
Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric

Alignment and Category-Center Regularization

Haoyu Ma1* Xiangru Lin1* Zifeng Wu2 Yizhou Yu1†

1The University of Hong Kong 2Deepwise AI Lab

mahaoyu@connect.hku.hk,xrlin2@cs.hku.hk, wuzifeng@deepwise.com, yizhouy@acm.org

Abstract

Unsupervised domain adaptation (UDA) in semantic

segmentation is a fundamental yet promising task reliev-

ing the need for laborious annotation works. However, the

domain shifts/discrepancies problem in this task compro-

mise the final segmentation performance. Based on our

observation, the main causes of the domain shifts are dif-

ferences in imaging conditions, called image-level domain

shifts, and differences in object category configurations

called category-level domain shifts. In this paper, we pro-

pose a novel UDA pipeline that unifies image-level align-

ment and category-level feature distribution regularization

in a coarse-to-fine manner. Specifically, on the coarse side,

we propose a photometric alignment module that aligns an

image in the source domain with a reference image from

the target domain using a set of image-level operators; on

the fine side, we propose a category-oriented triplet loss

that imposes a soft constraint to regularize category cen-

ters in the source domain and a self-supervised consistency

regularization method in the target domain. Experimental

results show that our proposed pipeline improves the gen-

eralization capability of the final segmentation model and

significantly outperforms all previous state-of-the-arts.

1. Introduction

Semantic segmentation is a fundamental computer vi-

sion task that aims to assign a semantic category label

to every pixel in an image. It has been widely used

in many important downstream tasks such as autonomous

driving [25, 5] and medical image analysis [4, 28, 10]. Re-

cent state-of-the-art methods on semantic segmentation are

primarily deep learning based [1, 15, 36] and require a

large number of high quality annotated ground-truth data

which are difficult to obtain especially in practical applica-

tions. Unsupervised domain adaptation semantic segmenta-

*These authors have equal contribution.
†Corresponding author

tion is an alternative method to solve the data scarcity prob-

lem where it generalizes models trained on the source do-

main composed of synthetic images and labels to perform

well on the target domain composed of real world images

only [21, 13, 30, 11, 20]. However, the problem is that

semantic segmentation models trained merely on synthetic

data exhibit poor performance on real world images due

to the differences in multiple aspects (also called domain

shifts/discrepancies), including exposure, contrast, lighting,

object shape and surface textures, between the source do-

main and the target domain. Therefore, matching the dis-

tributions between the source and target domains to learn

domain-invariant representations is crucial to solve the do-

main shifts.

Although the domain shifts could be caused by multiple

factors, based on our observation, the primary causes can

be summarized into two groups, namely image-level do-

main shifts and category-level domain shifts. For the image-

level domain shifts, these refer to the differences in imag-

ing conditions, such as lighting and settings in the camera

imaging pipeline. Existing works on solving image-level

domain shifts through image style transfer generally utilize

deep models such as generative models and image-to-image

translation models [17, 37] while another line of research

focuses on using Fourier transformation [33]. These meth-

ods have proven that transferring image style of one do-

main to another domain can bring the two domains closer.

However, the downside of these methods is that they ei-

ther require to carry out a computationally expensive train-

ing process for the deep models or generate inferior style-

transferred output images as shown in Figure 5.

Despite the fact that the domain gap can be minimized

by global alignment methods such as the above, there is

no guarantee that samples from different object categories

in the target domain can be well separated. This is be-

cause some categories are naturally close to others in terms

of body shape, pose and textures. To solve this problem,

existing methods adopt category anchors computed on the

source domain to guide the alignment between the two do-

4051



mains [34, 30], which can be regarded as a hard constraint

on the category centers. The problem of this design is that

it does not regularize the distance between different cate-

gory features, and categories with similar feature distribu-

tions in the source domain also have similar distributions

in the target domain, which results in erroneous classifi-

cation results especially when no supervision information

is available in the target domain. Our experimental results

have demonstrated that imposing soft regularization meth-

ods on category distributions can improve the model’s ca-

pacity to adjust the relative magnitude of inter-category and

intra-category feature distances.

