general Maxout family
to our novel ACON family, which remarkably improves
the performance and makes Swish a special case of ACON.
Next, we present meta-ACON, which explicitly learns
to optimize the parameter switching between non-linear
(activate) and linear (inactivate) and provides a new de-
sign space. By simply changing the activation function,
we show its effectiveness on both small models and highly
optimized large models (e.g. it improves the ImageNet
top-1 accuracy rate by 6.7% and 1.8% on MobileNet-
0.25 and ResNet-152, respectively). Moreover, our novel
ACON can be naturally transferred to object detection and
semantic segmentation, showing that ACON is an effective
alternative in a variety of tasks. Code is available at
https: // github. com/ nmaac/ acon .

1. Introduction

The Rectified Linear Unit (ReLU) [13, 24, 39] has
become an effective component in neural networks and a
foundation of many state-of-the-art computer vision al-
gorithms. Through a sequence of advances, the Swish ac-
tivation [41] searched by the Neural Architecture Search
(NAS) technique achieves top accuracy on the challeng-
ing ImageNet benchmark [9, 42]. It has been shown
by many practices to ease optimization and achieve
better performance [18, 49]. Our goal is to interpret the
mechanism behind this searched result and investigate
more effective activation functions.

Despite the success of NAS on modern activations, a
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Figure 1. ImageNet top-1 accuracy relative improvements
compared with the ReLU baselines. As the models go larger,
Swish and SENet gain smaller, but Meta-ACON still improves
very stably and remarkably even on the substantially deep
and highly optimized ResNet152. The relative improvements
of Meta-ACON are about twice as much as SENet.

natural question to ask is: how does the NAS-searched
Swish actually work? Despite its widespread use, this
activation function is still poorly understood. We show
that Swish can be surprisingly represented as a smooth
approximation to ReLU, by a simple and general ap-
proximation formula (Equ. 2).

This paper pushes the envelop further: our method,
called ACON, follows the spirit of the ReLU-Swish conver-
sion and approximates the general Maxout [12] family to
our novel ACON family by the general approximation for-
mula. We show the converted functions (ACON-A, ACON-B,
ACON-C) are smooth and differentiable, where Swish is
merely a case of them (ACON-A). ACON is conceptually
simple and does not add any computational overhead,
however, it improves accuracy remarkably. To achieve
this result, we identify the fixed upper/lower bounds
in the gradient as the main obstacle impeding from
improving accuracy and present the ACON with learnable
upper/lower bounds (see Fig. 3).

In principle, ACON is an extension of Swish and has
a dynamic non-linear degree, where a switching factor
decays to zero as the non-linear function becomes linear.

8032



Convolutional
layer

BatchNorm
layer ACONInput layerConvolutional

layer
BatchNorm

layer
ReLU

activationInput layer

Figure 2. We propose a novel activation function we term the ACON that explicitly learns to activate the neurons or not.
Left: A ReLU network; Right: An ACON network that learns to activate (orange) or not (white).

Intuitively, this switching factor enables ACON to switch
between activating or not. However, evidence [41] has
shown that optimizing the factor simply by using the
gradient descent cannot learn to switch between lin-
ear and non-linear well. Therefore, we optimize the
switching factor explicitly for fast learning and present
meta-ACON that learns to learn whether to activate or not
(see Fig. 2). Despite it seems a minor change, meta-ACON

has a large impact: it has significant improvements on
various tasks very stably (even the highly-optimized
and extremely deep SENet-154) and provides a new
architecture design space in the meta learner, which
could be layer-wise, channel-wise, or pixel-wise. The
design in the provided space is beyond the focus of this
paper, but it is suggestive for future research.

ACON transfers well on a wide range of tasks. No
matter for small models or large models, our approach
surpasses the ReLU counterpart significantly: it im-
proves the ImageNet top-1 accuracy rate by 6.7% and
1.8% on MobileNet-0.25 and ResNet-152, respectively.
We show its generality on object detection and semantic
segmentation tasks.

