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Abstract

Estimating 3D bounding boxes from monocular images

is an essential component in autonomous driving, while ac-

curate 3D object detection from this kind of data is very

challenging. In this work, by intensive diagnosis experi-

ments, we quantify the impact introduced by each sub-task

and found the ‘localization error’ is the vital factor in re-

stricting monocular 3D detection. Besides, we also investi-

gate the underlying reasons behind localization errors, an-

alyze the issues they might bring, and propose three strate-

gies. First, we revisit the misalignment between the center

of the 2D bounding box and the projected center of the 3D

object, which is a vital factor leading to low localization ac-

curacy. Second, we observe that accurately localizing dis-

tant objects with existing technologies is almost impossible,

while those samples will mislead the learned network. To

this end, we propose to remove such samples from the train-

ing set for improving the overall performance of the detec-

tor. Lastly, we also propose a novel 3D IoU oriented loss

for the size estimation of the object, which is not affected

by ‘localization error’. We conduct extensive experiments

on the KITTI dataset, where the proposed method achieves

real-time detection and outperforms previous methods by a

large margin. The code will be made available at: https:

//github.com/xinzhuma/monodle.

1. Introduction

Remarkable progress has been achieved in 3D detection,

especially for LiDAR/stereo-based approaches [44, 19, 33,

9, 37], along with the advances in deep neural networks. In

contrast, the accuracy of 3D detection from only monocular

images [35, 2, 10, 25, 24, 12] is obviously lower than that

from LiDAR or stereo. In this work, we aim to quantita-

tively identify the problem and propose our solutions.

To investigate and quantify the underlying factors that

restrict the performance of monocular 3D object detection,
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Figure 1: Range-wise evaluation on the KITTI validation

set. Metric is AP40 of the Car category under moderate set-

ting. The sampling interval is 10 m. For example, the corre-

sponding value at horizontal axis 20 represents the overall

performance of all samples between 15 m and 25 m.

we conduct intensive diagnostic experiments for this task,

inspired by the error identifying methods [20, 43, 17, 1]

commonly used in the 2D detection scope. Specifically, we

build our baseline model (see Section 3.2 for details) based

on CenterNet [43] and progressively replace predicted items

with their ground-truth values. To better analyze the error

patterns, we evaluate the results in a range-wise manner and

show the summary of those experiments in Figure 1. Based

on our investigation, we have the following three observa-

tions and corresponding designs.

Observation 1: The most striking feature in Figure 1 is

the leap in performance when using ground-truth location,

reaching a level similar to the state-of-the-art LiDAR-based

methods, suggesting the localization error is the key factor

in restricting monocular 3D detection. Furthermore, except

for depth estimation, detecting the projected center of the

3D object also plays an important role in restoring the 3D

position of the object. To this end, we revisit the misalign-

ment between the center of the 2D bounding box and the

projected center of the 3D object. Besides, we also confirm

the necessity of keeping 2D detection related branches in
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monocular 3D detector. In this way, 2D detection is used

as the correlated auxiliary task to help learning the features

shared with 3D detection, which is different from the exist-

ing work in [23] that discards 2D detection.

Observation 2: An apparent trend reflected in Figure 1

is that the detection accuracy significantly decreases with

respect to the distance (the low performance of very close

range objects will be discussed in supplementary materials).

More importantly, all the models cannot output any true

positive samples beyond a certain distance. We found that

it is almost impossible to detect distant objects accurately

with existing technologies due to the inevitable localization

errors (see Section 4.4 for details). In this case, whether it

is beneficial to add these samples into the training set be-

comes a question. In fact, there is a clear domain gap be-

tween ‘bad’ samples and ‘easy-to-detect’ samples and forc-

ing the network to learn from those samples will reduce its

representative ability for the others, which will thus impair

the overall performance. Based on the observation above,

we propose two schemes. The first scheme removes dis-

tant samples from the training set and the second scheme

reduces the training loss weights of these samples.

