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Abstract

Estimating 3D human pose from a single image suffers

from severe ambiguity since multiple 3D joint configurations

may have the same 2D projection. The state-of-the-art meth-

ods often rely on context modeling methods such as pictorial

structure model (PSM) or graph neural network (GNN) to

reduce ambiguity. However, there is no study that rigorously

compares them side by side. So we first present a general for-

mula for context modeling in which both PSM and GNN are

its special cases. By comparing the two methods, we found

that the end-to-end training scheme in GNN and the limb

length constraints in PSM are two complementary factors to

improve results. To combine their advantages, we propose

ContextPose based on attention mechanism that allows en-

forcing soft limb length constraints in a deep network. The

approach effectively reduces the chance of getting absurd

3D pose estimates with incorrect limb lengths and achieves

state-of-the-art results on two benchmark datasets. More

importantly, the introduction of limb length constraints into

deep networks enables the approach to achieve much better

generalization performance.

1. Introduction

Monocular 3D human pose estimation has attracted much

attention [5, 21, 23, 31, 35, 42] because it can benefit many

applications such as virtual reality and intelligent video

analysis. The task is more difficult than 2D pose estima-

tion [7, 30, 32] because it needs to estimate relative depth

between body joints which suffers from severe ambiguity.

Psychology experiments [4] show that context plays an im-

portant role in resolving ambiguity in human visual system.

Following this idea, body joints can serve as mutual context
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Figure 1: A general formula of context modeling in the

3D human pose estimation task. To update features of a

particular joint, the approach first collects features from

its contextual joints (defined by the input graph structure),

aggregates the collected features, and uses the features to

update the joint of interest.

to each other in human pose estimation— localizing one

facilitates the localization of the other. For example, elbow

is more likely to be found at a distance from shoulder de-

pending on the length of upper arm. Some work [12] also

explores surrounding environment as context for joints to

further narrow down the space.

The success of CNN in 2D pose estimation [7, 24, 32]

has promoted a shift from model-based 3D pose estima-

tors [9, 19, 29, 37] to discriminative ones [10, 16, 21, 31].

In particular, Martinez et al. [21] propose to estimate 3D

pose from estimated 2D pose by a Fully Connected Net-

work (FCN). It achieves notably smaller error than previous

methods due to its strong capability of fitting large amounts

of data and improved 2D pose estimation accuracy. But it

does not explicitly explore context which may result in poor

results in challenging cases [10].
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GNN [11] computes features for each node by aggregat-

ing those of its neighbors. The interaction among nodes

makes it suitable for modeling context. For example, Ci et

al. [10] treat each joint as a node and perform feature passing

among the nodes to estimate their 3D locations. The method

is more robust to inaccurate 2D poses which validates the

values of context. But they cannot explicitly model spatial re-

lation between joints such as limb length constraints which is

a big limitation— limb length is useful to reduce ambiguity

when some joints are occluded.

PSM [1, 3, 18, 26, 28] had been commonly used for both

2D and 3D pose estimation before deep networks dominate

the field. The key idea is to determine optimal joint locations

by simultaneously considering their appearance and spatial

relation. For example, Qiu et al. [28] divide the 3D motion

space by regular voxels and assign each joint to the optimal

voxel by minimizing an energy function defined on all joints.

The approach may get accurate 3D estimates for occluded

joints based on their neighbors. Some works [8, 26, 28] also

combine PSM with deep learning by first applying CNN to

estimate features and then using PSM to do inference on the

features. However, the improvement is limited because it

cannot be trained end-to-end.

To our best knowledge, there is no work discussing the

pros and cons of PSM [1, 3, 18, 26] and GNN [10, 40] since

they were developed in different fields. But this is actually

very important. To that end, starting from their standard

formulation, we develop a general formula for the two meth-

ods which allows us to clearly understand their relations

and differences. In the meanwhile, we can compare their

advantages and disadvantages side by side. The basic idea

is sketched in Figure 1. It has three steps: for each joint of

interest, it first collects features from its contextual joints

which are determined by the input human graph. Then it

aggregates the collected features as context which in turn is

used to update the features of the joint.