We summarize our contributions as follows: (1) We
present a novel perspective to understand Swish as a
smoothed ReLU; (2) from this valuable perspective, we
connect the two seemingly unrelated forms (ReLU and
Swish), and smooth ReLU’s general Maxout family to
Swish’s general ACON family; (3) we present meta-ACON

that explicitly learns to activate the neurons or not,
improves the performance remarkably.

2. Related Work

Activation functions The Rectified Linear Unit
(ReLU) [13, 24, 39] and its variants [37, 15, 7, 35] are
the most widely used activation functions in the past
few years. ReLU is non-differentiable at zero and is
differentiable anywhere else. Many advances followed
[27, 45, 1, 17, 40, 11, 55], and softplus [10] is a smooth

approximation to the maximum function ReLU based
on the LogSumExp function.

The Maxout [12] can be a piecewise linear approx-
imation for arbitrary convex activation functions. It
generalizes the leaky ReLU and ReLU and can ap-
proximate linear activations. The Maxout is a general
formulation of many current activation functions. In
this work we present a new family of activation which
is a smooth approximation to the Maxout family. For
example, the recent searching technique contributes to
a new searched scalar activation called Swish [41] by
combing a comprehensive set of unary functions and
binary functions. Firstly, the searched results show that
the form of SiLU [11, 17], y = x · Sigmoid(x), achieves
good performance and outperforms other scalar activa-
tions on many vision tasks. Secondly, the method also
indicates that the form of Swish, y = x · Sigmoid(βx),
shows great potential. However, there is a lack of proper
explanation of the searched Swish formulation. In this
paper, we generalize Swish to the ACON family, showing
that it is a smooth approximation of ReLU based on
the well-known smooth conversion called α-softmax,
which is frequently applied in optimization and neural
computation [28, 3, 14].

A recent activation called DY-ReLU [5] encodes the
global context into a hyperfunction and adapts the
piecewise linear activation function accordingly. The
method increases the number of parameters remarkably
and improves the performance significantly especially
on light-weight models. However, the improvements
become smaller when the models go larger and deeper.
For example, though DY-ReLU generalizes SENet con-
ceptually, ResNet50-DY-ReLU (only 1.0% improvement,
76.2->77.2) cannot outperform ResNet50-SENet, the
improvements on larger models become smaller. Dif-
ferent from DY-ReLU, firstly, ACON learns to determine
the activation to be linear or non-linear. Secondly, our
method has a comparable amount of parameters with
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Figure 3. The ACON activation function and its first derivatives. (a) The ACON-C activation function with fixed β (see Fig. 4
for the influence of β); (b-c) The first derivatives with fixed p1&p2 (b) and fixed β (c). β controls how fast the first derivative
asymptotes to the upper/lower bounds, which are determined by p1 and p2.

ReLU networks. Thirdly, the performance improvement
is still very significant even on the very deep and highly
optimized ResNet-152, which is more than twice as
much as SENet (∆ accuracy = 1.8 v.s. 0.8, see Fig. 1).

Dynamic network Standard CNNs [44, 16, 47, 59,
6, 19, 43, 18] share the same network structure and
convolution kernels for all the samples, while conditional
(or dynamic) CNNs [29, 32, 54, 58, 26, 34] use dynamic
kernels, widths, or depths conditioned on the input
samples, obtaining remarkably gains in accuracy.

Some dynamic networks learn the dynamic ker-
nels [56, 34], some use attention-based approaches
[50, 33, 2, 51, 53, 20] to change the network structures,
another series of work [52, 21] focus on dynamic depths
of the convolutional networks, that skip some layers for
different samples. In our work, we learn the non-linear
degree in the activation function dynamically, which
controls to what degree the non-linear layer is.

