
CapsuleRRT: Relationships-aware Regression Tracking via Capsules

Ding Ma, Xiangqian Wu

School of Computer Science and Technology, Harbin Institute of Technology

madingcs@hit.edu.cn, xqwu@hit.edu.cn
B

Abstract

Regression tracking has gained more and more attention

thanks to its easy-to-implement characteristics, while exist-

ing regression trackers rarely consider the relationships be-

tween the object parts and the complete object. This would

ultimately result in drift from the target object when missing

some parts of the target object. Recently, Capsule Network

(CapsNet) has shown promising results for image classifica-

tion benefits from its part-object relationships mechanism,

while CapsNet is known for its high computational demand

even when carrying out simple tasks. Therefore, a primitive

adaptation of CapsNet to regression tracking does not make

sense, since this will seriously affect speed of a tracker. To

solve these problems, we first explore the spatial-temporal

relationships endowed by the CapsNet for regression track-

ing. The entire regression framework, dubbed CapsuleRRT,

consists of three parts. One is S-Caps, which captures

the spatial relationships between the parts and the object.

Meanwhile, a T-Caps module is designed to exploit the tem-

poral relationships within the target. The response of the

target is obtained by STCaps Learning. Further, a prior-

guided capsule routing algorithm is proposed to generate

more accurate capsule assignments for subsequent frames.

Apart from this, the heavy computation burden in CapsNet

is addressed with a knowledge distillation pose matrix com-

pression strategy that exploits more tight and discriminative

representation with few samples. Extensive experimental

results show that CapsuleRRT performs favorably against

state-of-the-art methods in terms of accuracy and speed.

1. Introduction

Regression tracking can be broadly divided into two

categories: discriminative correlation filters (DCFs) based

trackers [22, 42, 8] and deep regression networks (DRNs)

based trackers [7, 2, 9, 33, 27]. DCFs trackers exploit the

property of the circulant matrix and optimize the correla-

tion filters with a system of linear functions. Not only that,

DCFs trackers achieve fast speed by taking advantage of

the correlation computed through the Fourier domain, but

Figure 1: Visual comparisons of the response map in ex-

isting deep regression networks on the Human2 sequence.

As our CapsuleRRT takes the relationships of part-object

into account, a relatively correct response can be obtained

even in the case of heavy occlusion.

also perform favorably on several popular tracking bench-

marks [41, 24, 11]. Unfortunately, the main drawback of

DCFs trackers is that the DCFs trackers take few advan-

tages of end-to-end learning. On the contrary, DRNs track-

ers [7, 2, 9, 33, 27] have paid more attention due to it has

the potential to take full advantage of end-to-end learning.

Most DRNs trackers share a similar mechanism: learn a

mapping from a sampling area of the target objects to soft

labels derived from a Gaussian function. Nevertheless, such

a mechanism does not take into account the relationships

between the object parts and the complete object, thus giv-

ing rise to drift. As shown in Figure 1, low response values

are assigned to some parts of the object, thus resulting in

drift. Further, some DRNs trackers update with such noisy

samples, which will result in tracking failure.

Recently, Hinton et al. [14] proposed the idea of Cap-

sNet, which models the spatial relationships with capsule

architecture. However, it seems that directly apply the orig-

inal CapsNet to deep regression tracking may not work,

which can be explained from three aspects. Firstly, the com-

munication between two-level capsules is heavily relied on

the pose matrices of two-level capsules. Specifically, the

vote matrix of low-level capsules for the adjacently high-

level capsules is computed by multiplying the pose matrix

and transformation matrix. A large dimensional pose matrix

will introduce much unnecessary noise. This is well veri-

fied by noisy capsules produced by CapsNet within the solid

boxes of Figure 2, which will cause the weak discriminant

10948

Figure 2: Visual comparisons of PM with different size on

the BlurCar1 and Girl2 sequences. The one marked by

the solid box, no box, and dotted box indicates the PM with

32-D, 16-D, and 8-D w/ KDPMC strategy. Capsules of the

ConvCaps1 layer are displayed, the same below.

to separate the target object from noisy background. Sec-

ondly, the original CapsNet require a high computational

demand even if it is carried out the digital image classifi-

cation task. Hence, CapsNet need to simplifying key al-

gorithmic components to meet the high-speed demand of

regression tracking. Thirdly, compared with static image

classification, tracking tasks need to consider the temporal

relationships, challenging the original routing algorithm.

To fully take advantage of relationships learned by Cap-

sNet and solve the above issues, we propose, a spatial-

temporal relationships-aware capsule architecture for re-

gression tracking, where three components are designed to

implement CapsNet for effective exploring part-object rela-

tionships. Specifically, we design a spatial capsules module

(S-Caps), which takes the spatial part-object relationships

into account. In such way, the relevant parts will be clus-

tered together to form a complete object through the spa-

tial domain. To capture temporal relationships across the

frames, we design a temporal capsules module (T-Caps) to

generate a set of temporal capsules and then pass these cap-

sules through the STCaps Learning module, which allows

the temporal capsules to condition to spatial capsules.