In particular, we find in our empirical study that the GNN-

based methods [10, 21, 40] powered by end-to-end learning

get more accurate estimates than PSM in general cases. We

believe this is mainly because deep neural networks have

strong capability to fit a large amount of data. On the other

hand, PSM-based methods [1, 3, 18, 26, 28] are more robust

to occlusion and get better out-of-distribution generalization

performance. It is worth noting that PSM is mainly used

in the multiview setting. Our experiment in the monocular

setting shows that PSM alone gets very bad results because

of its limited capability to reduce ambiguity (3D pose esti-

mates may still be inaccurate although their limb lengths are

correct). The observation motivates us to combine PSM and

GNN in order to benefit from their advantages. Note that the

task is non-trivial because PSM requires solving the discrete

optimization function.

Method Formula
Voxel

Based

End-to-

End

Cyclic

Graph

Limb

Length

Prior

PSM [1, 28] 1 ✓ ✗ ✗ ✓

GNN [10, 40] 2 ✗ ✓ ✓ ✗

ContextPose (Ours) 4 ✓ ✓ ✓ ✓

Table 1: Comparison of different context modeling methods.

Please refer to Section 3.5 for more details.

To that end, we present an approach termed as Con-

textPose on top of the general formula which is inspired

by the attention mechanism [34]. It is built on the voxel

representation [14, 33] and allows enforcing soft limb length

constraints by paying more attention to information passed

between locations that satisfy limb length constraints. More

importantly, the approach avoids solving the discrete opti-

mization problem and can be trained end-to-end. Table 1

briefly summarizes different methods.

1.1. Overview

Figure 2 shows how ContextPose is leveraged by the

state-of-the-art method [14] for 3D pose estimation. Given

an input image, it first estimates 2D features by a 2D network

(CNN). Then it inversely projects them to the 3D voxels us-

ing camera parameters and uses a 3D network to estimate 3D

heatmaps representing the likelihood of each voxel having

each body joint. ContextPose can be inserted into the 3D

network to fuse features from different joints at different

locations. Specifically, it updates the features of a joint at a

voxel by a linear combination of the features of its contex-

tual joints at all voxels. The weights in linear combination

are determined by their spatial relation (pairwise attention)

and appearance (global attention) of the contextual joints.

The bottom section of Figure 2 shows more details of how

we compute global attention and pairwise attention with the

knee joint as an example.

In summary, we make three contributions:

1) We develop a general formula for context modeling

methods in 3D human pose estimation which allows

us to clearly understand their pros and cons. We also

empirically compare them in a rigorous way.

2) We propose ContextPose on top of the general formula

which combines the advantages of PSM and GNN. In

particular, it allows leveraging limb length constraints

and can be leveraged by 3D pose estimation networks

for end-to-end training.

3) We demonstrate the state-of-the-art performance on

two benchmark datasets. More importantly, Con-

textPose shows better generalization results on out-of-

distribution data. The code and models will be released

in order to inspire more research in this direction.
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2. Context Modeling: A Unified Perspective

We first introduce some notations and then reformulate

PSM and GNN, respectively. Based on the reformulation,

we develop a general formula for context modeling and show

that both PSM and GNN are its special cases.

2.1. Notations

As shown in Figure 1, we represent human body by a

graph G = (J , E) where J = {J0, J1, · · · , JN−1} repre-

sents N body joints. The set E represents edges that connect

pairs of joints. We define the joints that are connected by

edges to be contextual joints of each other. The goal of

monocular 3D pose estimation is to estimate the 3D loca-

tions of the joints from a single image.

2.2. Reformulate PSM

PSM is commonly used in multiview 3D pose estimation

[26,28]. It first divides the 3D space by regular voxels Ω with

each having a discrete location q ∈ R3. The goal of PSM is

to assign each joint to one of the voxels by minimizing an

energy function defined on all joints. When the human graph

is acyclic, PSM can be optimized by dynamic programming

in which messages are sequentially passed from child nodes.