Neural network design space The design of the
neural network architecture mainly includes the ker-
nel level space and the feature level space. The most
common feature design space aims to optimize the per-
formance via channel dimension [47, 48, 43, 36, 20],
spatial dimension [49, 4, 23] and feature combination
[16, 22]. On the recent popular kernel design space we
can optimize the kernel shape [46, 57, 25] and kernel
computation [56, 34]. In this work, we provide a new de-
sign space on the non-linear degree level by customizing
the non-linear degree in each layer.

3. ACON

We present ActivateOrNot (ACON) as a way of learn-
ing to activate the neurons or not. In this paper, we first
show how we use the general approximation formula:

smooth maximum [28, 3, 14] to perform the ReLU-Swish
[41] conversion. Next, we convert other cases in the
general Maxout [12] family, which is thus a natural and
intuitive idea and makes Swish a case of ACON. At last,
ACON learns to activate (non-linear) or not (linear) by
simply maintaining a switching factor, we introduce
meta-ACON that learns to optimize the factor explicitly
and shows significant improvements.

Smooth maximum We begin by briefly reviewing
the smooth maximum function. Consider a standard
maximum function max(x1, ..., xn) of n values, we have
its smooth and differentiable approximation:

Sβ(x1, ..., xn) =

∑n
i=1 xie

βxi

∑n
i=1 eβxi

(1)

where β is the switching factor: when β → ∞, Sβ →

max; when β → 0, Sβ → arithmetic mean.

In neural networks, many common activation func-
tions are in the form of max(ηa(x), ηb(x)) function (e.g.
ReLU max(x, 0) and its variants) where ηa(x) and ηb(x)
denote linear functions. Our goal is to approximate the
activation functions by this formula. Therefore we con-
sider the case when n = 2, we denote σ as the Sigmoid
function and the approximation becomes:

Sβ(ηa(x), ηb(x))

= ηa(x) ·
eβηa(x)

eβηa(x) + eβηb(x)
+ ηb(x) ·

eβηb(x)

eβηa(x) + eβηb(x)

= ηa(x) ·
1

1 + e−β(ηa(x)−ηb(x))
+ ηb(x) ·

1

1 + e−β(ηb(x)−ηa(x))

= ηa(x) · σ[β(ηa(x) − ηb(x))] + ηb(x) · σ[β(ηb(x) − ηa(x))]

= (ηa(x) − ηb(x)) · σ[β(ηa(x) − ηb(x))] + ηb(x)

(2)
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Table 1. Summary of the Maxout family and ACON family. σ denotes Sigmoid.

Maxout family ACON family

ηa(x) ηb(x) max(ηa(x), ηb(x)) (ηa(x) − ηb(x)) · σ(β(ηa(x) − ηb(x))) + ηb(x)

x 0 max(x, 0) : ReLU ACON-A(Swish) : x · σ(βx)
x px max(x, px) : PReLU ACON-B : (1 − p)x · σ(β(1 − p)x) + px

p1x p2x max(p1x, p2x) ACON-C : (p1 − p2)x · σ(β(p1 − p2)x) + p2x

ACON-A We consider the case of ReLU when ηa(x) =
x, ηb(x) = 0, then fACON-A(x) = Sβ(x, 0) = x · σ(βx),
which we call ACON-A and is exactly the formulation of
Swish [41]. Swish is a recent new activation which is a
NAS-searched result, although it is widely used recently,
there is a lack of reasonable explanations about why it
improves the performance. From the perspective above,
we observe that Swish is a smooth approximation to
ReLU.

ACON-B Intuitively, based on the approximation we
could convert other maximum-based activations in the
Maxout family (e.g. Leaky ReLU [37], PReLU [15], etc)
to the ACON family. Next, we show the approximation
of PReLU. It has an original form f(x) = max(x, 0) +
p · min(x, 0), where p is a learnable parameter and
initialized as 0.25. However, in most case p < 1, under
this assumption, we rewrite it to the form: f(x) =
max(x, px)(p < 1). Therefore we consider the case
when ηa(x) = x, ηb(x) = px in Equ. 2 and get the
following new activation we call ACON-B:

fACON-B(x) = Sβ(x, px) = (1 − p)x · σ[β(1 − p)x] + px

(3)