Besides, there should be strongly correlated types of cap-

sules between the first frame and the current frame. Specif-

ically, the first frame capsules are more reliable, which are

derived from the only labeled sample (i.e., initial state of

the object) during inference stage. Therefore, we design

a prior-guided capsule routing algorithm (PGR), where the

prior correlations computed from the first frame, are used

to estimate the capsule assignments for the next frame. In

such a way, capsule assignments can be achieved to explore

the relatively right part-object relationships.

Until now, the heavy computational burden inherited

from CapsNet makes it difficult to achieve the purpose of

fast-tracking. We address this issue with a knowledge dis-

tillation compression strategy to efficiently reduce the pa-

rameters of those three modules. In detail, our compression

strategy contains three steps: compressing each pose matrix

(PM) to obtain a compact pose matrix (PM-short), align-

ing PM-short to PM by an aligned pose matrix (AM), and

merging the added AM into PM-short. Since there are few

parameters to estimate, we can get a good estimation with

a small amount samples, which also meet the demand of

tracking task (i.e., only the initial state of the target is given).

As shown in the dotted boxes of Figure 2, the compressed

capsules are distinctive enough to separate the object from

the background. Besides, our capsule architecture has much

fewer parameters and noisy assignments.

We make the following contributions in this work:

I, We incorporate a new property, i.e., spatial-temporal

relationships, in regression tracking, which is implemented

by CapsNet. To the best of our knowledge, this is the first

attempt to apply CapsNet for regression tracking.

II, We propose a S-Caps module for capturing spatial re-

lationships, and a T-Caps module for encoding temporal re-

lationships. These two modules are jointly clustering parts

to form the target object within STCaps Learning.

III, We design a novel capsule routing algorithm, named

prior-guided routing algorithm (PGR), which maintains

capsule information from the first frame to guide for cap-

sules routing through subsequent frames.

IV, We propose a knowledge distillation pose matrix

compression strategy (KDPMC) to adapt the proposed ar-

chitecture to fast-tracking, aiming to select more tight and

discriminative pose matrix representation.

V, We compare our approach with the state-of-the-art

methods on seven datasets, which consistently show the su-

periority of our algorithm.

The rest of the paper is organized as follows. We first

review the related works in Section 2. Then, we present the

detailed configuration of the proposed framework and pro-

vide the optimization process in Section 3. After that, we

provide some detailed analysis in Section 4. We further il-

lustrate the implementation details and experimental results

on popular tracking benchmarks in Section 5. Finally, con-

clusions are drawn in Section 6.

2. Related Work

2.1. Regression Tracking

Regression methods directly regress a response map

from a regularly dense sampling. One representative cate-

gory is based on Discriminative Correlation Filters (DCFs),

which regress all the circularly shifted versions of an input

image to a response map for target localization. By com-

puting the ridge regression in the Fourier domain, DCFs

trackers showing attractive efficiency [4, 35, 16]. Besides

DCFs, with the recent delightful progress of deep learning,

Deep regression networks (DRNs) have gained significant

popularity in visual tracking. Among these approaches, a

CNN kernel is learned to convolve with the dense sampling

features for response generation. FCNT [39], one of the

pioneering work in the development of DRNs, which de-

10949

signs two fully convolutional subnetworks to capture high-

level and low-level features of the target jointly. Similarly,

DNT [6] is proposed to gather local and global information

through dual deep networks. CREST [33] fuses the outputs

of the baseline and another two residuals to estimate the lo-

cation of the target object. Besides, DSLT [27] proposes

a shrinkage loss and an ensemble strategy to improve the

performance of the DRNs trackers. To ensure a real-time

online process, ATOM [7] employs a conjugate-gradient-

based strategy in the deep learning framework. DiMP [2]

introduces a target model prediction network and trains the

whole model in an end-to-end manner. Recently, PrDiMP

[9] proposes a formulation for learning to predict the con-

ditional probability density of the target, which is capable

of modeling label noise stemming from ambiguities in the

task. Despite the recent progress, DRNs trackers are rarely

paid attention to the relationships within the target object,

which will result in drift by missing parts of the object.

2.2. CapsNet

CapsNet [14], which models the spatial relationships of

the target with capsules and dynamic routing. Given its ad-

vances, researchers have introduced some applications of

CapsNet. SegCaps [20] embeds the capsules into U-Net

architecture for segmenting pathological lungs from low

dose CT scans. CapsuleVOS [10] designs a novel attention-

based EM routing algorithm to condition capsules for video

object segmentation. Recently, TSPOANet [26] proposes a

two-stream part-object assignment network that routes the

low-level capsules to high-level capsules in a local region

to reduce the parameters of CapsNet. Nevertheless, such a

simple strategy ignores the distributions of the parameters

in transformation weights, which will result in inaccurate

assignments during the routing process. Compared with it,

the primary distinction of this work is that our compressed

capsule architecture is not only to reduce the parameters of

CapsNet but also to avoid the inaccurate assignment.

2.3. Network Compression

Recently, few-samples knowledge distillation based net-

work compression [1, 23] has gained lots of attention, as

the student-nets can achieve competitive accuracy even un-

der the few-sample setting. Similarly, tracking methods

need to be initialized have a high response to the speci-

fied target with few samples given in the initial frame. Our

method is also heavily motivated by few-samples knowl-

edge distillation-based network compression [23], where

we aim to compress the pose matrix of each capsule to re-

duce the parameters without sacrificing accuracy.