According to the analysis above, performing alignment

from either image-level perspective or category-level per-

spective alone will not solve the domain shifts reasonably.

Therefore, we approach the problem from a different per-

spective and propose a novel and efficient pipeline that uni-

fies image-level alignment and category-level feature dis-

tribution regularization in a coarse-to-fine manner. In gen-

eral, on the coarse side, we propose a novel and efficient

image-level alignment module to coarsely align the two

domains; on the fine side, we introduce a new category-

oriented triplet loss to softly regularize the category centers

in the source domain and propose a self-supervised consis-

tency regularization method in the target domain. By ad-

dressing both level of domain shifts simultaneously, we can

significantly improve the performance of our proposed do-

main adaptation method.

Coarse Alignment. To solve the image-level domain

shifts discussed above, we propose a global photometric

alignment (GPA) module that aligns an image in the source

domain with a reference image from the target domain us-

ing a set of image-level operators. Our method is superior to

other generative methods and Fourier transformation based

methods in two aspects: first, compared to the generative

counterparts, our method requires no extra training process

and produces stochastic image results; second, the quality

of the translated image and the performance of our method

is comparable to its generative counterpart and is superior

to that of Fourier transformation based methods.

Category-level Feature Distribution Regularization.

To address category-level domain shifts on the fine side,

in addition to the common strategy of using pseudo la-

bels for the target domain, we propose two novel regular-

ization methods for the source and target domains respec-

tively. First, considering the fact that there are annotated

ground truth labels in the source domain, we propose a

category-oriented triplet loss (CTL) that imposes a soft con-

straint to regularize category centers calculated using the

source image pixel features, which actively enlarges the

distances among category centers, making inter-category

distances in a high-level feature space larger than intra-

category distances by a predefined margin. Second, inspired

by the commonly used self-supervised learning methods:

consistency regularization and pseudo-labeling, we propose

a simple yet effective consistency regularizer for the tar-

get domain, called target domain consistency regularization

(TCR), which constrains the prediction on an augmented

target image to be consistent with the pseudo label of the

corresponding non-augmented image, forcing the class la-

bels of similar semantic contents to be consistent in the tar-

get domain.

In conclusion, this paper has the following contributions:

• We propose a novel coarse-to-fine domain adap-

tive semantic segmentation pipeline that seamlessly

combines coarse image-level alignment with finer

category-level feature distribution regularization.

• We introduce two novel and effective category-level

regularization methods for the source and target do-

mains respectively. The first one is called category-

oriented triplet loss that regularizes category centers in

the source domain while the second one performs tar-

get domain consistency regularization.

• Our method outperforms all previous methods,

achieving new state-of-the-art performance on both

GTA5→Cityscapes and SYNTHIA→Cityscapes

benchmarks.

2. Related Work

Since our proposed domain adaptation pipeline is mostly

related to photometric alignment based [35, 12, 33] and

category-based domain adaptation methods [30, 34], we fo-

cus on these two types of work in this section.

Photometric Alignment. Previous works on domain

adaptation [14, 26, 32, 31, 27, 16, 30, 8] have applied adver-

sarial models, such as GAN [7, 17] and CycleGAN [37], to

achieve photometric alignment results. Adversarial training

makes a model capable of transferring image styles from

one domain to another to significantly reduce the photo-

metric differences between the two domains in the origi-

nal image space [31, 30, 14]. Then a segmentation model

trained on (style transferred) source domain images can be

applied to target domain images [14, 30]. However, adver-

sarial models are hard to train. Many researchers [9, 34, 30]

have also shown that models based on adversarial training

generally align distributions from different domains, but do

not actually obtain mappings between features from differ-

ent domains. Other types of photometric alignment meth-

ods for unsupervised semantic segmentation are rare. One

method was proposed in [33] to align the source and tar-

get domains by simply replacing the low frequency compo-

nent in a source domain image with its counterpart in the

target domain reference image. However, such simple sub-

stitution of frequency components leaves unsatisfactory vi-

sual artifacts, and the performance of the model trained on

the aligned samples relies heavily on a multi-band ensem-
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ble. On the contrary, our method is different from previous

method in that it has a light-weight photometric alignment

strategy which does not require to carry out a computation-

ally expensive training process and more importantly, pro-

duces comparable (superior) performance and image qual-

ity with respect to its generative (Fourier transformation

based) counterpart.