ACON-C Intuitively, we present a simple and more
general case we term ACON-C. We adopt the same two-
argument function, with an additional hyper-parameter.
ACON-C follows the spirit of ACON-B that simply uses
hyper-parameters scaling on the feature. Formally, let
ηa(x) = p1x, ηb(x) = p2x(p1 6= p2):

fACON-C(x) = Sβ(p1x, p2x) = (p1−p2)x·σ[β(p1−p2)x]+p2x

(4)
As with PReLU, β, p1, and p2 are channel-wise. We

init β=p1=1, p2=0. Our definition of ACON-C is a very
simple and general case (see Fig. 3, Fig. 4). Moreover,
there could be many more complicated cases in the
Maxout family (e.g. more complicated formulations of
ηa(x) and ηb(x)), which are beyond the scope of this
paper. We focus on the property of the conversion on
this simple form.

Upper/lower bounds in the first derivative. We
show that Swish has fixed upper/lower bounds (Fig. 3

b) but our definition of ACON-C allows the gradient has
learnable upper/lower bounds (Fig. 3 c). Formally, we
compute the first derivative of ACON-C and its limits as
follows:

d

dx
[fACON-C(x)]

=
(p1 − p2)(1 + e−β(p1x−p2x))

(1 + e−β(p1x−p2x))2

+
β(p1 − p2)2e−β(p1x−p2x))x

(1 + e−β(p1x−p2x))2
+ p2

(5)

lim
x→∞

dfACON-C(x)

dx
= p1, lim

x→−∞

dfACON-C(x)

dx
= p2 (β > 0)

(6)
To compute the upper/lower bounds, which are the

maxma/minima values, we compute the second deriva-
tive:

d2

dx2
[fACON-C(x)]

=β (p2 − p1)
2

eβ(p1−p2)x·
(

(β (p2 − p1) x + 2) eβ(p1−p2)x + β (p1 − p2) x + 2
)

(

eβ(p1−p2)x + 1
)3

(7)

We set d2

dx2 [fACON-C(x)] = 0, simplify it, and get (y −

2)ey = y + 2, where y = (p1 − p2)βx. Solving the
equation we get y ≈ ±2.39936. Then we get maxima
and minima of Equ. 5 when β > 0:

maxima(
d

dx
[fACON-C(x)]) ≈ 1.0998p1 − 0.0998p2,

minima(
d

dx
[fACON-C(x)]) ≈ 1.0998p2 − 0.0998p1

(8)

This is different from Swish with the fixed upper/lower
bounds (1.0998, -0.0998) in the first derivative. In
Swish, the hyper-parameter β only determines how fast
the first derivative asymptotes to the upper bound and
the lower bound, however, the bounds are learnable
and determined by p1 and p2 in ACON-C (see Fig. 3 c).
The learnable boundaries are essential to ease optimiza-
tion and we show by experiments that these learnable
upper/lower bounds are the key for improved results.
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3.1. MetaACON

ACON switches the activation to activate or not as
the switching factor β controls it to be non-linear
or linear. Specifically, when β → ∞, fACON-C(x) →

max(p1x, p2x); when β → 0, fACON-C(x) →

mean(p1x, p2x). Thus, unlike the traditional activa-
tions such as the ReLU, ACON allows each neuron to
adaptively activate or not (see Fig. 2). This customized
activating behavior helps to improve generalization and
transfer performance. This motivated us to develop
the following meta-ACON that plays a key role in the
customized activation.

Our proposed concept is simple: learning the switch-
ing factor β explicitly conditioned on the input sample
x ∈ R

C×H×W : β = G(x). We are not aiming to pro-
pose a specific structure, we provide a design space in
the generating function G(x).

Design space The concept is more important than
the specific architecture which can be layer-wise,
channel-wise of pixel-wise structure. Our goal is to
present some simple designing examples, which manage
to obtain significantly improved accuracy and show the
importance of this new design space.