In particular, the likelihood of a sub-tree with root joint Ju
at voxel q is computed as

yu,q = xu,q ·
∏

Jv∈child(Ju)

(max
k∈Ω

{ψ(q,k, eu,v) · yv,k}), (1)

where child(Ju) denotes the children of Ju and xu,q is the

confidence of Ju at q determined by appearance.

The formula can be interpreted by three steps: (1) for each

non-leaf node Ju, it first collects features from each of its

children Jv by ψ(q,k, eu,v)·yv,k where yv,k represents Jv’s

likelihood of being at k ∈ R3 which in turn is determined by

its own children. The pairwise term ψ(q,k, eu,v) encodes

the limb length constraint measuring whether the distance

between q and k satisfies the limb length prior in eu,v . The

maximum score over all voxel locations Ω represents the

message passed from joint Jv to Ju. This step collects such

information from all of its children; (2) then the context

features collected from its children are aggregated by
∏

; (3)

finally, it updates yu,q by multiplying the aggregated context

with the confidence xu,q .

2.3. Reformulate GNN

Ci et al. [10] present a formula which unifies FCN [21],

GNN [40], and LCN [10]. We further reformulate it such

that it has a similar form as PSM

yu = f(xu,
∑

Jv∈J

(eu,v ·Wu,vxv)), (2)

where xu ∈ RMinput represents the features of Ju obtained

from the previous layer or input, and yu ∈ RMoutput denotes

the updated features of Ju. It is important to note that these

methods do not discretize the 3D space but directly estimate

continuous locations. So we do not compute features for

each discrete location q as in Eq. (1). The binary scalar

eu,v encodes the pairwise relation between joint Ju and

Jv, and is set to be one if Jv is a contextual joint of Ju.

Wu,v ∈ RMoutput×Minput is a learnable weight matrix. We

can also interpret the formula by three steps in a similar

way as PSM. It first collects features by eu,v ·Wu,vxv from

its contextual joints, then aggregates them using the sum

operator
∑

and finally uses multilayer perceptron (MLP) f

to update the joint of interest.

The difference between FCN, GNN and LCN lies in how

to compute eu,v and Wu,v. FCN [21] does not use human

graph when collecting features. Instead, eu,v is set to be one

for every joint pair (Ju, Jv). In contrast, in GNN [40] and

LCN [10], eu,v is set with special consideration. Generally,

eu,v is non-zero only when the two joints are connected

according to the human graph. In other words, they only

collect features from contextual joints. So their main differ-

ence lies in the collection step. Please refer to [10] for more

details.

2.4. General Formula

We introduce a general context modeling formula, which

updates features yu of joint Ju by

yu = f(xu, AGG({ φ(xv, eu,v) | ∀(Ju, Jv) ∈ E}) ), (3)

where xu denotes the features of joint Ju before updating,

and eu,v encodes the spatial relation prior (e.g. limb length)

between Ju and Jv. There are three steps in the formula as

will be detailed in the following.

1. Collection For each joint of interest, it collects features

from its contextual joints as represented by φ(·, ·) in the

formula. This is the most complex step in context modeling

which determines where and how to collect features from

the graph nodes.

2. Aggregation This is denoted by AGG(·) in the formula.

It is a permutation invariant function, e.g. sum or product

function, defined on a set of contextual features. It aims to

aggregate the collected features.

3. Update This is denoted by f(·, ·) in the formula. It

updates the feature of a joint by transforming its own as well

as the aggregated features.

It is straightforward to verify that both PSM and GNN

can be interpreted by the formula. The advantage of PSM is

that it can explicitly enforce limb length constraints while
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Figure 2: An example pipeline of using ContextPose for 3D pose estimation. The bottom shows how ContextPose collects

features from contextual joints based on global and pairwise attention. Global attention, for example G0 in (b), represents the

likelihood of J0 at each voxel k. For each voxel q of joint J1, for example qi in (e) or qj in (f), pairwise attention P (q,k, e1,0)
traverses every voxel k of joint J0 and computes a spatial compatibility score between q and k. The product of global attention

and pairwise attention gives the weight in linear combination as shown in (i)-(j).