Category-Based Methods. Category labels/predictions

were introduced in [9, 16, 26, 29] to enforce global seman-

tic constraints on the distribution of predicted labels. The

proposed methods in [34] and [30] take one step further.

They map penultimate target domain image features, that

are used for generating pseudo labels in the output layer,

to the corresponding features of the source domain image.

However, in their work, category feature centroids [34] or

instance features [30] in the source domain serve as anchors

for category-based feature alignment, which does not ex-

plicitly enlarge the margins between the centers. This align-

ment strategy can be problematic because category anchors

close in the source domain are likely hard to separate in

the target domain as well. Our work differs from theirs in

the following aspects: first, we propose a category-oriented

triplet loss for the source domain that imposes a soft con-

straint to regularize category centers, actively making inter-

category distances in a high-level feature space larger than

intra-category distances by a specified margin; second, to

further constrain category-level feature distributions in the

target domain, we force the predictions on augmented tar-

get domain images to be consistent with the pseudo labels,

generated by the segmentation model, of the corresponding

non-augmented images, which is a self-supervision based

consistency regularization method.

3. Method

3.1. Coarse­to­Fine Pipeline

The key idea underlying our domain adaptation pipeline

is intuitive: first, we exploit the photometric differences in

the two domains and coarsely align the source domain im-

ages with the target domain images to minimize the domain

shift; then, we regularize category-level feature distribu-

tions by setting constraints on inter-class center distances

and intra-class feature variations.

Step 0: Coarse Alignment. Define M = {mk}Ns

k=1 as

the source domain training set, where mk is a source do-

main image and Ns is the number of images in the source

domain training set. Similarly, the target domain training

set is defined as N = {nk}Nt

k=1. Our proposed GPA module

converts a source domain image m in the training batch and

a randomly selected target domain reference image n into

Lab color space as (Lm, am, bm) and (Ln, an, bn). Then

the histogram mapping function fmatch is applied to am and

bm, and gamma correction function fgamma is applied to

Lm to form (fgamma(Lm), fmatch(am), fmatch(bm)). The

image is then converted to RGB space as aligned image m′

to construct aligned source domain training set M′. Then,

a stochastic function τ is applied to produce an augmented

version of every image in M
′. A segmentation model T0

is trained based on all style-transferred images τ(M′) with

segmentation loss Lseg .

Step 1: Category-level Feature Distribution Regular-

ization. In this step, we train a segmentation model T1 with

τ(M′) and N. We apply the segmentation model T0 to all

images in the target domain to produce a feature vector and

a class probability vector at every pixel. The category cor-

responding to the largest value of the probability vector is

defined to be the pseudo label at the pixel, and the largest

probability value itself defines the confidence of the pseudo

label. We further pre-define the pair of probability threshold

Ph and percentage threshold p for all categories. The latter

gives rise to a category specific probability threshold Ps,c,

meaning p% pixels in the category have confidence above

Ps,c. Thus the final confidence threshold for category c is

tc = min(Ph, Ps,c), and any pseudo labels in this category

with a confidence higher than tc are considered valid and

added to the segmentation loss Lseg . The remaining pixels

are left out during backpropagation. Then category center

fc for every category c are also calculated as the L2 normal-

ized mean of all pixel features with category c as the ground

truth label in the source domain. In addition to aligned

training set M′ and cross-entropy loss Lseg , we impose a

category-oriented triplet loss Ltriplet on the segmentation

model T1 in the source domain to enlarge inter-category

distances, and a target domain consistency loss Lconsist to

regularize category-level feature distributions in the target

domain. Then we finetune model T0 U iterations to produce

the model T1 by minimizing Lseg + Ltriplet + Lconsist.

Step 2 to K: Iterative Self-Supervised Training.