We briefly use a routing function to compute β

conditioned on input features and present some sim-
ple structures. First, the structure can be layer-
wise, which means the elements in a layer share the
same switching factor. Formally, we have: β =
σ

∑C
c=1

∑H
h=1

∑W
w=1 xc,h,w.

Second, we present a simple channel-wise structure,
meaning the elements in a channel share the same
switching factor. Formally, we show it by: βc =
σW1W2

∑H
h=1

∑W
w=1 xc,h,w. We use W1 ∈ R

C×C/r,
W2 ∈ R

C/r×C to save parameters (r = 16 by default).
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Figure 5. ACON v.s. meta-ACON. β-distribution of an activa-
tion layer in the last bottleneck of the trained ResNet-50
models. We randomly select 7 samples, for the ACON network,
they share the same β distribution (the blue histogram);
while for the meta-ACON network, they have 7 distinct β

distributions. Lower β values mean more linear, lager β

values mean more non-linear.

To further reduce the amount of parameters for large
models (Res101, Res152), we find the depth-wise fully-
connected layers also achieve good results.

Third, for the pixel-wise structure, all the elements
use unique factors. Although there could be many struc-
ture designing methods, we simply present an extremely
simple structure aiming to present a pixel-wise example.
Formally, we have: βc,h,w = σxc,h,w.

We note our meta-ACON has a straightforward struc-
ture. For the following meta-ACON experiments, we use
the channel-wise structure and ACON-C unless otherwise
noted. More complex designs have the potential to
improve performance but are not the focus of this work.

4. Experiment

4.1. Image Classification

We present a thorough experimental comparison on
the challenging ImageNet 2012 classification dataset
[9, 42] along with comprehensive ablations. For training,
we follow the common practice and train all the models
using the same input size of 224x224 and report the
standard top-1 error rate.

ACON We first evaluate our ACON method on the light-
weight CNNs ( MobileNets [19, 43] and ShuffleNetV2
[36]) and deep CNNs (ResNets [16]). For light-weight
CNNs we follow the training configure in [36]; for the
larger model ResNet, we use a linear decay learning
rate schedule from 0.1, a weight decay of 1e-4, a batch
size of 256, and 600k iterations. We run numerous
experiments to analyze the behavior of the ACON acti-
vation function, by simply changing all the activations
on various network structures and various model sizes.
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Table 2. Comparison of the meta-ACON on MobileNets, ShuffleNetV2, and ResNets. We report the top-1 error on
the ImageNet dataset (train and test on 224x224 input size).

ReLU meta-ACON

FLOPs # Params. Top-1 err. FLOPs # Params. Top-1 err.

MobileNetV1 0.25 41M 0.5M 47.6 41M 0.6M 40.9(+6.7)

MobileNetV2 0.17 42M 1.4M 52.6 42M 1.9M 46.2(+6.4)

ShuffleNetV2 0.5x 41M 1.4M 39.4 41M 1.7M 34.8(+4.6)

MobileNetV1 0.75 325M 2.6M 30.2 326M 3.1M 26.4(+3.8)

MobileNetV2 1.0 299M 3.5M 27.9 299M 3.9M 25.0(+2.9)

ShuffleNetV2 1.5x 301M 3.4M 27.4 304M 6.0M 24.7(+2.7)

ResNet-18 1.8G 11.7M 30.3 1.8G 11.9M 28.4(+1.9)

ResNet-50 3.9G 25.5M 24.0 3.9G 25.7M 22.0(+2.0)

ResNet-101 7.3G 44.1M 22.8 7.3G 44.1M 21.1(+1.7)

ResNet-152 11.3G 60.0M 22.3 11.3G 60.1M 20.5(+1.8)

Table 3. Comprehensive comparison of ACON on MobileNetV2, ShuffleNetV2 and ResNets. We report the top-1
error on the ImageNet dataset (train and test on 224x224 input size).