3. Proposed Method

Figure 3 shows the overall architecture of the proposed

tracking framework. At the beginning, the representations

Figure 3: CapsuleRRT architecture. Given the video clip

and the search area, we explore the spatial-temporal rela-

tionships via S-Caps, T-Caps, and STCaps Learning.

of the target are fed into the proposed S-Caps module to

exploit spatial relationships. Meanwhile, we extract tempo-

ral relationships through a T-Caps module by given a video

clip. The optimal spatial-temporal relationships are learned

by STCaps Learning. Benefit from the proposed PGR algo-

rithm, which guides the capsule assignments for subsequent

frames more accurate. In the end, a KDPMC strategy helps

to reduce the computational cost while preserving more dis-

criminative capsule assignments.

3.1. S­Caps

S-Caps aims to extract spatial relationships by given a

search area. According to Figure 4a, we use one convolu-

tional layer to integrate the features of conv4 and conv5 of

VGG-16 [32] to obtain the representations 36 × 36 × 128
of the given search area. Followed by these representations,

we generate capsules by emerging two branches. Specifi-

cally, we feed the feature maps into a SpatialCaps layer in

which each capsule is constructed by a pose matrix and an

activation value. The pose matrix encodes the pose prop-

erties. The activation value indicates the existence of the

entity. The details are shown as follows.

Channel Reduction. The feature maps with the dimension

of 36× 36× 128 are downsampled with one convolutional

layer to 36× 36× 16 for reducing the number of channels.

Pose Matrix. Through one convolutional layer, the 36 ×
36× 16 feature maps are enriched to 36× 36× 256. Then,

the pose matrices are generated by reshaping the obtained

feature maps to 36× 36× 16× 16.

Activation Value. The 36×36×16 feature maps are trans-

formed to 36 × 36 × 16 by a convolutional layer to match

the number of types of capsules. The activation values can

be represented by 36× 36× 16× 1.

Capsules Generation. In the end, the 16 types of SCaps

(i.e., 36× 36× 16× 17) are generated by concatenating the

pose matrices and corresponding activation values.

3.2. T­Caps

We propose a T-Caps module to strengthen S-Caps with

consecutive temporal relationships. The architecture of the

proposed T-Cpas is shown in Figure 4b. Firstly, 8 RGB

10950

(a) (b)

Figure 4: (a) and (b) show the detailed architecture of S-Caps and T-Caps, respectively.

Figure 5: Detailed architecture of STCaps Learning.

search areas (146 × 146 × 3) are concatenated along the

channel dimension to 146 × 146 × 24. The obtained fea-

tures are then downsampled to 36 × 36 × 36 through 2

convolutional layers. After that, we use a Parallel Multi-

Dimensional (PMD) unit [34] to model contextual de-

pendencies. The PMD unit contains 6 direction Multi-

Dimensional LSTM, which is shown in Figure 4b. Fol-

lowed by PMD, we generate TCaps (36 × 36 × 16 × 17)

through a TemporalCaps layer, which is similar to Spatial-

Caps. The details can be found in Figure 4a.

3.3. STCaps Learning

By leveraging the spatial-temporal relationships derived

from S-Caps and T-Caps, we obtain the response map of the

specific target by a STCaps Learning module. As shown in

Figure 5, those capsules obtained by S-Caps and T-Caps are

concatenated along the type axis, forming the STCaps (i.e.,

36×36×32×17). Afterward, there are two Convolutional

Capsules (i.e., ConvCaps1 and ConvCaps2) layers, which

share the same architecture. In the end, a RegCaps layer is

designed to classify the target and background. Here, we

take ConvCaps1 for example to illustrate the details.

Reshape capsules. The capsules are first reshaped to

1296×32×17, i.e., the pose matrices and activation values

are 1296× 32× 16 and 1296× 32× 1, respectively.

Votes between two-layer capsules. The vote Vij of capsule

i for capsule j is obtained by:

Vij = MiWij (1)

where Mi ∈ R4×4 is the pose matrix of the capsule i in one

layer, the trainable transformation matrix Wij ∈ R4×4 acts

as a communicator between the capsule i and j which is a

capsule in the layer above. The votes are 1296×32×16×16,

where 1296, 32, 16, and 16 are the number of capsules of

one type, type number of low-level and high-level capsules,

and the dimension of vote matrix, respectively.

Route capsules. The pose matrices and the activation val-

ues of low-level capsules are input into the iterative routing

algorithm, which will calculate the pose matrices (i.e., 36×
36× 16× 16) and activation values (i.e., 36× 36× 16× 1),

respectively. The high-level capsules (i.e., 36×36×16×17)

are obtained by concatenating operation.

ConvCaps2 has a similar architecture with ConvCaps1.

The output of ConvCaps2 is 18× 18× 16× 17. At the end

of ConvCaps2, we design a RegCaps layer to classify the

target and the background. The architecture of RegCaps is

also similar to ConvCap1, except that the type is set to 2 to

correspond to the target and the background, respectively.

To estimate the response of the target object, we utilize

the representation of the RegCaps layer’s pose matrices. As

shown in Figure 5, we upscaled the pose matrix of RegCaps

to 36 × 36 × 64. These features are then upscaled through

a series of deconvolutions that result in a 288 × 288 × 1
response map with the same size as the search area.