Model T1 trained in Step 1 can be further improved with

iterative steps similar to Step 1. Such an iterative ap-

proach is frequently called self-supervised training in the

area of unsupervised domain adaptation for semantic seg-

mentation [14, 34, 33, 30]. The same Step 1 is executed

except that model Ti−1 instead of T0 is used as the pre-

trained model to generate pseudo-labels and category cen-

ters fc. This process is repeated for K−1 times. The overall

pipeline of our proposed coarse-to-fine method is shown in

Figure 1.

3.2. Global Photometric Alignment

Since the global domain shift mostly affects low-level

pixel attributes, which are irrelevant to pixel-wise category

labels, we propose global photometric alignment (GPA) to

align images from the source with images from the target

domain. We observe that the spatial lightness distribution

of an image can be very complicated under certain circum-

4053



Source Image

Aligned
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Pseudo-labels
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𝐿𝑠𝑒𝑔

𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡
𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡

Reference Target Image

: Shared weights

: Feat. encoder

: Classifier

(b) Category-level Regularization

Source Label

(c) Pipeline Overview

Source Image

Aligned 𝐿𝑠𝑒𝑔
Reference target Image

(a) Coarse Alignment Source Label

𝝉

𝝉

𝝉

Figure 1. (a) First, the global photometric alignment (GPA) module is used to coarsely align the source and target domain images to train

the initialized segmentation model T0. (b) Then, we train the category-level feature distribution regularization step with the calculated

category feature center fc and pseudo-label threshold tc for each category c. The category-oriented triplet loss is applied to the source

domain and the consistency regularization is used in the target domain to jointly regularize the category-level feature distribution. (c) The

overall pipeline is trained in an iterative self-supervised manner with Ti, fc, and tc updated at each step i.

stances while the spatial color distribution of a and b have

similar bell-shaped histograms. Therefore, we treat light-

ness and color differently and perform classic histogram

matching [6] between the source domain image and the tar-

get domain reference image only on color channels a and b

to avoid introducing artifacts commonly seen in histogram

matching results.

Lightness Gamma Correction. L channel, on the other

hand, is much more diversified among images. This is be-

cause light interacts with the 3D structure of a scene in a

complicated manner. Simple histogram matching function

gives rise to large areas of overexposure and fake structures.

Thus, instead of strictly enforcing the mapping constraint

prescribed by histogram matching for every histogram bin,

we choose to only constrain the mean value of the lightness

channel in the source domain image and make it equal to the

mean value of the target domain reference image. Here, we

choose the power-law function. The difference between our

proposed method and the classic gamma correction is that

our function coefficients are automatically calculated with

given source-target image pairs rather than user-defined.

Specifically, we define fgamma(L) = Lγ , where L is the

normalized lightness value. Then the mean value constraint

can be written as
∑

L

Lpms (fgamma(L)) =
∑

L

Lpms (Lγ) =
∑

L

Lpnt (L)

(1)

, where pms is the lightness histogram of source image m,

and pnt is the lightness histogram of target reference image

n. This is a nonlinear equation and γ can be solved nu-

merically. γ = 1 when it is an identical transformation. In

practice, to prevent γ from deviating too much away from 1,

we introduce a regularization term into the following mini-

mization,

γ∗ = argmin
γ

(

∑

L

Lpms (Lγ)−
∑

L

Lpnt (L)

)2

+β(γ−1)2,

(2)
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which is a simple convex optimization problem with only

one variable γ, and can be easily solved with few steps of

gradient descent. The process of proposed GPA module is

illustrated in Figure 2.

𝐿𝑠𝑟𝑐 → 𝐿𝑡𝑔𝑡𝑎𝑠𝑟𝑐 → 𝑎𝑡𝑔𝑡𝑏𝑠𝑟𝑐 → 𝑏𝑡𝑔𝑡
(a) (b) (d)(c)

Figure 2. (a)Input source domain image and (b) a randomly chosen

target domain image is aligned in (c) Lab channels to generate (d)

aligned image.

3.3. Training Loss

The only training loss during coarse alignment step is

the segmentation cross-entropy loss. The overall loss func-

tion we use during the category-level stage consists of

three parts: the cross-entropy classification loss, a category-

oriented triplet loss, and a target domain consistency regu-

larization loss.