GNN can learn implicit priors from a large amount of data.

In the following, we present an approach to combine their

advantages on top of the general formula.

3. ContextPose

This section introduces the details of ContextPose. We

first present an overview of how it can be leveraged by an

existing method [14] to estimate 3D human pose in Section

3.1. Then we dive into the technical and training details of

ContextPose in the following three sub-sections. Finally,

we discuss the differences between ContextPose and other

context modeling methods in Section 3.5.

3.1. Architecture Overview

We adopt the state-of-the-art 3D pose estimator [14] as

our baseline. As shown in Figure 2, it first constructs a 3D

feature volume by inversely projecting image features to

the 3D space using camera parameters. Then the feature

volume is fed to an encoder-decoder network to estimate 3D

heatmaps. In particular, it predicts N scores for each voxel

representing the likelihood of N joints. Finally, we compute

expectation over the 3D heatmaps of each joint to obtain

its 3D location [31]. ContextPose is inserted between the

encoder and decoder network.

3.2. ContextPose

Denote the input tensor of ContextPose as V
input
cont ∈

RNM×D×H×W which represents the features of N joints at

D×H×W voxels. We split V
input
cont intoN groups along the

channel dimension such that each group corresponds to the

features of one joint. Inspired by the attention mechanism

[34], ContextPose updates the features of a joint Ju at voxel

q by a linear combination of the features of its contextual

joints at all voxels

yu,q = xu,q +
∑

Jv∈J

[
∑

k∈Ω

(Gv(xv,k) · P (q,k, eu,v) ·Wu,vxv,k)],

(4)

where Ω denotes the set of voxels, xv,k ∈ RM denotes

the features of joint Jv at voxel k. The global attention

Gv(xv,k) and pairwise attention P (q,k, eu,v) determines

the weight in linear combination. Wu,v ∈ RM×M is a

learnable matrix to transform features.

Global Attention (GA) We estimate a confidence score for

each joint Jv at a voxel k representing to what extent should

this feature contribute to other joints. Intuitively, we expect

a lower score for non-person voxels in order to reduce the

risk of corrupting good features. In other words, we expect

large scores for voxels that are likely to include joint Jv . As
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a result, joint Ju can focus on features from high likelihood

voxels of joint Jv (see Figure 2 (a) and (b)). The GA for

joint Jv is defined as

Gv(xv,k) ∝ exp(dT
v xv,k), (5)

which is normalized such that
∑

k∈Ω
Gv(xv,k) = 1.

dv ∈ RM is a learnable vector.

Pairwise Attention (PA) PA explores spatial relation be-

tween a pair of joints. The general idea is to give larger

weights to features passed from locations of a joint that sat-

isfy the pre-defined spatial relation. In this work, we focus

on limb length constraints. But this can be extended to other

priors such as limb orientations. If joint Jv is connected to

Ju by a rigid bone, then their distance in the 3D space is

fixed for the same person which is independent of human

postures. Offline, we compute the average distance µu,v and

the standard deviation σu,v in the training set as the limb

length distribution prior and let eu,v = (µu,v, σu,v) as the

limb pre-defined parameters. The pairwise attention for the

joint pair is defined as

P (q,k, eu,v) ∝ exp(−
(||q − k||2−µu,v)

2

2ασ2
u,v + ǫ

). (6)

The pairwise attention is normalized over all voxels such that∑
k∈Ω

Gv(xv,k) · P (q,k, eu,v) = 1. The hyper-parameter

α is used to adjust the tolerance to limb length errors, which

is empirically set to be 1500 in this work. The parameter

ǫ is used to improve numerical robustness. See Figure 2

(c)-(f). Besides, if joint Jv is not connected to Ju by a

rigid bone, the features from joint Jv may also be helpful

to Ju. For example, left hand may also help the detection

of right hand. In this case, we simply set the pairwise term

to be P (q,k, eu,v) = 1 and completely rely on the global

attention to determine the weights.