3.4. Prior­Guided Capsule Routing

To extend the original routing algorithm [14] to stream-

ing video, we resort to the initial capsule similarities for

more robust capsule routing. Suppose fI and fJO are the

features of typeI capsules of the current frame and typeJ
of the first frame, the guided coefficient is encoded as:

cJO = 1− I(fI , fJO) (2)

I(fI , fJO) =
fI · fJO

||fI ||||fJO||
(3)

where · indicates the inner product operation. This prior-

guided information is embedded into the EM routing by:

Rij = Rij + Rij∗cJO (4)

where Rij is the capsule assignment probability. i and j
are two capsules belonging to typeI and typeJ in current

10951

Figure 6: The detailed architecture through KDPMC.

frame, respectively. There are five steps in our PGR, and

the details of these steps are illustrated as follows.

Initialization. The assignment probability Rij is initialized

with uniform distribution. We initialize the cJO to be zero.

M-procedure. By given the activation ai, votes V , and the

current Rij , M-procedure computes an updated Gaussian

model (µ, σ) and the activation aj of high-level capsule j.

E-procedure. Given the (µ, σ) and the activation aj , E-

procedure determines the assignment probability Rij of

each low-level capsule to a high-level capsule.

Prior-guided information embedding. The prior-guided

information is embedded into the assignment probability to

gather higher similar capsules which are higher correlated

to the most reliable state of the target object.

Prior-guided information calculation. We calculate the

prior-guided information of different types of capsules.

The designed Rij is able to activate those high-

familiarity capsules while alleviating confusing capsule as-

signments. As well, the training procedure will be speeded

up with the guidance of prior-guided information, and we

have verified this in the section of experiments.

3.5. Knowledge Distillation Pose Matrix Compres­
sion Strategy

To reduce the computation burden of CapsNet [14], we

propose a knowledge distillation pose matrix compression

strategy (KDPMC). We first compress PM and obtain PM-

short. Secondly, we add an AM at the end of each PM-

short. Then, we forward a few training data to both the PM

and PM-short, and align the output of PM-short to PM by

estimating the parameters of AM. We obtain the estimation

with a small number of samples by taking advantages of

few parameters of AM. By taking SCaps as an example, we

illustrate the details of each step as follows (see Figure 6).

Compress the Pose Matrix. In the SCaps, the pose matrix

is denoted as 36×36×16×16, i.e., each type of capsule is

represented as 36×36×16(4×4). We obtain the PM-short

36 × 36 × 4(2 × 2) by PCA. PM-short inherits core repre-

sentations from PM, so adding a small group of capsules is

enough to preserve the representative ability.

(a) (b)

Figure 7: Plots of reconstruction error (a) and validation

accuracy (b).

Type-level Alignment. Suppose Oori is the type-level out-

put of the original pose matrix PM. Given one type of the

PM and the corresponding PM-short, we add an AM at the

end of each type capsule. The parameters of AM are initial-

ized with the mean of PM. The parameters of AM can be

estimated with a minimum mapping Map [12]. The total

loss of SCaps can be minimized the reconstruction loss as:

LSCaps
align = argmin

M∑

j=1

N∑

i=1

Map(Oas
ij −Oori

ij) (5)

where M is the number of types of capsules in SCaps, and

N is the number of training samples. The output of AM and

PM-short is indicated as Oas.

Merge the PM-short and AM. The compressed PM (64×
64×16×8) is obtained by concatenating PM-short and AM

along the pose matrix axis.

Similarly, we use the same steps above to compress the

transformation matrix of each type capsules. In Figure 7a,

the reconstruction error does not increase much until 50%

compression (i.e., 8-dimensional pose matrix). In Figure

7b, the model is relatively unaffected for 50% compression.

In light of these, we designed the compressed capsule ar-

chitecture in Figure 6. We compress the decoder network

through [23] to match the compressed dimensions.

3.6. Optimization and Tracking

For offline training, we have ground truth soft label y,

and the learned feature x. We use the regression loss Lreg

[27] for learning the whole model. For online initialization,

the model is trained using an objective function which is

the sum of three loss: regression loss, aligned loss of cap-

sule layers, and aligned loss of decoder. The total objective

function to be minimized by:

Ltotal = Lreg +
∑

LCaps∗
aglin + Ldecoder

aglin (6)

where Caps∗ indicates the five capsule layers.

In the offline training stage, we train the whole model

with Lreg . In the initialization stage, the total sample num-

ber is set to 100 to adapt the parameters of the compressed

10952

Figure 8: Relationships on the ClifBar sequence.

model to the specific target. The compressed model is opti-

mized by the objective function in 6. During tracking stage,

we crop a search area centered at the estimated location in

the previous frame and feed into S-Caps. For the T-Caps,

we use the method in [31] to interpolate the frames until the

8th frame. The location of the maximum value of response

map indicates the position of target. We carry out scale esti-

mation using the scale pyramid strategy as in [27]. We only

update the compressed model per 20 frames with Lreg .

4. Detailed Analysis

In visual tracking, the relationships are derived from that

two parts will be clustered together to form a whole target

object. As in Figure 8, type-2 and type-8 capsules from

the STCaps focus on two parts, i.e., card and letter printing.