Observation 3: We found that, except for localization

error, there are also some other vital factors, such as dimen-

sion estimation, restricting monocular 3D detection (there is

still 27.4% room for improvements even we use the ground-

truth location). Existing methods in this scope tend to op-

timize each component of the 3D bounding box indepen-

dently, and the studies in [35, 36] confirm the effectiveness

of this strategy. However, the failure to consider the contri-

bution of each loss item to the final metric (i.e. 3D IoU) may

lead to sub-optimal optimization. To alleviate this problem,

we propose an IoU oriented loss for 3D size estimation. The

new IoU oriented loss dynamically adjust the loss weight

for each side in sample level according its contribution rate

to the 3D IoU.

In summary, the key contributions of this paper are as

follows: First, we conduct intensive diagnostic experiments

for monocular 3D detection. In addition to finding that the

‘localization error’ is the main problem restricting monoc-

ular 3D detection, we also quantify the overall impact of

each sub-task. Second, we investigate the underlying rea-

sons behind localization error, analyze the issues it might

bring. Accordingly, we propose three novel strategies op-

erating on annotations, training samples, and optimization

losses to alleviate problems caused by localization error for

boosting the detection.

Experimental results show the effectiveness of the pro-

posed strategies. In particular, compared with existing best-

performing monocular 3D object detection approaches, the

proposed method achieves at least 1.6 points AP40 im-

provements on the bird’s view detection and 3D object de-

tection in the KITTI dataset.

2. Related Work

Standard monocular 3D detection. Here we briefly re-

view the ‘standard’ monocular 3D detection approaches

[27, 32, 29, 35, 2, 43] only use the RGB images, annota-

tions and camera calibrations provided by KITTI dataset.

[27, 29, 10] try to improve the representation ability of

the models by introducing novel geometric constraints.

OFTNet [32] presents an orthographic feature transform to

map image-based features into an orthographic 3D space.

MonoDIS [35] disentangles the loss for 2D/3D detection

and jointly trains these two tasks in an end-to-end manner.

M3D-RPN [2] extends the region proposal network (RPN)

with 3D box parameters. These works are orthogonal to our

analysis to localization error and the proposed strategies for

handling it.

Monocular 3D detection using additional data. To better

estimate the 3D bounding boxes, many methods are pro-

posed for effectively using additional data [38, 26, 5, 39, 4,

12, 16, 13, 37, 25, 24, 3]. Specifically, [38, 26] use the

CAD models as shape templates to get better object ge-

ometry. Deep MANTA [5], which takes 3D detection as

a key-points detection task, uses more detailed annotated

locations of keypoints, e.g. wheels, as training labels. Be-

sides, [39, 4, 12] estimate the depth maps from off-the-shelf

depth estimators [16, 13] trained from larger datasets, and

use them to augment the input RGB images. In addition,

[37, 25] propose to transform the estimated depth maps

to pseudo-LiDAR representation, before applying existing

LiDAR-based 3D detection designs, and achieve promising

performance on KITTI benchmark. PatchNet [24] analyzes

the underlying mechanism behind pseudo-LiDAR represen-

tation and proposes its corresponding image representation

based implementation. Recently, Kinematic3D [3] propose

to use 3D Kalman filter to capture the temporal cues from

monocular videos. In contrast, our method does not use any

extra data or annotation, and can still achieve better or com-

petitive performance.

Misalignment between the definitions of object’s center.

To recover the 3D object position, there are two groups of

methods. The first group [43, 10, 35] use 2D bounding box

to obtain 3D position. In particular, CenterNet [43] regards

the center of the 2D bounding box as the projected 3D po-

sition in the image plane and back-project it to 3D space

with the help of estimated depth and camera parameters.

However, generally speaking, the center of the 2D box and

the center of 3D box are not the same. [10, 35] regress an

offset to compensate for the difference between them. As

the second group, SMOKE [23] removes the 2D detection

and directly estimate 3D position using projected 3D center.

This work considers the 2D related sub-tasks are redundant

because 2D bounding boxes can be generated from 3D de-

tection results. In this work, we revisit this problem and

confirm that replacing the 2D center by the projected 3D
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Figure 2: Visualization of the notations of 2D bounding

box in the feature map scale (left), 3D bounding box in the

3D world space (middle), and orientation of the object from

bird’s view (right).

center can improve the localization accuracy. Besides, we

also find that 2D detection is necessary, because it helps to

learn shared features for 3D detection.