3.3. Regression of 3D Human Pose

The decoder network transforms the output of Con-

textPose V
output
cont ∈ RNM×D×H×W to 3D heatmaps

V output ∈ RN×D
′
×H

′
×W

′

of N body joints which rep-

resents the likelihood of each joint at each location. Then

the 3D location Ju for joint Ju is obtained by computing the

expectation of V output
u ∈ RD

′
×H

′
×W

′

with the common

integral technique [31] according to the following formula

Ju =

D
′∑

x=1

H
′∑

y=1

W
′∑

z=1

(x, y, z) · V output
u (x, y, z). (7)

3.4. Training

The parameters in ContextPose are jointly learned with

the 2D CNN and the encoder-decoder network by enforcing

two losses:

L = L3D + λLGA, (8)

in which L3D and LGA are the loss functions enforced on the

3D joint locations and global attention maps, respectively.

Same as [14], we compute the L1 loss between the

ground-truth 3D pose Jgt and the estimated 3D pose J

with a weak heatmap regularizer which promotes Gaussian

shape distribution for the estimated 3D heatmaps as

L3D =
1

N

∑

Ju∈J

(||Ju − Jgt
u ||1−β · log(V output

u (Jgt
u ))).

(9)

In addition, to help the GA focus on the voxels that are

likely to have joint Ju, we enforce an L2 loss:

LGA =
1

NDHW

∑

Ju∈J

||Gu −Ggt
u ||22, (10)

where Gu ∈ RD×H×W is the GA map for joint Ju and

Ggt
u ∈ RD×H×W is the ground-truth heatmap generated by

applying a 3D Gaussian centered at the ground truth location

of the joint Ju.

In our experiment, we set β and λ to be 10−2 and 106.

3.5. Comparison of PSM, GNN and ContextPose

It is easy to verify that PSM, GNN, and ContextPose are

all special cases of the general formula Eq. (3). The main

difference between them lies in the collection step which

includes the structures of human graph G, pairwise relation

eu,v , the collection function φ(·, ·), and training scheme. We

will compare them side by side from the above aspects hop-

ing to clearly understand their advantages and disadvantages.

Graph Structures PSM often uses acyclic graphs in order

to get optimum solution. In contrast, ContextPose is not

subject to this restriction. Cyclic graph offers greater

flexibility to represent more powerful and natural context.

For example, in ContextPose, we can add connections

between left and right shoulders to the human graph and

require that they cannot be at the same location which

helps solve the “double counting” problem. We can even

add connections between joints in neighboring frames to

promote smoothness in future work. GNN can also use

cyclic graphs but it cannot explicitly express and enforce

natural rules on the joints. It is not clear what kind of

pairwise relation does GNN learns from data which makes it

a black box.

Pairwise Relation In PSM, the pairwise relation is often

implemented as limb length constraints. As discussed in Eq.

(1), it encourages detections of a pair of joints that satisfy

the limb length prior. In GNN, the pairwise term reflects

the similarity between the features of two nodes. Although
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the features also encode some location information, it is

hardly possible that GNN will implicitly learn limb length

constraints. ContextPose does not enforce hard limb length

constraints as PSM. But it encourages pose estimates to

have reasonable limb length by focusing on features that are

passed between locations that satisfy limb length constraints.

End-to-End Learning PSM requires solving a discrete

optimization problem in order to obtain optimal locations

for all joints. In particular, it uses the argmax operator to

identify optimal voxels for each joint which makes the

approach non-differentiable. In contrast, the GNN-based

methods can be trained end-to-end because all operators

in the collection, aggregation and update functions are

differentiable. ContextPose can also be trained end-to-end

which combines the advantages of PSM and GNN.

Quantization Error The PSM-based methods and Con-

textPose both work on discrete voxels. So their accuracy

depends on the size of each voxel. Using a smaller voxel

decreases quantization error but meanwhile increases com-

putation time. In [14], the authors propose to compute expec-

tation over the heatmaps to obtain continuous 3D locations

which notably decreases the impact of quantization.