In the higher-level, type-4 capsules encode the whole ob-

ject. Through voting, type-2 capsules cooperate with type-8

capsules to form a complete object at the higher type-4 cap-

sules. This shows that our method can capture the relation-

ships among the target, making up for the lack of relation-

ships in DRNs trackers.

5. Experiments

5.1. Implementation Details

Our tracker is implemented in Pytorch, and runs on a

PC with a 1080ti GPU. The feature extractor is initialized

with the ImageNet weights. The input search region is re-

sized to 288 × 288. We utilize the training split of LaSOT

[11], TrackingNet [29], GOT-10k [15], and COCO [25] for

offline training. The model is trained for 100 epochs with

1000 iterations per epoch and 36 image pairs per batch. The

ADAM optimizer [18] is used with an initial learning rate

of 0.01, and set a decay factor 0.2 per 10 epochs. Dur-

ing online update, we decrease the learning rates to 2e-5,

and the training samples are collected by the maximum re-

sponse value > 0.5. A buffer for T-Caps maintains the last 8

frame’s results. At the beginning, we perform data augmen-

tation by constructing 100 training samples. We use these

samples to optimize the parameters of the whole model for

50 iterations. The training label is generated by a Gaussian

function with a kernel width proportional (0.1). The routing

iteration is set to 3. The kernel of PMD is set to 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

CapsuleRRT [0.713]

Siam R-CNN [0.700]

PrDIMP50 [0.696]

SiamRPN++ [0.696]

SiamBAN [0.696]

DiMP [0.687]

ATOM [0.662]

DSLT [0.658]

meta_crest [0.632]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

CapsuleRRT [0.687]

PrDiMP50 [0.680]

DiMP [0.654]

Siam R-CNN [0.649]

ATOM [0.643]

SiamBAN [0.631]

SiamRPN++ [0.613]

DaSiamRPN [0.586]

ECO [0.525]

(b)

Figure 9: Success plots on the OTB100 (a) and UAV123

(b). DiMP [2] is the ResNet-50 version, the same below.

Table 1: Comparison on the GOT-10k in terms of Average

overlap (AO) and Success rate (SR). The best two results

are highlighted in red and blue, the same below.

Siam R-CNN PrDiMP50 DIMP DCFST ATOM KYS SPM ECO
Ours

[36] [9] [2] [46] [7] [3] [38] [8]

SR0.50 0.748 0.728 0.738 0.717 0.716 0.634 0.751 0.593 0.309

SR0.75 0.524 0.597 0.543 0.492 0.463 0.402 0.515 0.359 0.111

AO 0.656 0.649 0.634 0.611 0.610 0.556 0.636 0.513 0.316

Table 2: Comparison on the VOT2019 in terms of Ro-

bustness (R), Accuracy (A) and Expected Average Overlap

(EAO).

DiMP DCFST SiamBAN SiamDW ARTCS ATOM SiamMask
Ours

[2] [46] [5] [45] [19] [7] [40]

EAO 0.392 0.379 0.361 0.327 0.299 0.294 0.292 0.287

A 0.610 0.594 0.589 0.602 0.600 0.602 0.603 0.594

R 0.265 0.278 0.376 0.396 0.467 0.482 0.411 0.461

5.2. Comparison with the State­of­the­art

OTB100 [41]. OTB100 [41] is a widely evaluated dataset

contains 100 sequences, Figure 9a shows the success plot

on OTB100. Compared with the popular regression trackers

including PrDiMP50 [9], DiMP [2], ATOM [7], our method

outperforms them by 1.7%, 2.6%, and 5.1% in terms of

AUC score, respectively, which demonstrates the effective-

ness of the part-object relationships in the CapsuleRRT.

UAV123 [28]. UAV123 dataset [28] is a recently released

dataset which contains 123 tracking targets. Figure 9b illus-

trates the results of eight state-of-the-art trackers. It is de-

lightful that our tracker outperforms all the compared meth-

ods including non-real-time trackers in the success plot. It

indicates that our CapsuleRRT has better generalization ca-

pability to track the target captured by UAV platform.

GOT-10k [15]. GOT-10k dataset [15] is a recent large-scale

dataset consisting of 10K for training and 180 for testing.

We follow the defined protocol [15] and only train on the

specified GOT10k training set for this experiment, while

keeping all other settings the same. The results are shown in

10953

Table 3: Comparison on the TrackingNet test set in terms of

Precision, Normalized Precision, and Success.

Siam R-CNNPrDiMP50MAMLROAMSiamAttnDiMPATOM KYS
Ours

[36] [9] [37] [43] [44] [2] [7] [3]

Precision 0.726 0.800 0.704 0.725 0.623 - 0.687 0.648 0.688

Norm. Prec. 0.834 0.854 0.816 0.822 0.754 0.817 0.801 0.771 0.800

Success 0.774 0.812 0.758 0.757 0.670 0.752 0.740 0.703 0.740

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE on LaSOT Testing Set

[0.648] Siam R-CNN

[0.617] CapsuleRRT

[0.599] PrDiMP50

[0.568] DiMP

[0.515] ATOM

[0.514] SiamBAN

[0.496] SiamRPN++

[0.397] MDNet

[0.333] DSiam

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

CapsuleRRT [0.645]

PrDiMP50 [0.635]

DiMP [0.620]

SiamBAN [0.594]

ATOM [0.584]

UPDT [0.537]

CCOT [0.488]

ECO [0.466]

MDNet [0.422]

(b)

Figure 10: Success plots on the LaSOT (a) and NFS (b)

datasets.