3. Approach

3.1. Problem Definition

Given are RGB images and the corresponding camera

parameters, our goal is to classify and localize the ob-

jects of interest in 3D space. Each object is represented

by its category, 2D bounding box B2D, and 3D bounding

box B3D. Specifically, B2D is represented by its center

c
i = [x′, y′]2D and size [h′, w′]2D in the image plane, while

B3D is defined by its center [x, y, z]3D, size [h,w, l]3D and

heading angle γ in the 3D world space.

3.2. Baseline Model

Architecture. We build our baseline model based on the

anchor-free one-stage detector CenterNet [43]. Specifically,

we use standard DLA-34 [41] as our backbone for a better

speed-accuracy trade-off. On top of this, seven lightweight

heads (implemented by one 3× 3 conv layer and one 1× 1
conv layer) are used for 2D detection and 3D detection.

More design choices and implementation details can be

found in the supplementary material.

2D detection. For 2D detection task, following [30, 43], the

proposed model outputs a heatmap to indicate the classifica-

tion score and the coarse center c = (u, v) of the object. In

existing methods [43, 10, 35], c is supervised by the ground-

truth 2D bounding box center. Another branch predict the

offset oi = (∆ui,∆vi) between the coarse center and the

real center of 2D bounding box, and we can get the final 2D

box center location c
i = c + o

i. Finally, we use another

branch to estimate the size [w′, h′]2D of 2D bounding box.

3D detection. As for 3D detection, a branch is used for

predicting the offset ow = (∆uw,∆vw) between the coarse

center c and the center of projected 3D bounding box c
w =

[xw yw]T = c + o
w. With the known camera intrinsic

matrix K ∈ R
3×3, we can recover the center of object in

baseline 11.12 ground truth 99.97

w/ gt proj. center 23.90 w/o gt proj. center 46.33

w/ gt depth 38.01 w/o gt depth 25.25

w/ gt 3D location 78.84 w/o gt 3D location 12.13

w/ gt 3D size 11.96 w/o gt 3D size 80.50

w/ gt orientation 11.88 w/o gt orientation 70.89

Table 1: Error analysis. Left: We replace the outputs of

3D detection related branches with the ground truth values.

Right: We replace the values of ground truth with the pre-

dicted results. Metric is AP40 for 3D detection under mod-

erate setting on the KITTI val set. ‘proj. center’ denotes the

projected 3D center cw on the image plane.

3D world space by:





x

y

z





3D

= K
−1

[

c
w · z
z

]

= K
−1 ·





xw · z
yw · z
z





2D

, (1)

where z is the output of depth branch. Finally, the last two

branches are used to predict the 3D size [h,w, l]3D and ori-

entation γ, respectively.

Losses. There are seven loss terms in total, one for fore-

ground/background sample classification, two (center and

size) for 2D detection, and four (center, depth, size, and

heading angle) for 3D detection. We adopt the modified

Focal Loss used in [20, 43] for classification sub-task. We

use L1 Loss without any anchor for center and size regres-

sion in 2D detection task. For the 3D detection task, uncer-

tainty modeling [18, 4] (see Section ?? in the supplementary

for details) is used for depth estimation; L1 loss is used for

3D center refinement; and multi-bin loss [28] (we consider

12 non-overlap equal bins) is used for heading angle esti-

mation. Lastly, for 3D size estimation, we use L1 loss in

baseline (without anchor), and the proposed IoU loss in our

model. The weights for all loss items are set to 1.

3.3. Error Analysis

In this section, we explore what restricts the performance

of monocular 3D detection. Inspired by CenterNet [43] and

CornerNet [20] in the 2D detection field, we conduct an

error analysis for different prediction items on KITTI vali-

dation set via replacing each predictions with ground truth

value and evaluating the performance. Specifically, we re-

place each output head with its ground truth according to

the practice of [20, 43]. As shown in Table 1, if we replace

projected 3D center cw predicted from baseline model with

its ground-truth, the accuracy is improved from 11.12% to

18.97%. On the other hand, depth can improve the accuracy

to 38.01%. If we consider both depth and projected cen-

ter, i.e. replacing the predicted 3D locations [x, y, z]3D with

ground-truth results, then the most obvious improvement is
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∆u ∆v 5m 10m 20m 40m 60m