Category-oriented Triplet Loss. Even though the fea-

tures learned with the GPA module are domain-invariant to

some extent, the cross entropy losses used in previous train-

ing does not explicitly control the category-wise feature dis-

tribution. Therefore, the model learned with the GPA mod-

ule using cross-entropy losses is coarsely aligned. Pixel

features are distributed unevenly among different categories

and some category centers are close to each other. To tackle

this issue, we propose a category-oriented triplet loss that

aims to further push the category-wise features closer to

the corresponding category centers and further from other

category centers. Let xi,j be the pixel-wise features in the

feature map of the second last layer, and yi,j be the ground

truth pixel-wise labels of a source domain image. The cate-

gory center of category c is calculated as follows,

fc = G(
1

Nc

∑

s

∑

i

∑

j

1 (yi,j = c)xi,j) (3)

where Nc is the total number of pixels in category c and s

is the source domain image index, and G is a L2 normaliza-

tion function. Note that this L2 normalization is crucial to

keep the category centers on the unit sphere to avoid scaling

issue. The centers are updated after the training and this al-

lows the centers become further and further from each other

on the sphere surface.

Our category-oriented triplet loss is formulated as fol-

lows,

Ltriplet =
1

Ns

∑

s

∑

C

∑

i

∑

j

max(‖G(xi,j)− fc=C‖

− ‖G(xi,j)− fc 6=C‖+ α, 0),
(4)

where N is the total number of pixels in all images, and α

is a prescribed margin. The loss would be zero if every fea-

ture xi,j is at least α closer to its own category center than

other category centers. Note that we only have reliable cat-

egory labels for the source domain, thus we only apply the

category-oriented triplet loss to the source domain images.

: Aligned feats of cat. Green and Blue

: Tgt. feats of cat. Green and Blue

: Aug. feats of cat. Green and Blue

: Feat centers of cat. Green and Blue

𝐿𝑝𝑜𝑠 𝐿𝑛𝑒𝑔

Figure 3. Our proposed category-oriented triplet loss exploits hard

samples and further enlarge category margins.

The working principals of our proposed category-

oriented triplet loss is illustrated in Figure 3. In cooper-

ation with proposed photometric alignment and data aug-

mentation in the source domain, our proposed triplet loss

exploits hard samples in the coarsely aligned source do-

main and further improves the generalization capability of

the trained model, which serves as complementary to cross-

entropy loss.

Target Domain Consistency Regularization.

Category-oriented triplet loss is designed to regularize

category-wise features in the source domain where the

annotated ground truth labels are available. However,

this is not the case in the target domain where no labels

are provided. Consistency regularization is an important

component of many recent state-of-the-art self-supervised

learning algorithms, which utilizes unlabeled data by

relying on the assumption that the model should output

similar predictions when fed perturbed versions of the

same image [23, 24]. Motivated by this, we propose a

target domain consistency regularization method shown

in Figure 1 to perform category-level feature distribution

regularization in the target domain.

The idea of our proposed consistency regularization is

simple: given a target domain image nk, with the trained

segmentation model Ti−1, we extract a pseudo label ŷkj at

every location j by feeding nk to Ti−1 followed by apply-

ing argmax(.); and the corresponding pixel prediction is

converted to a hard label vector 1[c=ŷk
j
]; then, we apply the

stochastic function τ to nk to obtain a perturbed version n′
k;

then, we feed n′
k to Ti to obtain a prediction p′kj at every lo-

cation j in the perturbed image; finally, p′kj is forced to be

consistent with ŷkj by using a cross entropy loss function

at pixel locations whose largest class probability is above

the previously defined category-level confidence threshold

tc. By doing this, category-level feature distributions in the

target domain are regularized under the supervision of valid
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pseudo labels. The overall formula is defined as follows,

Lcst =
∑

j

1(max(Ti−1(nk)|j) ≥ tc)CELoss(1[c=ŷk
j
], p

′k
j ),

ŷkj = argmax(Ti−1(nk)|j),
p′kj = Ti(n

′
k)|j .