Table 1, obtained through a public server, ranked in terms of

SR and AO. Compared with the recent regression trackers,

our tracker achieves competitive results in three metrics.

Our tracker improves the AO by 0.7 points over the non-

real-time tracker Siam R-CNN, while outperforming Siam

R-CNN [36] by 2 points in terms of SR0.5.

VOT2019 [19]. VOT2019 [19] is a recently released chal-

lenging benchmark. As shown in Table 2, compared with

the DiMP [2] and ATOM [7] from the regression category,

our tracker ranks first in terms of EAO, A, and R.

TrackingNet [29]. TrackingNet [29] is a recently intro-

duced dataset consisting of real-world videos sampled from

Youtube. The tracker is evaluated using an online evaluation

server on a test set of 511 videos. Table 3 shows the results

in terms of precision, normalized precision, and success.

Our method surpasses the recent regression-based methods

such as PrDiMP50 [9], DiMP [2], and ATOM [7] with a rel-

ative gain of 1.6%, 3.4%, and 7.1% in success, respectively.

Among all the compared methods, only Siam R-CNN [36]

outperforms ours, which runs only at 4.7 FPS.

LaSOT [11]. LaSOT dataset [11] is a very large-scale

dataset consisting of 1400 sequences with 70 categories.

Our approach is evaluated on the test set of 280 videos. Ex-

cept for the MDNet [30] and DSiam [13], we add the recent

Siam R-CNN [36], PrDiMP50 [9], DiMP [2], ATOM [7],

SiamBAN [5], and SiamRPN++ [21] for comparison. As

shown in 10a, our method achieves an AUC score of 0.617,

surpassing all the real-time trackers. Especially, our Cap-

suleRRT outperforms the previous best regression method

(i.e., PrDiMP50) by a large margin of 1.8% AUC score.

NFS [17]. NFS dataset [17] includes 100 videos that are

Table 4: Performance evaluations for the ablation analyses

on the AUC score of success plot through OTB100 [41] and

LaSOT [11]. Each variant followed by the STCaps Learn-

ing module, expect for (a) where the input of STCaps Learn-

ing module is only the SCaps. The communication between

capsules is the original EM routing algorithm [14] in (1,2).

STCaps OTB100 LaSOT
S-Caps T-Caps

Learning
PGR KDPMC

[41] [11]

(1) ✔ ✔ 0.678 0.535

(2) ✔ ✔ ✔ 0.703 0.599

(3) ✔ ✔ ✔ ✔ 0.718 0.625

(4) ✔ ✔ ✔ ✔ ✔ 0.713 0.617

(a)

(b)

58 60 62 64 66 68 7

0AUC in %

FCNT

DNT

CREST

DSLT

Method
Method w/ S-Caps

(c)

Figure 11: (a) The simply structure of compared trackers,

we replace the black blocks with our S-Caps and STCaps

Learning. (b) Visual comparisons of each tracker on the

Jump, Huamn6, Shaking, and Panda sequences. (c)

Performance gains when replacing convolutional architec-

ture with the proposed capsule architecture.

captured from real-world scenarios. We evaluate our tracker

on the 30 FPS version of NFS. Figure 10b shows the success

plot. CapsuleRRT achieves a substantial improvement over

the previous state-of-the-art on this dataset.

5.3. Ablation analysis

In this section, we verify the effectiveness of our frame-

work through OTB100 [41] (i.e., short-term) and LaSOT

[11] (i.e., long-term) datasets.

S-Caps. To show the robustness of S-Caps, we design

a modified version, i.e., “Backbone + S-Caps + STCaps

Learning”. The performance is given in Table 4(1), which

indicates that “Backbone + S-Caps + STCaps Learning”

achieves competitive results on both of the datasets. This

evidently proves that the spatial relationships play an impor-

tant role in the DRNs. To further verify the necessity of spa-

tial relationships, we replace the convolutional regression

10954

(a)

50 200 250100 150

Frame Number

0

0.5

1

1.5

2

2.5

R
e
s
p
o
n
s
e
 m

a
p

d
if
fe

r
e
n
c
e
s

Evaluation on Coke

CapsuleRRT w/o TCaps

CapsuleRRT w/ TCaps

(b)

Figure 12: (a) Visual comparisons for the T-Caps on the

Coke sequence. (b) Response map differences of the Coke

sequence.

Figure 13: Visual comparisons for the EM routing (EMR)

and PGR on the Basketball, Box, and Lemming sequences.

blocks of FCNT [39], DNT [6], CREST [33], and DSLT

[27] with S-Caps and STCaps Learning (see Figure 11).

Thanks to the relationships from S-Caps and STCaps, these

trackers can generate the response map more precisely.