2 2 0.02 0.04 0.08 0.16 0.24

4 2 0.03 0.06 0.13 0.25 0.38

6 2 0.04 0.09 0.18 0.36 0.54

6 4 0.05 0.10 0.20 0.41 0.61

8 2 0.06 0.12 0.23 0.47 0.70

8 6 0.07 0.14 0.28 0.57 0.85

Table 2: Localization error (in meter) caused by center

shifting in image plane (in pixel).

observed. Therefore, the low accuracy of monocular 3D de-

tection is mainly caused by localization error. On the other

hand, according to Equation 1, depth estimation and center

localization jointly determine the position of the object in

3D world space. Compared with the ill-posed depth esti-

mation from a monocular image, improving the accuracy of

center detection is a more feasible way.

Table 2 shows localization errors introduced by inaccu-

rate center detection. Furthermore, the mean shape of cars

in KITTI dataset is [1.53m, 1.63m, 3.53m] for [h,w, l]3D.

Suppose that all other quantities are correct and the local-

ization error is aligned with the length l (resulting in the

maximum tolerance), the IoU can be computed by:

IoU =
3.53−∆loc

3.53 + ∆loc
, (2)

where ∆loc represents the localization error. According to

the official setting, the IoU threshold should be set to 0.7,

thus the theoretically acceptable maximum error is 0.62m.

However, an error of only 4-8 pixels in the image (1-2 pixel

in 4× down sampling feature map) will cause the object

at 60 meters cannot be detected correctly. Coupled with

the errors accumulated by other tasks such as depth estima-

tion (Figure 3 shows the errors of depth estimation), it be-

comes an almost impossible task to accurately estimate the

3D bounding box of distant objects from a single monocular

image, unless the depth estimation is accurate enough (not

achieved to date).

To better show the importance of center localization, we

show the localization error in 3D space caused by shifting

the center in image plane in Table 2.

3.4. Revisiting Center Detection

Our design for center detection. For estimating the coarse

center c, our design is simple. In particular, we 1) use the

projected 3D center cw as the ground-truth for the branch

estimating coarse center c and 2) force our model to learn

features from 2D detection simultaneously. This simple de-

sign is from our analysis below.

Analysis 1. As shown in Figure 4, there is a misalignment

between the 2D bounding box center ci and the projected
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Figure 3: Statistics. Top: the misalignment (in pixel, col-

lected on the KITTI trainval set under moderate setting) be-

tween the center of 2D bounding box and the projected 3D

center in the image plane. Bottom: the depth errors (in me-

ter, trained on the KITTI training set, tested on the valida-

tion set) These two statistics are presented as the function

of the depth (x-axis).

Figure 4: Visualization of the misalignment between the

center of the 2D bounding box (blue) and the projected 3D

center (red) in image plane.

center cw of the 3D bounding box. According to the for-

mulation in Equation 1, the projected 3D center cw should

be the key for recovering the 3D object center [x, y, z]3D.

The key problem here is what should be the supervision for

the coarse center c. Some works [10, 35] choose to use 2D

box center ci as its label, which is not related to the 3D ob-

ject center, making the estimation of the coarse center not

aware of the 3D geometry of the object. Here we choose

to adopt the projected 3D center cw as the ground-truth for

the coarse center c. This helps the branch for estimating

the coarse center aware of 3D geometry and more related

to the task of estimating 3D object center, which is the key

of localization problem (see Section ?? in supplementary

materials for visualizations).

Analysis 2. Note that SMOKE [23] also use the projected
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3D center cw as the label of the coarse center c. However,

they discard 2D detection related branches while we pre-

serve them. In our design, the coarse center c supervised by

the projected 3D center cw is also used for estimating the

2D bounding box center ci. With our design, we force a 2D

detection branch to estimate an offset oi = c
i − c between

the real 2D center and the coarse 2D center. This makes

our model aware of the geometric information of the object.

Besides, another branch is used to estimate the size of the

2D bounding box so that the shared features can learn some

cues that benefit to depth estimation due to the perspective

projection. In this way, the 2D detection serves as an auxil-

iary task that helps to learn better 3D aware features.