(5)

It is important to use trained model Ti−1 rather than model

Ti to generate pseudo labels. This is because Ti is still being

trained and unstable. Fluctuating pseudo labels generated

by Ti would be catastrophic to the training process. Experi-

mental results show this consistency regularization method

is very effective even though the idea is simple.

4. Experiments

4.1. Datasets and Implementation Details

We follow the evaluation settings used in [34], and eval-

uate our proposed method with the source domain datasets

GTA5 [21] and Synthia[22], and the target domain dataset

Cityscapes [3]. The GTA5 dataset shares 19 common cat-

egories with the Cityscapes dataset and all the irrelevant

categories are ignored during training; the Synthia dataset

shares 16 common categories with the Cityscapes dataset.

Some previous works only train and test on a 13-category

subset of the Synthia dataset, or train two models on both

subset and the whole set for better performance. Here we

follow the practice in [18, 29] to train a model only on the

whole set and test it on both settings.

According to Figure 1, we first use the photometrically

aligned source domain images to train an initial segmen-

tation model T0 in the coarse alignment step. Then, the

model is trained in an iterative self-supervision manner with

K = 6 and U = 20k, and the total number of train-

ing iterations is 140k which is comparable to all previous

works [34, 30]. In our experiments, Ph = 0.9 and p = 10
for the pseudo-labels (as in [14]), and the regularization

term β in (5) is 0.01. The margin α is 0.2 for the triplet

loss. We use the standard color-jittering as the stochastic

function τ(.) in both source and target domains as in [29].

Following the same experimental settings in CAG [34], we

adopt DeepLab V3+(Resnet101) [1]1 as our segmentation

model. Our proposed method has been implemented in Py-

Torch [19], and all experiments are conducted on 4 NVIDIA

GeForce 2080Ti GPUs with 1 sample on each GPU. In

the coarse alignment step, the stochastic gradient descent is

used with momentum of 0.9 and weight decay of 1e−4. The

learning rate is initially set to 5e− 4 and is decreased using

the polynomial learning rate policy with power of 0.9. The

setting for the following iterative finetuning steps are ex-

actly the same except we halve the learning rate to 2.5e− 4
to fine-tune previously trained models.

1https : //github.com/RogerZhangzz/CAG UDA/issues/6

4.2. Comparison with State­of­the­Art Methods

In this section, we compare our method against all the

existing state-of-the-art methods [18, 30, 34, 33, 29, 14], on

both GTA5→Cityscapes and Synthia→Cityscapes tasks.

For the GTA5→Cityscapes task, according to Table 1, it

is clear that our proposed method outperforms all previous

methods, achieving a new state-of-the-art mIoU at 56.1%
which is 5.9% higher than previous state-of-the-art meth-

ods [34]. In general, our method achieves the best per-

formance in many important categories, including ‘road’,

‘sidewalk’, ‘building’, ‘light’, ‘sky’, ‘car’, ‘person’, ‘train’,

‘motor’, and ‘bike’. In particular, our model delivers a

very good classification performance over ‘road’, ‘side-

walk’, ‘motor’ and ‘bike’ although some of these categories

share very similar local appearances. This is because our

category-oriented triplet loss focuses on the most confusing

samples in different classes, and improves the generaliza-

tion capability of the model. Moreover, the target consis-

tency regularization in the target domain improves the clas-

sification accuracy of categories with a large intra-category

variance, such as ‘building’ and ‘sky’.

The performance of the proposed method on

Synthia→Cityscapes is shown in Table 2. The Synthia

dataset has a larger domain shift caused by perspective and

layout in addition to photometric differences in comparison

to the GTA5 dataset. But the overall performance of our

model across all categories still surpasses the performance

of other state-of-the-art methods, which demonstrates the

effectiveness of our proposed techniques.

In comparison to CAG [34] using the same seg-

mentation model, our proposed modules achieve

a significant performance improvement, which is

5.9% in the GTA5→Cityscapes task and 3.7% in the

Synthia→Cityscapes task. We further show some of the

segmentation samples in Figure 4 to qualitatively demon-

strate the superiority of our method. Please refer to the

supplementary document for more qualitative examples.