Model MobileNetV2 ShuffleNetV2 ResNets

Channel / depth 0.17 1.0 0.5× 1.5× ResNet-18 ResNet-50 ResNet-101

FLOPs 42M 300M 41M 300M 1.8G 3.9G 11.3G

ReLU 52.6 27.9 39.4 27.4 30.3 24.0 22.8
ACON-A (Swish) 51.4 27.3 38.3 26.8 30.3 23.5 22.7

ACON-B 50.8 26.4 38.0 26.8 29.4 23.3 22.3
ACON-C 48.9 26.4 37.0 26.5 29.1 23.2 22.1

The baseline networks are the ReLU networks and the
extra parameters in ACON networks are negligible.

We have two major observations from Table 3 and
Fig. 3. (i), ACON-A, ACON-B, and ACON-C all improve the
accuracy remarkably comparing with their max-based

functions. This shows the benefits of the differentiable
and smooth conversion. (ii), ACON-C outperforms ACON-A

(Swish) and ACON-B, benefitting from the adaptive up-
per/lower bounds in the ACON-C’s first derivatives. (iii),
Although ACON-A (Swish) shows minor improvements as
the models go deeper and larger (0.1% on ResNet-101),
we still obtain continuous accuracy gains from ACON-C

(0.7% on ResNet-101).

Meta-ACON Next, we evaluate the meta-ACON function.
For light-weight CNNs we change all the ReLU activa-
tions to meta-ACON, for deep CNN (ResNet-50, ResNet-
101) we change one ReLU (after the 3×3 convolution) in
each building block to meta-ACON to avoid the overfitting
problem.

The results in Table 2 show that we manage to ob-
tain a remarkably performance boost in all the network
structures. For light-weight CNNs, meta-ACON improves
6.7% on MobileNetV1 0.25 and still has around 3% ac-

curacy gains on 300M level models. For deeper ResNets,
meta-ACON still shows significant improvements, which
are 2.0% and 1.7% on ResNet-50 and ResNet-101.

To reveal the reasons, in Fig. 5 we select a layer in the
last bottleneck and compare the learned β distribution
in ResNet-50. ACON shares the same β distribution for
all the different samples across the dataset, however,
in meta-ACON different samples have distinct non-linear
degrees instead of sharing the same non-linear degree
in ACON. Specifically, some samples tend to have more
values close to zero, which means for such samples
the network tends to have a lower non-linear degree.
While some samples tend to have more values far from
zero, meaning the network adaptively learns a higher
non-linearity for such samples. This is an intuitively
reasonable result as different samples usually have quite
different characteristics and properties.

4.2. Ablation Study

We run several ablations to analyze the proposed
ACON and meta-ACON activations.

Comparison with other activations Table 4 show
the comparison with more activations besides ReLU and
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Table 4. Comparison with other activations. We report
the ImageNet top-1 error on ShuffleNetV2 0.5x.

Activation Top-1 err.

ReLU 39.4
Swish [41] 38.3
Mish [38] 39.5
ELU [7] 39.5
SoftPlus[10] 39.6

ACON-C 37.0
meta-ACON 34.8

Table 5. Design space in meta-ACON. We report the top-1
error on the ImageNet dataset. Comparison on 3 different
levels of design space. We give 3 most simple examples on
ShuffleNetV2 0.5×. fc denotes fully-connected, σ denotes
sigmoid, GAP denotes global average pooling.

manner Top-1 err.

baseline - 39.4
pixel-wise σ(x) 37.2
channel-wise σ(fc[fc[GAP (x)]]) 34.8
layer-wise σ[

∑

c GAP (x)] 36.3

Swish, including Mish [38], ELU [7], SoftPlus [10]. We
note that recent advances show comparable results com-
paring with ReLU, except that Swish shows greater im-
provement (1.1% top-1 error rate). ACON and meta-ACON

manage to improve the accuracy remarkably (2.4% and
4.6%) comparing with the previous activations.