T-Caps. To illustrate the effectiveness of T-Caps, we com-

pare it with a modified version that is obtained by adding

T-Caps. The detailed comparisons for these two versions

are shown in the of Table 4(1,2). It is obvious in Table 4(2)

that T-Caps increases AUC scores by 2.5% and 6.4% points

in OTB100 and LaSOT datasets, respectively. As shown in

Figure 12a, we can find that T-Caps can help our tracker

to get a more accurate appearance even the target object

undergoes heavy occlusion. Besides, by adding the pro-

posed T-Caps (see Figure 12b), the response maps change

smoothly when the appearance of the target changes dras-

tically. These prove that the aggregation of the temporal

relationships facilitates to generate more accurate response.

PGR. To demonstrate the effectiveness of PGR, we explore

the difference between “model w/ EMR” and “ model w/
PGR”, where “EMR” and “PGR” indicates the original EM

routing and prior-guided capsule routing algorithm, respec-

tively. The performance comparison of these two varia-

tions are shown in Table 4(2,3), which indicates that with

the guidance of the initial capsules generated from the first

frame, thereby grabbing more satisfactory spatial relation-

ships. Especially, we are pleased to find that PGR is more

effective for long-term tracking. Figure 13 exhibits some

complex scenes to show the superiority of PGR.

KDPMC. To show the superiority of KDPMC, we compare

(a)

10 20 30 40 50

Tracking Speed (FPS)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

S
u
c
c
e
s
s
 r

a
te

 (
A

U
C

)

Success score (OPE) v.s. Speed on OTB100

32-D PM

16-D PM

8-D PM

8-D PM w/ KDPMC

(b)

Figure 14: (a) Visual comparisons for the KDPMC on the

David3 sequence. (b) Plot of tracking accuracy vs. speed.

the framework with a modified version that is obtained by

adding KDPMC strategy. Table 4(4) and Figure 14 show the

quantitative and visual comparisons, respectively. It is obvi-

ous from Table 4(4) that our KDPMC achieves almost sim-

ilar performance compared to the one w/o KDPMC both

in OTB100 and LaSOT datasets. Additionally, in Figure

14a, we can find that KDPMC helps to preserve more dis-

criminative information as well as reduce noise. Besides, as

observed in Figure 14b, without considering the initializa-

tion, the processes of both 8-D PM w/o and w/ KDPMC

are same, their speeds are same, i.e., 27 FPS. That is, our

KDPMC greatly elevates the speed to 27 FPS with a slight

accuracy drop. By considering the initialization (i.e., 8-D

PM w/o KDPMC fine-tuned on the 1st frame, 8-D PM

w/ KDPMC fine-tuned on the 1st frame and compressed

through the KDPMC from 16-D PM), their speeds are 24.1

and 21.6 FPS, respectively.

6. Conclusions

In this paper, we propose a relationships-aware regres-

sion tracking for the problem of tracking drift caused by

missing parts of the object, which is resorting by the rela-

tionships from CapsNet. To achieve this, we exploit spatial-

temporal relationships from the proposed S-Caps, T-Caps,

and STCaps Learning. Besides, a prior-guided routing al-

gorithm is designed for guiding capsule assignments of sub-

sequent frames more accurately. To reduce the heavy com-

putation burden of the aforementioned modules for meet-

ing the purpose of fast-tracking, where a knowledge distil-

lation pose matrix compression strategy is adopted for these

modules. Experimental results demonstrate that our method

achieves competitive results while operating at over 27 FPS.

Acknowledgements: This work was supported in part

by the National Key R&D Program of China under Grant

2018YFC0832304 and 2020AAA0106502, by the Natu-

ral Science Foundation of China under Grant 62073105,

by the Distinguished Youth Science Foundation of Hei-

longjiang Province of China under Grant JC2018021, by

the State Key Laboratory of Robotics and System (HIT) un-

der Grant SKLRS-2019-KF-14 and SKLRS-202003D, and

by the Heilongjiang Touyan Innovation Team Program.

10955

References

[1] Haoli Bai, Jiaxiang Wu, Irwin King, and Michael Lyu. Few

shot network compression via cross distillation. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, vol-

ume 34, pages 3203–3210, 2020.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 6182–6191, 2019.

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Know your surroundings: Exploiting scene infor-

mation for object tracking. In European Conference on Com-

puter Vision, pages 205–221. Springer, 2020.

[4] David S Bolme, J Ross Beveridge, Bruce A Draper, and

Yui Man Lui. Visual object tracking using adaptive corre-

lation filters. In 2010 IEEE computer society conference on

computer vision and pattern recognition, pages 2544–2550.

IEEE, 2010.

[5] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,

and Rongrong Ji. Siamese box adaptive network for vi-

sual tracking. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6668–

6677, 2020.

[6] Zhizhen Chi, Hongyang Li, Huchuan Lu, and Ming-Hsuan

Yang. Dual deep network for visual tracking. IEEE Trans-

actions on Image Processing, 26(4):2005–2015, 2017.

[7] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Atom: Accurate tracking by overlap max-

imization. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4660–

4669, 2019.

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Eco: Efficient convolution operators

for tracking. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 6638–6646,

2017.

[9] Martin Danelljan, Luc Van Gool, and Radu Timofte. Prob-

abilistic regression for visual tracking. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7183–7192, 2020.

[10] Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. Cap-

sulevos: Semi-supervised video object segmentation using

capsule routing. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 8480–8489,

2019.

[11] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

Lasot: A high-quality benchmark for large-scale single ob-

ject tracking. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5374–

5383, 2019.