4.3. Ablation Studies

Component Analysis. Most previous works [34, 18, 29,

30] require a segmentation model pre-trained on the original

source domain training set only, and we call this model the

source-only model. Although we do not use the source-only

model during training, we train one to provide a baseline to

demonstrate that the primary performance gain comes from

our proposed modules and pipeline. As shown in Table 3,

the performance of the source-only baseline using Deeplab

v3+ is 37.6%, which is only slightly higher than that of the

baseline using Deeplab v2 (36.6%) reported in [30, 26], and

our proposed pipeline improves the baseline performance

by 18.5%. Following the same settings in previous state-

of-the-art methods [34, 18, 29], we further evaluate the im-

pact of each proposed component on the performance of
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BDL [14] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

IDA [18] 90.6 36.1 82.6 29.5 21.3 27.6 31.4 23.1 85.2 39.3 80.2 59.3 29.4 86.4 33.6 53.9 0.0 32.7 37.6 46.3

DTST [30] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

FGGAN [29] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

FDA [33] 92.5 53.3 82.3 26.5 27.6 36.4 40.5 38.8 82.2 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.8 27.7 46.4 50.4

CAG [34] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2

coarse align. (ours) 83.9 37.5 82.7 28.7 18.9 35.3 41.3 31.1 85.2 29.5 86.6 62.8 30.9 82.4 23.0 39.3 33.0 26.0 39.7 47.3

coarse-to-fine (ours) 92.5 58.3 86.5 27.4 28.8 38.1 46.7 42.5 85.4 38.4 91.8 66.4 37.0 87.8 40.7 52.4 44.6 41.7 59.0 56.1

Table 1. Performance comparison with state-of-the-art methods on the GTA5→Cityscapes task. Results after only coarse alignment and

whole coarse-to-fine pipeline are both presented.

(a) (b) (c) (d)

Figure 4. Qualitative analysis on GTA5→Cityscapes task. (a) Input images, (b) CAG [34], (c)Ours, (d) Labels

our model in the GTA5→Cityscapes task by removing one

component at a time. According to our experimental re-

sults, the performance of the segmentation model has the

most deterioration when the global photometric alignment

module is removed. This is because in our coarse-to-fine

pipeline, removing photometric alignment literally removes

the first coarse alignment stage, and the resulting erroneous

pseudo-labels are very detrimental to category-level feature

distribution regularization. This also validates the neces-

sity of a coarse alignment stage. Interestingly, although our

target domain consistency regularization is simple, it has

been proved to be very effective. This is because there are

fewer training images in the target domain than the source

domain, and filtering pseudo-labels with low confidence

makes them even fewer. Our target domain consistency

regularization increases the number of training samples in

the target domain, therefore, giving rise to such a perfor-

mance gain. The category-oriented triplet loss applied on

the source domain also boosts the performance by 2.9% as

it exploits hard samples in the source domain.

Photometric Alignment. There are currently other

methods, which can achieve the goal of coarse align-

ment, such as the GAN-based method in [14, 2] and the

frequency-based method in [33]. We substitute our pro-

posed global photometric alignment with these two meth-

ods, and retrain our whole pipeline. The result is shown

in Table 4. We also visualize some representative aligned

images produced with different methods in Figure 5. Our

proposed GPA can generate the aligned image accord-

ing to a randomly chosen target domain reference image,

while the GAN-based model [14, 2] performs determinis-

tically and generates aligned images with a similar style,

only covering part of the actual target domain image span.

This explains why our proposed model works even bet-

ter than the pre-trained deep adversarial model. Although

the frequency-based method proposed in [33] can generate

style-transferred images randomly, the concatenation of fre-

quencies usually introduces significant noises during train-

ing, which largely limits its final performance.

Based on our observation, gamma correction on all

three channels does not have sufficient alignment capabil-

ity, while histogram matching on all three channels results

in image artifacts. We have run a comparison for the coarse

alignment stage and the result (Table 4) shows our hybrid

scheme performs the best.