Design space in meta-ACON We provide a new archi-
tecture design space in meta-ACON (G(x) in Sec. 3.1).
As the switching factor determines the non-linearity in
the activation, we generate β values for each sample on
different levels, which could be pixel-wise, channel-wise,
and layer-wise. Our goal is to present a wide design
space that provides more possibilities in the future neu-
ral network design, we are not aiming to propose the
most effective specific module in this paper, which is
worth more future studies. We investigate the most
simple module for each level that is described in Section
3.1. Table 5 shows the comparison on ShuffleNetV2
0.5×. The results show that all three levels could im-
prove accuracy significantly, with more careful design,
there could be more effective modules.

Switching factor distribution In meta-ACON we
adopt a meta-learning module to learn the switching
factor β explicitly. Figure 5 shows the distribution of
the learned factor in the last activation layer of ResNet-
50, we compare meta-ACON with ACON, and randomly
select 7 samples to show the result. The distributions

Table 6. Meta-ACON v.s. SENet [20]. We report the Ima-
geNet top-1 error rates of ShuffleNetV2 and ResNet. For
fair comparison, we only replace one ReLU with Meta-ACON

in each building block.

Baseline SE meta-ACON

ShuffleNetV2 0.5x 39.4 37.5 34.8
ShuffleNetV2 1.5x 27.4 26.4 24.7
ResNet-50 24.0 22.8 22.0
ResNet-101 22.8 21.9 21.1
ResNet-152 22.3 21.5 20.5

Table 7. Comparison on the extremely deep SENet-
154 [20]. We report the ImageNet top-1 error rates. We
implement all the models by ourselves.

Activation Top-1 err.

ReLU 18.95
ACON-A (Swish) 19.02
ACON-C 18.40

indicate three conclusions: (1) meta-ACON learns a more
widespread distribution than ACON; (2) each sample has
its own switching factor instead of sharing the same
one; (3) some samples have more values close to zero,
meaning some neurons tend not to activate in this layer.

Comparison with SENet We have shown that ACON

helps improving accuracy remarkably. Next, we com-
pare our channel-wise meta-ACON with the effective mod-
ule SENet [20] on various structures. We conduct a
comprehensive comparison of both light-weight CNNs
and deep CNNs. Table 6 shows that meta-ACON outper-
forms SENet significantly on all the network structures.
We note that it is more difficult to improve accuracy on
larger networks because of highly optimized, but we find
that even in the extreme deep ResNet-152, meta-ACON

still improves accuracy by 1.8%, which gains 1% com-
paring with SENet.

Moreover, we conduct experiments on the highly op-
timized and extremely large network SENet-154 [20],
which is challenging to further improve the accuracy.
We re-implement SENet-154 and change the activations
to ACON under the same experimental environment for
fairness comparison. We note that SE together with
ACON-A or ACON-C is a case of channel-wise meta-ACON

structure, the differences between them are the learn-
able upper/lower bounds (see Sec.3). Table 7 shows
two results: first, simply combing ACON-A (Swish) with
SENet performs comparable or even worse result com-
paring to ReLU activation; second, ACON-C achieves
18.40 top-1 error rate on the challenging ImageNet
dataset, improving the performance remarkably.
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Table 8. Evaluation of ACON-FReLU, which outperforms ex-
isting static networks.

FLOPs # Params. Top-1 err.