3.5. Training Samples

Different from [34, 22] which force network focus on

the ‘hard’ samples, we argue that ignoring some extremely

‘hard’ cases can improve the overall performance for the

monocular 3D detection task. Both the results shown in

Figure 1 and the analysis conducted in Section 4.4 illustrate

there is a strong relationship between the distance of the

object and the difficulty of detecting it. According to this,

two schemes are proposed on how to generate the object-

level training weight wi for sample i.
Scheme 1, hard coding. This scheme discard all samples

over a certain distance:

wi =

{

1 if di ≤ s

0 if di > s
(3)

where di denotes the depth of sample i, and s is the thresh-

old of depth which is set to 60 meters in our implementa-

tion. In this way, the samples with depth larger than s will

not be used in the training phase.

Scheme 2, soft coding. The other one is soft encoding, and

we generate it using a reverse sigmoid-like function:

wi =
1

1 + e(di−c)/T
, (4)

where c and T are the hyper-parameters to adjust the center

of symmetry and bending degree, respectively. When c = s
and T → 0, it is equivalent to the hard encoding scheme.

When T → ∞, it is equivalent to using the same weight for

all samples. By default, c and T are set to 60 and 1, and the

empirical experiments in Section 4 find that scheme 1 and

scheme 2 are both effective and have similar results.

3.6. IoU Oriented Optimization

Recently, some LiDAR based 3D detectors [40, 42] ap-

plied the IoU oriented optimization [31]. However, deter-

mining the 3D center of object is an very challenging task

for monocular 3D detection, and the localization error often

reaches several meters (see Section 4.4). In this case, lo-

calization related sub-tasks (such as depth estimation) will

overwhelm others (such as 3D size estimation), if we ap-

ply IoU based loss function directly. Moreover, depth esti-

mation from monocular image itself an ill-posed problem,

and this kind of contradiction will make the training process

collapse. Disentangling each loss item and optimize them

independently is a another choice [35], but this ignores the

correlation of each component to the final result. To alle-

viate this problem, we propose a IoU oriented optimization

for 3D size estimation. Specifically, suppose all prediction

items except the 3D size s = [h,w, l]3D are completely

correct, then we can get (details for deriving can be found

in supplementary materials):

∂IoU

∂h
:
∂IoU

∂w
:
∂IoU

∂l
≈

1

h
:
1

w
:
1

l
. (5)

Accordingly, we can adjust the weight of each side by its

partial derivative w.r.t. IoU (in magnitude), and the loss

function of the 3D size estimation can be modified to:

Lsize = ||
(s− s

∗)

s
||1, (6)

where || · ||1 represent the L1 norm. Note that, compared

with the standard 3D size loss L′

size = ||s−s
∗||1 used in the

baseline model, our new loss’s magnitude is changed. To

compensate it, we compute L′

size once more, and dynami-

cally generate the compensate weight ws = |L′

size/Lsize|,
so that the mean value of the final loss function ws · Lsize

is equal to the standard one. By this way, the proposed loss

can be regard as a re-distribution of the standard L1 loss.

3.7. Implementation

Training. We train our model on two GTX 1080Ti GPUs

with a batch size of 16 in an end-to-end manner for 140

epochs. We use Adam optimizer with initial learning rate

1.25e−3, and decay it by ten times at 90 and 120 epochs.

The weight decay is set to 1e−5 and the warmup strategy

is also used for the first 5 epochs. To avoid over-fitting, we

adopt the random cropping/scaling (for 2D detection only)

and random horizontal flipping. Under this setting, it takes

around 9 hours for whole training process.

Inference. During the inference phase, we obtain the pre-

diction results from the parallel decoders. To decoding

the results, similar to [43], we conduct the efficient non-

maxima suppression (NMS) on center detection results us-

ing a 3 × 3 max pooling kernel. Then, we recover 2D/3D

bounding boxes according to encoding strategy introduced

in Section 3.2 and use the score of center detection as the

confidence of predicted results. Finally, we discard predic-

tions with confidence less than 0.2.
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Method Extra data
3D BEV AOS

Runtime
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Decoupled-3D [4] Yes 11.08 7.02 5.63 23.16 14.82 11.25 87.34 67.23 53.84 -