4. Experiments

4.1. Datasets

Human3.6M (H36M) [13] Following [10], we use the

subjects S1, S5, S6, S7, and S8 for training, and S9, S11 for

testing. The Mean Per Joint Position Error (MPJPE) metric

is computed under two protocols: Protocol #1 computes

MPJPE between the ground-truth (GT) and the estimated

3D poses after aligning their root (mid-hip) joints; Protocol

#2 reports MPJPE after the 3D estimate is aligned with the

GT via a rigid transformation. Additionally, we present

two new metrics to comprehensively measure the quality

of the 3D pose estimates: (1) Mean Per Limb Length Error

(MPLLE) computes the average limb length error between

the GT and estimated poses over 16 limbs (i.e. the purple

edges in Figure 1), and (2) Mean Per Limb Angle Error

(MPLAE) measures the average limb angle error between

the GT and the estimated poses.

MPI-INF-3DHP (3DHP) [22] This dataset provides monoc-

ular videos of six subjects acting in three different scenes

which include green screen indoor scenes, indoor scenes and

outdoor scenes. This dataset is often used to evaluate the

generalization performance of different models. Following

the convention, we directly apply our model trained on the

H36M dataset to this dataset without re-training. We report

results using two metrics: Percentage of Correctly estimated

Keypoints (PCK) [2] and Area Under the Curve (AUC) [22].

4.2. Implementation Details

We use the state-of-the-art 3D pose estimator [14] as

our baseline to estimate 3D poses. We insert ContextPose

between the encoder and decoder networks as shown in

Figure 2. To reduce GPU memory cost, we decrease the

number of layers in the 3D network from five to two. The

modification slightly improves the results of the baseline. For

the ContextPose network, M is set to be 3. We jointly train

the 2D and 3D networks for 30 epochs with the Adam [17]

optimizer. The learning rates are set to be 0.0001 and 0.001
for the 2D and 3D networks, respectively. To prevent from

over-fitting to the human appearance in the H36M dataset,

we fix the 2D network and train the 3D network for 20
epochs before end-to-end training.

4.3. Comparison to the State­of­the­arts

Results on the H36M Dataset Table 2 shows the results

of the state-of-the-art methods on the H36M dataset. Our

approach outperforms the state-of-the-art methods by a

notable margin under both protocols. This includes methods

that explore temporal information in videos (labeled by * in

the table). In particular, our method outperforms PSM [28],

FCN [21], GNN [40], and LCN [10] by an even larger

margin which validates the effectiveness of our context

modeling strategy. We discover in our experiment that

PSM [28] gets very poor results in the monocular setting.

To investigate the reasons, we project the estimated 3D

poses back to 2D images and find that, for most cases, the

projections perfectly match the 2D people although their 3D

estimates are very different from the GT poses. We show

an example in Figure 3. This is mainly because PSM alone

has limited capability to resolve ambiguity. Note that a 3D

pose estimate may be inaccurate even when its limb lengths

are correct. In contrast, the deep learning-based methods

such as GNN [10, 21, 40] have strong capability to reduce

ambiguity because they can fit a large amount of data. We

will discuss in more details on why our approach gets more

accurate estimates than PSM and GNN in the subsequent

ablative study.

Results on the 3DHP Dataset Table 3 shows the results

of different methods on the 3DHP dataset. Our approach

achieves significantly better PCK and AUC scores than other

methods including FCN, LCN, and PSM for almost all

scenes. The result suggests that ContextPose has strong gen-

eralization performance which we think is due to the leverage

of limb length priors in deep networks. FCN [21] gets a low

accuracy because the dense connections degrade the general-

ization capability which has already been discussed in [10].

LCN [10] gets better results by fusing features of contextual

joints but it is still worse than ours. The result validates the

importance of combining deep networks and limb length

priors.
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Protocol #1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg

Zhou et al. [41] ICCV’17 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.1 51.4 63.2 55.3 64.9

Martinez et al. (FCN) [21] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Pavlakos et al. [25] CVPR’18 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Yang et al. [39] CVPR’18 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Zhao et al. (GNN) [40] CVPR’19 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6

Qiu et al. (PSM) [28] ICCV’19 223.1 231.8 273.0 237.3 248.1 243.9 209.0 279.7 280.9 296.3 241.9 234.0 230.8 217.8 220.4 244.8