[12] Andrew Gardner, Jinko Kanno, Christian A Duncan, and

Rastko Selmic. Measuring distance between unordered sets

of different sizes. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 137–143,

2014.

[13] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and

Song Wang. Learning dynamic siamese network for visual

object tracking. In Proceedings of the IEEE international

conference on computer vision, pages 1763–1771, 2017.

[14] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix

capsules with em routing. In International conference on

learning representations, 2018.

[15] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

large high-diversity benchmark for generic object tracking

in the wild. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2019.

[16] Ziyuan Huang, Changhong Fu, Yiming Li, Fuling Lin, and

Peng Lu. Learning aberrance repressed correlation filters

for real-time uav tracking. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 2891–

2900, 2019.

[17] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A benchmark

for higher frame rate object tracking. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1125–1134, 2017.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[19] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Felsberg,

Roman Pflugfelder, Joni-Kristian Kamarainen, Luka Ce-

hovin Zajc, Ondrej Drbohlav, Alan Lukezic, Amanda Berg,

et al. The seventh visual object tracking vot2019 challenge

results. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision Workshops, pages 0–0, 2019.

[20] Rodney LaLonde and Ulas Bagci. Capsules for object seg-

mentation. arXiv preprint arXiv:1804.04241, 2018.

[21] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. Siamrpn++: Evolution of siamese vi-

sual tracking with very deep networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4282–4291, 2019.

[22] Peixia Li, Boyu Chen, Wanli Ouyang, Dong Wang, Xiaoyun

Yang, and Huchuan Lu. Gradnet: Gradient-guided network

for visual object tracking. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 6162–

6171, 2019.

[23] Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui Zhang.

Few sample knowledge distillation for efficient network

compression. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 14639–

14647, 2020.

[24] Pengpeng Liang, Erik Blasch, and Haibin Ling. En-

coding color information for visual tracking: Algorithms

and benchmark. IEEE Transactions on Image Processing,

24(12):5630–5644, 2015.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[26] Yi Liu, Qiang Zhang, Dingwen Zhang, and Jungong Han.

Employing deep part-object relationships for salient object

10956

detection. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 1232–1241, 2019.

[27] Xiankai Lu, Chao Ma, Bingbing Ni, Xiaokang Yang, Ian

Reid, and Ming-Hsuan Yang. Deep regression tracking with

shrinkage loss. In Proceedings of the European conference

on computer vision (ECCV), pages 353–369, 2018.

[28] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for uav tracking. In European con-

ference on computer vision, pages 445–461. Springer, 2016.

[29] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. Trackingnet: A large-scale

dataset and benchmark for object tracking in the wild. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 300–317, 2018.

[30] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 4293–4302, 2016.

[31] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-

polation via adaptive separable convolution. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 261–270, 2017.

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. Com-

puter Science, 2014.

[33] Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Ryn-

son WH Lau, and Ming-Hsuan Yang. Crest: Convolutional

residual learning for visual tracking. In Proceedings of the

IEEE international conference on computer vision, pages

2555–2564, 2017.

[34] Marijn F Stollenga, Wonmin Byeon, Marcus Liwicki, and

Juergen Schmidhuber. Parallel multi-dimensional lstm, with

application to fast biomedical volumetric image segmenta-

tion. arXiv preprint arXiv:1506.07452, 2015.

[35] Jack Valmadre, Luca Bertinetto, Joao Henriques, Andrea

Vedaldi, and Philip HS Torr. End-to-end representation

learning for correlation filter based tracking. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2805–2813, 2017.

[36] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bas-

tian Leibe. Siam r-cnn: Visual tracking by re-detection. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 6578–6588, 2020.

[37] Guangting Wang, Chong Luo, Xiaoyan Sun, Zhiwei Xiong,

and Wenjun Zeng. Tracking by instance detection: A meta-

learning approach. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

6288–6297, 2020.

[38] Guangting Wang, Chong Luo, Zhiwei Xiong, and Wenjun

Zeng. Spm-tracker: Series-parallel matching for real-time

visual object tracking. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

3643–3652, 2019.

[39] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan

Lu. Visual tracking with fully convolutional networks. In

Proceedings of the IEEE international conference on com-

puter vision, pages 3119–3127, 2015.

[40] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip HS Torr. Fast online object tracking and segmentation:

A unifying approach. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

1328–1338, 2019.

[41] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Trans. Pattern Anal. Mach. Intell.,

37(9):1834–1848, 2015.

[42] Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, and Josef Kit-

tler. Joint group feature selection and discriminative filter

learning for robust visual object tracking. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 7950–7960, 2019.

[43] Tianyu Yang, Pengfei Xu, Runbo Hu, Hua Chai, and An-

toni B Chan. Roam: Recurrently optimizing tracking model.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 6718–6727, 2020.

[44] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R

Scott. Deformable siamese attention networks for visual ob-

ject tracking. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6728–

6737, 2020.

[45] Zhipeng Zhang and Houwen Peng. Deeper and wider

siamese networks for real-time visual tracking. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4591–4600, 2019.

[46] Linyu Zheng, Ming Tang, Yingying Chen, Jinqiao Wang, and

Hanqing Lu. Learning feature embeddings for discriminant

model based tracking. arXiv e-prints, pages arXiv–1906,

2019.

10957