AM3D [25] Yes 16.50 10.74 9.52 25.03 17.32 14.91 - - - ∼400 ms

PatchNet [24] Yes 15.68 11.12 10.17 22.97 16.86 14.97 - - - ∼400 ms

D4LCN [12] Yes 16.65 11.72 9.51 22.51 16.02 12.55 90.01 82.08 63.98 -

Kinematic3D [3] Yes 19.07 12.72 9.17 26.69 17.52 13.10 58.33 45.50 34.81 120ms

GS3D [21] No 4.47 2.90 2.47 8.41 6.08 4.94 85.79 75.63 61.85 ∼2000 ms

MonoGRNet [29] No 9.61 5.74 4.25 18.19 11.17 8.73 - - - 60 ms

MonoDIS [35] No 10.37 7.94 6.40 17.23 13.19 11.12 - - - -

M3D-RPN [2] No 14.76 9.71 7.42 21.02 13.67 10.23 88.38 82.81 67.08 161 ms

SMOKE [23] No 14.03 9.76 7.84 20.83 14.49 12.75 92.94 87.02 77.12 30 ms

MonoPair [10] No 13.04 9.99 8.65 19.28 14.83 12.89 91.65 86.11 76.45 57 ms

Ours No 17.23 12.26 10.29 24.79 18.89 16.00 93.46 90.23 80.11 40 ms

Improvement - +2.47 +2.27 +1.64 +3.77 +4.06 +3.11 +0.52 +3.21 +2.99 -

Table 3: Performance of the Car category on the KITTI test set. Methods are ranked by moderate setting (same as KITTI

leaderboard). We highlight the best results in bold and the second place in underlined.

Method
3D@IOU=0.7 BEV@IOU=0.7 3D@IOU=0.5 BEV@IOU=0.5

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

CenterNet [43] 0.60 0.66 0.77 3.46 3.31 3.21 20.00 17.50 15.57 34.36 27.91 24.65

MonoGRNet [29] 11.90 7.56 5.76 19.72 12.81 10.15 47.59 32.28 25.50 48.53 35.94 28.59

MonoDIS [35] 11.06 7.60 6.37 18.45 12.58 10.66 - - - -

M3D-RPN [2] 14.53 11.07 8.65 20.85 15.62 11.88 48.53 35.94 28.59 53.35 39.60 31.76

MonoPair [10] 16.28 12.30 10.42 24.12 18.17 15.76 55.38 42.39 37.99 61.06 47.63 41.92

Ours 17.45 13.66 11.68 24.97 19.33 17.01 55.41 43.42 37.81 60.73 46.87 41.89

Improvement +1.17 +1.36 +1.26 +0.85 +1.16 +1.25 +0.03 +1.03 -0.18 -0.33 -0.80 -0.03

Table 4: Performance of the Car category on the KITTI validation set. Methods are ranked by moderate setting (same as

KITTI leaderboard). We highlight the best results in bold and the second place in underlined.

4. Experimental Results

4.1. Setup

Dataset. We evaluate our method on the challenging KITTI

dataset [14, 15], which provides 7,481 images for training

and 7,518 images for testing. Since the ground truth for the

test set is not available and the access to the test server is

limited, we follow the protocol of prior works [6, 7, 8] to di-

vide the training data into a training set (3,712 images) and

a validation set (3,769 images). We conduct ablation studies

based on this split and also report final results which trained

on all 7,481 images and tested by KITTI official server.

Metrics. The KITTI dataset provides many widely used

benchmarks for autonomous driving scenarios, including

3D detection, bird’s eye view (BEV) detection, and average

orientation similarity (AOS). We report the Average Preci-

sion with 40 recall positions (AP40) [35] under three dif-

ficultly settings (easy, moderate, and hard) for those tasks.

We mainly focus on the Car category, and also report the

performances of the Pedestrian and Cyclist categories for

reference. The default IoU threshold are 0.7, 0.5, 0.5 for

these categories.

4.2. Main Results

Results on the KITTI test set. As shown in Table 3, we

report our results of the Car category on KITTI test set.

Overall, our method achieves superior results over previ-

ous methods across all settings under fair conditions. For

instance, the proposed method obtains 2.47/2.27/1.64 im-

provements under easy/moderate/hard setting for 3D detec-

tion task. Besides, our method achieves 18.89/90.23 in BEV

detection/AOS task under moderate setting, improving pre-

vious best results by 4.06/4.12 AP40. Compared with the

methods with extra data, the proposed method still get com-

parable performances, which further proves the effective-

ness of our model.