Pseudo-labels. In our proposed method, we only apply

the category-oriented triplet loss to source domain category

labels but not pseudo-labels in the target domain. Although

target domain images with pseudo-labels can be used as

supplementary samples when the pseudo-labels are of high

confidence, our proposed triplet loss aims to deal with hard

samples, and pseudo-labels of hard samples in the target

domain are not reliable. In order to verify this, we include

pseudo-labels in our category-oriented triplet loss, and the
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mIoU mIoU*

BDL [14] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

IDA [18] 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

DTST [30] 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1

FGGAN [29] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5

FDA [33] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5

CAG (13 classes) [34] 84.8 41.7 85.5 - - - 13.7 23.0 86.5 78.1 66.3 28.1 81.8 21.8 22.9 49.0 - 52.6

CAG (16 classes) [34] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 -

coarse align. (ours) 64.0 25.7 73.9 9.6 0.8 33.3 12.3 25.9 81.6 85.5 62.4 26.2 80.6 30.9 26.8 23.8 41.5 47.7

coarse-to-fine (ours) 75.7 30.0 81.9 11.5 2.5 35.3 18.0 32.7 86.2 90.1 65.1 33.2 83.3 36.5 35.3 54.3 48.2 55.5

Table 2. Performance comparison with state-of-the-art methods on the Synthia→Cityscapes task (mIoU: 16-class; mIoU*: 13-class).

(a) (b) (c) (d) (e)

Figure 5. Qualitative analysis on global photometric alignment. (a) Input images, (b) reference image, (c) BDL-GAN[14], (d) Fourier

Adaptation[33], (e) Global photometric alignment.

GPA CTL TCR mIoU

Source only 37.6

w/o GPA
√ √

47.5

w/o CTL and TCR
√

47.3

w/o CTL
√ √

53.2

w/o TCR
√ √

53.1

all
√ √ √

56.1

Table 3. Ablation study of the proposed components on the

GTA5→Cityscapes task. GPA: global photometric alignment,

CTL: category-oriented triplet loss, TCR: target domain consis-

tency regularization.

result is shown in Table 4.

Modules Methods mIoU

Image Align. Frequency Align [33]. 52.0

BDL-GAN [14] 54.5

Photometric Align. 56.1

GPA Scheme Lab Gamma Correction 44.5

Lab Histogram Match 43.3

Hybrid 47.3

Pseudo-labels Triplet loss with pseudo-labels 53.3

Triplet loss w/o pseudo-labels 56.1

Table 4. Ablation studies of the image alignment plan, photomet-

ric alignment scheme, and using pseudo-labels for the category-

oriented triplet loss on the GTA5→Cityscapes task.

5. Conclusions

In this paper, we propose a novel coarse-to-fine pipeline

for domain adaptation semantic segmentation that smoothly

integrates image-level alignment with category-level fea-

ture distribution regularization. In particular, we introduce

a novel and efficient global photometric alignment mod-

ule to coarsely align the source and target domains, and

then, we propose a category-oriented triplet loss for the

source domain and a target domain consistency regulariza-

tion method to regularize the category-level feature distribu-

tions from a fine-grained category perspective. Experiments

demonstrate that each of our proposed techniques improves

the generalization capability of our model. And integrat-

ing them together results in a significant performance im-

provement in comparison to existing state-of-the-art unsu-

pervised domain adapted semantic segmentation methods,

demonstrating that solving image-level and category-level

domain shifts simultaneously deserves more attention.

Acknowledgments

This work was partially supported by National

Key Research and Development Program of China

(No.2020YFC2003902) and Hong Kong Research Grants

Council through Research Impact Fund (Grant R-5001-18).

H. Ma was supported by the Hong Kong PhD Fellowship.

4058



References

[1] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017. 1,

6

[2] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai,

Yu-Chiang Frank Wang, and Min Sun. No more discrimina-

tion: Cross city adaptation of road scene segmenters. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 1992–2001, 2017. 7

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016. 6

[4] Adrian V Dalca, Evan Yu, Polina Golland, Bruce Fischl,

Mert R Sabuncu, and Juan Eugenio Iglesias. Unsupervised

deep learning for bayesian brain mri segmentation. In In-

ternational Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 356–365. Springer,

2019. 1

[5] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz
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