0.17 MobileNetV2 42M 1.4M 52.6
ShuffleNetV2 0.5 41M 1.4M 39.4
TFNet 0.5 43M 1.3M 36.6

0.6 MobileNetV2 141M 2.2M 33.3
ShuffleNetV2 1.0 146M 2.3M 30.6
TFNet 1.0 135M 1.9M 29.7

1.0 MobileNetV2 300M 3.4M 28.0
ShuffleNetV2 1.5 299M 3.5M 27.4
TFNet 1.5 279M 2.7M 26.0

1.4 MobileNetV2 585M 5.5M 25.3
ShuffleNetV2 2.0 591M 7.4M 25.0
TFNet 2.0 474M 3.8M 24.3

More complicated activation In the previous sec-
tions we show the { ACON-A, ACON-B, ACON-C } activations
converted from the general Maxout family. Recently,
a more powerful activation FReLU shows its potential
for vision tasks. FReLU also belongs to the Maxout
family. Next, we evaluate the ACON-FReLU by simply
modifying ηa(x) and ηb(x) according to the form of
FReLU. FReLU boosts accuracy for light-weight net-
works. However, since both the FReLU layer and the
original blocks contain depth-wise convolutions, directly
changing the ReLU functions to FReLU is not optimal
because of the redundancy utilization of the depth-wise
convolution. Therefore, to evaluate the performance, we
design and train a simple toy funnel network (TFNet)
made only by pointwise convolution and ACON-FReLU

operators. The simple block is shown in Appendix Fig.
2, the Appendix Table 1 shows the whole network struc-
ture. We train the models with a cosine learning rate
schedule, the other settings follow the work in [36].

Table 8 shows the comparison to the state-of-the-art
static light-weight networks. Although the structure
is very simple, the TFNet shows great improvements.
Since this structure does not have dynamic modules
such as the SE [20] module, we category the TFNet to
static networks according to the WeightNet [34]. By
carefully adding dynamic modules to the structure we
could get an optimal dynamic network [18], which is
beyond the focus of this work.

4.3. Generalization

Our novel activation can easily be extended to other
tasks, we show its generalization performance by exper-
iments on object detection and semantic segmentation.

COCO object detection We report the standard
COCO [31] metrics including AP (averaged over IoU

Table 9. Comparison of different activations on the
COCO object detection [31] task. We report results
on RetinaNet [30] with ResNet-50 backbones.

mAP AP50 AP75 APS APM APL

ReLU 35.2 53.7 37.5 18.8 39.7 48.8
Swish 35.8 54.1 38.7 18.6 40.0 49.4
meta-ACON 36.5 55.9 38.9 19.9 40.7 50.6

Table 10. Comparison of different activations on the
CityScape [8] semantic segmentation task. We report
results on PSPNet [60] with ResNet-50 backbones.

Activation FLOPs # Params. mean_IU

ReLU 3.9G 25.5M 77.2
Swish 3.9G 25.5M 77.5
meta-ACON 3.9G 25.7M 78.3

thresholds), AP50, AP75, APS , APM , APL (AP at dif-
ferent scales). We train using the union of 80k train im-
ages and a 35k subset of validation images (trainval35k)
and report results on the remaining 5k validation im-
ages (minival). We choose the RetinaNet [30] as the
detector and use ResNet-50 as the backbone. As a
common practice, we use a batch size of 2, a weight
decay of 1e-4, and a momentum of 0.9. We use anchors
for 3 scales and 3 aspect ratios and use a 600-pixel
train and test image scale. To evaluate the results of
different activations, we use the ImageNet pre-trained
ResNet-50 with different activations as backbones. Ta-
ble 9 shows the significant improvements comparing
with other activations.

Semantic segmentation We further present the se-
mantic segmentation results on the CityScape dataset
[8]. We use the PSPNet [60] as the segmentation frame-
work and ResNet-50 as the backbone. As a common
practice, we use the poly learning rate policy where the
base is 0.01 and the power is 0.9, a weight decay of
1e-4, and a batch size of 16. Table 10 shows that our re-
sult (78.3) is 1.1 points higher than the ReLU baseline,
showing larger improvement than Swish. Given the
effectiveness of our method on various tasks, we expect
it to be a robust and effective activation for other tasks.

5. Conclusion

In this work, we present the novel ACON as a simple
but effective activation that learns to activate or not.
We show ACON family that approximates to the general
Maxout family, exploring more functions in the Maxout
family is a promising future direction yet beyond the
focus of this work. We expect this robust and effective
activation applied to a wide range of applications.
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