Results on the KITTI validation set. We also present our

model’s performance on the KITTI validation set in Table 4.

Note that some methods directly use the pre-trained model

provided by DORN [13] as their depth estimator. However,

the DORN’s training set overlaps with the validation set of

KITTI 3D, so we are not comparing these methods here.

We can find that the proposed model performs better than

all previous methods in 3D detection task. For BEV detec-
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Method Cat. Easy Mod. Hard

M3D-RPN [2] Ped. 5.65 / 4.92 4.05 / 3.48 3.29 / 2.94

MonoPair [10] Ped. 10.99 / 10.02 7.04 / 6.68 6.29 / 5.53

Ours Ped. 10.73 / 9.64 6.96 / 6.55 6.20 / 5.44

M3D-RPN [2] Cyc. 1.25 / 0.94 0.81 / 0.65 0.78 / 0.47

MonoPair [10] Cyc. 4.76 / 3.79 2.87 / 2.12 2.42 / 1.83

Ours Cyc. 5.34 / 4.59 3.28 / 2.66 2.83 / 2.45

Table 5: Benchmark for Pedestrian/Cyclist detection on

the KITTI test set. Metric is AP40 for BEV/3D detection

task at 0.5 IoU threshold.

Easy Mod. Hard

baseline 20.29 / 14.51 16.15 / 11.12 14.07 / 9.97

+ p. 23.10 / 15.78 18.15 / 12.65 16.11 / 10.62

+ p.+I. 23.89 / 16.12 18.34 / 12.97 16.69 / 10.99

+ p.+I.+s. 24.97 / 17.45 19.33 / 13.66 17.01 / 11.68

Table 6: Results on accumulating the proposed ap-

proaches on the KITTI validation set. Metric is AP40 of

the Car category for BEV/3D detection. ‘p.’ denotes using

projected 3D center for supervising the coarse center. ‘I.’

denotes using our IoU loss design. ‘s.’ denotes the design

for discarding distant samples.

tion task, our method outperforms all methods except for

MonoPair. Compared with MonoPair, our method is better

at detecting objects under strict conditions (0.7 IoU thresh-

old), while MonoPair is slightly better at catching samples

under loose conditions (0.5 IoU threshold). Also note that

our method shows better performance consistency between

the validation set and test set. This indicates that our method

has better generalization ability, which is of great signifi-

cance in autonomous/assisted driving.

Latency analysis. We test the proposed model on a sin-

gle GTX 1080Ti GPU with a batchsize of 1 for runtime

analysis. As shown in Table 3, the proposed method can

run at 25 FPS, meeting the requirement of real-time detec-

tion. Specifically, our method runs 4× faster than the two-

stage detector M3D-RPN. Compared with MonoPair, which

shares a similar framework as ours, our method can still

save 16 ms for one image in the inference phase, mainly be-

cause: 1) we use standard DLA-34 as our backbone, instead

of modified DL4-34 with DCN [11, 45]. 2) we apply fewer

prediction heads in our model. 3) we don’t need any post-

processing. SMOKE [23] can run faster than our method.

However, it only conducts 3D detection while the proposed

method can perform 2D detection and 3D detection jointly.

Besides, although the detectors with pretrained depth es-

timator usually have promising performance, the additional

depth estimator introduce lots of computational overheads

(e.g. the most commonly used DORN [13] takes about 400

ms to process a standard KITTI image. See KITTI Depth

Benchmark for more details).

PC RF MT Easy Mod. Hard

a - - X 98.08 / 1.32 92.31 / 1.04 84.75 / 1.16

b - X X 98.08 / 13.98 92.31 / 10.81 84.75 / 9.59

c X X - 94.55 / 12.31 88.79 / 10.30 79.29 / 8.82

d X X X 98.42 / 16.08 92.74 / 13.04 83.04 / 11.16

Table 7: Analysis for center definition and multitask

learning. Metrics are AP40 of the Car category for 2D/3D

detection tasks. ‘PC’, ‘RF’, and ‘MT’ represent ‘projected

3D center’, ‘refinement’, and ‘multi-task learning’.