Iskakov et al. [14] ICCV’19 41.9 49.2 46.9 47.6 50.7 57.9 41.2 50.9 57.3 74.9 48.6 44.3 41.3 52.8 42.7 49.9

Wang et al. [36] ICCV’19 44.7 48.9 47.0 49.0 56.4 67.7 48.7 47.0 63.0 78.1 51.1 50.1 54.5 40.1 43.0 52.6

Ci et al. (LCN) [10] ICCV’19 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7

Pavllo* et al. [27] CVPR’19 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8*

Cai* et al. [6] ICCV’19 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6*

Xu* et al. [38] CVPR’20 40.6 47.1 45.7 46.6 50.7 63.1 45.0 47.7 56.3 63.9 49.4 46.5 51.9 38.1 42.3 49.2*

Ours 36.3 42.8 39.5 40.0 43.9 48.8 36.7 44.0 51.0 63.1 44.3 40.6 44.4 34.9 36.7 43.4

Protocol #2 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg

Martinez et al. (FCN) [21] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Pavlakos et al. [25] CVPR’18 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Yang et al. [39] CVPR’18 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7

Qiu et al. (PSM) [28] ICCV’19 117.0 123.2 128.0 121.7 126.1 128.7 105.3 130.1 145.1 170.2 125.1 114.5 128.9 115.3 117.1 126.7

Wang et al. [36] ICCV’19 33.6 38.1 37.6 38.5 43.4 48.8 36.0 35.7 51.1 63.1 41.0 38.6 40.9 30.3 34.1 40.7

Ci et al. (LCN) [10] ICCV’19 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2

Pavllo* et al. [27] CVPR’19 36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0*

Cai* et al. [6] ICCV’19 36.8 38.7 38.2 41.7 40.7 46.8 37.9 35.6 47.6 51.7 41.3 36.8 42.7 31.0 34.7 40.2*

Xu* et al. [38] CVPR’20 33.6 37.4 37.0 37.6 39.2 46.4 34.3 35.4 45.1 52.1 40.1 35.5 42.1 29.8 35.3 38.9*

Ours 30.5 34.9 32.0 32.2 35.0 37.8 28.6 32.6 40.8 52.0 35.0 31.9 35.6 26.6 28.5 34.6

Table 2: The MPJPE (mm) of the state-of-the-art methods on the H36M dataset under protocol #1 and protocol #2, respectively.

* means the method uses temporal information in videos.
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Figure 3: Visualization of a 3D pose estimated by PSM [28].

The left figure shows the projection of the estimated 3D pose.

The right figure shows the estimated (solid lines) and GT

(dashed lines) 3D poses. The estimated 3D pose has correct

2D projection but it is very different from GT 3D pose. It

means PSM suffers from severe ambiguity when it is used

in the monocular setting.

4.4. Ablation Study

Effect of ContextPose We first compare our approach to the

baseline w/o ContextPose. The results on the H36M dataset

are shown in Table 4. We can see that ContextPose notably

decreases MPJPE of the baseline from 54.38mm to 50.24mm

on the challenging subject S9. MPLLE decreases by nearly

Method
GS

(PCK)

noGS

(PCK)

Outdoor

(PCK)

ALL

(PCK) ↑
ALL

(AUC) ↑

Trained on: H36M+MPII [2]

Zhou et al. [41] 71.1 64.7 72.7 69.2 32.5

Yang et al. [39] - - - 69.0 32.0

Wang et al. [36] - - - 71.9 35.8

Trained on: H36M+MPII+LSP [15]

Pavlakos et al. [25] 76.5 63.1 77.5 71.9 35.3

Trained on: H36M

Martinez et al. (FCN) [21] 49.8 42.5 31.2 42.5 17.0

Qiu et al. (PSM) [28] 26.4 22.6 19.6 23.3 8.0

Ci et al. (LCN) [10] 74.8 70.8 77.3 74.0 36.7

Baseline 75.2 73.3 62.2 71.3 35.0

Ours 82.6 80.5 77.3 80.5 42.7

Table 3: The results of the state-of-the-art methods on the

3DHP dataset. GS represents the green screen background

scene. The results of [21] are taken from [20].