4.3. Pedestrian/Cyclist Detection

Here we present the Pedestrian/Cyclist detection results

on the KITTI test set in Table 5. Compared with cars, pedes-

trians/cyclists are more difficult to detect, and only [2, 10]

provide the performances of those categories on KITTI test

set. Specifically, the proposed method performs better than

[2] and gets comparable results with [10]. But it is impor-

tant to note that, since the number of training samples for

those two categories is quite small, the performance may

fluctuate to some extent.

4.4. Analysis

Accumulation of the proposed designs. Table 6 shows ex-

perimental results evaluating how the proposed designs con-

tribute to the overall performance for this task. Our design

in Section 3.4, which uses projected 3D center for supervis-

ing center detection and influencing 2D detection (‘+p.’ in

Table 6), improves 3D detection accuracy by 1.5. The IoU

loss design in Section 3.6 further improves the accuracy by

0.3. And the design for discarding distant samples in Sec-

tion 3.5 leads to 0.7 improvement.

Supervision for coarse center detection and multi-task

learning. We show the performance changes caused by

center definition and multi-task learning in Table 7. Specif-

ically, from setting a (used in [43]) and setting b (used in

[10, 35]) in the table, predicting an offset to compensate

for the misalignment between 2D center and projected 3D

center can improve the performance of 3D detection sig-

nificantly. Then, using projected 3D center as the ground

truth for coarse detection (setting d, our model) can further

improve the performance. Besides, by comparing the set-

ting c used in [23] and the setting d in our design, we can

find the performance of 3D detection benefits from multi-

task learning (performing 2D detection and 3D detection

jointly). Note that the accuracy of 2D detection under set-

ting d is also better than that under setting c, which suggests

generating 2D bounding boxes from 3D detection may re-

duce the quality of the 2D detection results. The above con-

clusions are also reflected in Table 3 and 4.

Training samples. From Table 8, we can find that both re-

moving some samples from training set appropriately and

reducing the training weights of them can improve overall

performance. Note that those samples are only a small part
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Figure 5: Qualitative results on the KITTI test set. These results are based on proposed model trained on the KITTI

trainval set, running at 25 FPS. We use blue, green, and red boxes to denote cars, pedestrians, and cyclists. LiDAR signals

are only used for visualization. Best viewed in color with zoom in.

Easy Mod. Hard

baseline 16.12 12.97 10.99

+ hard encoding, s = 40 14.25 11.25 9.63

+ hard encoding, s = 60 17.45 13.66 11.68

+ soft encoding, c = 40, T=1 14.50 11.74 9.95

+ soft encoding, c = 60, T=1 17.50 13.54 11.32

+ soft encoding, c = 60, T=5 17.25 13.03 11.01

Table 8: Analysis for training samples. Metrics is AP40

of the Car category for 3D detection.

of the whole training set and will not affect the representa-

tion learning of the network to the whole dataset. For ex-

ample, in the 7,481 images in trainval set, only 1,301/767

samples beyond 60/65 meters, accounting for 4.5%/2.7% of

the total 28,742 samples.

4.5. Qualitative Results

We visualize some representative outputs of the pro-

posed method in Figure 5. To clearly show the object’s po-

sition in the 3D world space, we also visualize the LiDAR

signals. We can observe that our model outputs remarkably

accurate 3D bounding boxes for the cases at a reasonable

distance. We also find that our model outputs some false

positive samples, e.g. the 3D box on the right in the sixth

picture, and the foremost reason for that is the imprecise

depth or center estimation. Note that the dimension and ori-

entation estimation for those cases are still accurate.

5. Conclusion

In this paper, we systematically analyze the problems in

monocular 3D detection and find the localization error is the

bottleneck of this task. To alleviate this problem, we first re-

visit the misalignment between the center of the 2D bound-

ing box and the projected center of 3D object. We argue that

directly detecting projected 3D center can reduce the local-

ization error and 2D detection is conducive to optimize 3D

detection. Besides, we also find distant samples are almost

impossible to detect accurately with the existing technolo-

gies, and discarding these samples from the training set will

stop them from distracting the network. Finally, we also

proposed an IoU oriented loss for 3D size estimation. Ex-

tensive experiments on the challenging KITTI dataset show

the effectiveness of the proposed strategies.
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