6% meaning that the limb lengths of the estimated 3D poses

are more accurate than the baseline. The improvement for

S11 in terms of MPJPE is marginal because the baseline is

already very accurate. However, we can see that there is still

clear improvement in terms of limb lengths and angles. The

result of the baseline is different from the number in Table 2

because we use a smaller 3D network in Table 4 to reduce

memory usage as stated in Section 4.2.
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Method GA PA
S9 S11

MPJPE ↓ MPLLE ↓ MPLAE ↓ MPJPE ↓ MPLLE ↓ MPLAE ↓

Baseline ✗ ✗ 54.38 15.03 0.1600 35.12 10.16 0.1250

Ours w/o PA ✓ ✗ 52.00 14.58 0.1517 35.16 9.78 0.1240

Ours w/o GA ✗ ✓ 52.46 14.16 0.1524 34.98 9.67 0.1224

Ours ✓ ✓ 50.24 14.13 0.1509 34.10 9.50 0.1217

Table 4: Ablative study on the global attention and pair-

wise attention in ContextPose. We show the MPJPE (mm),

MPLLE (mm) and MPLAE (radian) on each test subject

separately. ContextPose achieves large improvement on the

more challenging subject of S9.

We plot the MPLLE of the baseline and our method for

each sample in H36M dataset in Figure 4. We can see that

ContextPose gets smaller errors than baseline for about 80%
of the test data. In particular, the improvement is larger for

hard cases where the baseline gets large errors (see the left

side of the figure). It indicates that ContextPose reduces the

chance of getting absurd poses by exploring context. There

are few cases where ContextPose gets worse results. This

usually happens when multiple body joints are occluded

which makes estimating global attention a very challenging

task.

Table 3 shows the results on the 3DHP dataset. We

can see that using ContextPose significantly improves the

PCK of the baseline from 71.3% to 80.5%. The result

represents that ContextPose is very important to improve the

generalization performance of the 3D pose estimator. This

is a big advantage for actual deployment. In fact, we can see

that our approach even outperforms the methods which use

even more training data.

Effect of GA and PA We report results when we add one

of the two modules (GA and PA) to the baseline in Table

4. Adding only the GA module makes little difference on

the ultimate results measured by MPJPE, MPLLE, and

MPLAE. In contrast, if we add the PA module, the results

are improved by a notable margin which validates the

importance of pairwise compatibility in context modeling.

4.5. Qualitative Results

Figure 5 shows some 3D poses estimated by ContextPose.

The last four columns show the predicted weights (i.e. the

product of the GA and PA) for some random joints. In

the first case of (a), the approach pays more attention to

the features around the right knee when estimating the right

ankle. Similarly, in the third case of (b), it focuses on features

from right elbow when estimating right wrist. We show two

failure cases in row (d) and (e). In particular, in (e) our

estimate has correct limb lengths but inaccurate limb angles

for the left leg. In addition, the projection of the 3D pose is

also reasonable. This is a common error for monocular 3D

pose estimation because it has severe ambiguity.
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Figure 4: MPLLE (mm) of individual samples. The gray line

shows the errors of the baseline. The blue line represents the

error difference between ContextPose and baseline (below

zero means our method gets smaller error).

GT Ours Projected 2D Pose & Total Attention

(a)

(b)

(c)

(d)

(e)

Input

Figure 5: Example 3D pose estimates. The last four columns

show the projected 2D poses and the weights in linear com-

bination for some random joints (highlighted by small blue

boxes). Row (d) and (e) show two failure cases.

5. Conclusion

We first introduce a general formula for context model-

ing in 3D pose estimation which allows comparing PSM

and GNN side by side. Based on the formula, we present

ContextPose that combines their advantages which allows

enforcing limb length constraints in deep networks. So it can

be trained end-to-end on large data. The approach outper-

forms the state-of-the-art methods on two benchmarks, and

more importantly, shows better generalization performance

on unseen datasets.
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