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Abstract

We propose a dense object detector with an instance-

wise sampling strategy, named IQDet. Instead of using hu-

man prior sampling strategies, we first extract the regional

feature of each ground-truth to estimate the instance-wise

quality distribution. According to a mixture model in spa-

tial dimensions, the distribution is more noise-robust and

adapted to the semantic pattern of each instance. Based

on the distribution, we propose a quality sampling strategy,

which automatically selects training samples in a proba-

bilistic manner and trains with more high-quality samples.

Extensive experiments on MS COCO show that our method

steadily improves baseline by nearly 2.4 AP without bells

and whistles. Moreover, our best model achieves 51.6 AP,

outperforming all existing state-of-the-art one-stage detec-

tors and it is completely cost-free in inference time.

1. Introduction

Recent object detection methods have proposed various

sampling strategies, assigning the predicted boxes to the

ground truth according to their quality. These sampling and

assignment strategies have led to great progress in modern

object detection task.

As shown in Fig. 1, the improvements in sampling strate-

gies can be divided into two tendencies. (1) From Static

to Dynamic: Static rules like RetinaNet [8] assign anchor

boxes to the ground truth according to the predefined qual-

ity of anchors (i.e., IoU), while Dynamic rules (e.g., loss-

based sampling in PAA [6]) further boost the performance

of the dense object detection, because they are prediction-

aware and directly determined by the prediction quality.

(2) From Sample-wise to Instance-wise: Assigned by the

Sample-wise rule like RetinaNet[8], a predefined anchor is

assigned as a positive sample when its IoU is higher than

the threshold. Meanwhile, based on Instance-wise distribu-

tion, [14, 15] propose a center-based distribution according

to the ground-truth(GT)’s location, where the samples lo-

cated inside the central region are assigned as positive sam-

ples. These two tendencies achieve better performance and
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Figure 1. Different sampling strategy of dense object detection.

The green squares are GT and the red circles represent the positive

samples. (a) Static sampling strategies mainly base on the anchors’

locations, while the Dynamic sampling strategies are prediction-

aware. (b) The IoUs of the predicted boxes are quite similar, but

the predicted box with IoU=0.92 is compulsively assigned as a

negative sample due to the slightly lower IoU, bringing inconsis-

tent noisy samples for the training process. (c) FCOS uses a static

center distribution for sampling. (d) IQDet samples training set

according to an instance-wise dynamic distribution.

gradually become the de-facto standard in object detection.

However, these sampling strategies might have a few

limitations: (1) Static rules are not learnable and prediction-

aware (e.g. center region and anchor-based), which may

be not always the best choice for some eccentric object.

(2) Some Dynamic rules like PAA might suffer from the

noisy samples and per-sample quality rules, without jointly

formulating a quality distribution in spatial dimensions, as

shown in Fig. 1(b). (3) They sample uniformly over regu-

lar grids of image owing to the dense prediction paradigm,

which is difficult to assemble enough high-quality and

diverse samples. These methods might either Static or

Sample-wise, failing to completely solve these limitations.

In this paper, we propose an instance-wise(GT-wise)

quality distribution for sampling to address these issues: in-

stead of assigning each sample independently, the instance-

wise sampling strategy selects training samples based on

the quality distribution. To achieve dynamic sampling, we
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jointly model an instance-wise distribution from the net-

work prediction, making it learnable and prediction-aware.

Specially, we optimize the quality distribution encoding

function via a variational encoder, approximating the se-

mantic pattern and appearance of the instance. This dy-

namic quality distribution filters out noisy samples(shown

in Fig. 1(b)) and is easier to be learned than previous sam-

pling strategies. Owing to the previous per-pixel assign-

ment depends on IoUs of each predicted boxes, the assign-

ment of PAA [6] is unstable. Our assignment strategy is

more robust and extracts the overall instance-wise feature

to generate the assignment. And it can sample more high-

quality samples, especially the location in the center of the

Gaussian.

Further, we use this distribution to guide sample se-

lection in both spatial and scale dimensions, as shown in

Fig. 1(d). Proper samples are resampled with higher prob-

abilities and assigned by higher confidences. Meanwhile,

different from the traditional per-grid sampling strategy, we

sample more positives from high-quality and diverse predic-

tions with a floating-number coordinate, which may avoid

the overfitting problem and improve the performance effi-

ciency. The entire process of instance-wise quality assign-

ment and sampling are learnable and thus can be easily op-

timized by back-propagation.

The contributions of this work are summarized as:

1 Our main contribution is to propose an instance-wise

quality distribution, which is extracted from the regional

feature of the ground-truth to approximate each predic-

tion’s quality. It guides noise-robustly sampling and it is

a prediction-aware strategy.

2 Besides, we formulate an assignment and resampling

strategy according to the distribution. It is adapted to the

semantic pattern and scale of each instance and simulta-

neously training with sufficient and high-quality samples.

3 We achieve state-of-the-art results on COCO dataset

without bells and whistles. Our method leads to 2.8 AP

improvements from 38.7 AP to 41.1 AP on single-stage

method FCOS. ResNext-101-DCN based IQDet yields

51.6 AP, achieving state-of-the-art performance without

introducing any additional overhead.

2. Related Work

Label Assignment in Object Detection. The task of se-

lecting which anchors are to be assigned as positive or nega-

tive samples has recently been recognized as a crucial factor

that greatly affects the detector’s performance [8, 14, 6, 9,

13]. CenterNet [21] and FoveaBox [7], they both use center-

sampling strategy to select the positive samples. GuidedAn-

choring [15] leverages semantic features to guide the an-

chor settings and dynamically mitigate the feature incon-

sistency with a feature adaption module. FreeAnchor [20]

uses a bag of topK anchor candidates based on IoU for ev-

ery object and determines positive anchors based on the es-

timated likelihood. ATSS [19] suggests an adaptive training

sample assignment mechanism by the dynamic IoU thresh-

old according to the statistical characteristics of instances.

PAA [6, 3] adaptively separates anchors into positive and

negative samples according to the detector’s learning status

in a probabilistic manner, and they propose to predict the

Intersection-over-Unions of detected boxes as a measure of

localization quality. AutoAssign [22] uses a fully differen-

tiable label assignment strategy to automatically determines

positive/negative samples by generating positive and nega-

tive weight maps. MDOD [18] proposed a network by esti-

mating the probability density of bounding boxes in an in-

put image using a mixture model and they got rid of the

cumbersome processes of matching between ground truth

boxes. POTO [16] uses prediction-aware label assignment

to enable end-to-end detection. These methods are either

static or sample-wise, which might have a few limitations.

We propose a quality distribution for instance-wise sam-

pling strategy, which aims at solving these limitations and

boosting the performance of dense object detection.

Sampling Strategies in Object Detection. The most

widely adopted sampling scheme in object detection is the

random sampling from all candidates. OHEM [12] mines

hard examples which have larger losses at each iteration on

the fly. Cascade R-CNN [1] proposes that they only sam-

ple high-quality prediction to train, the detector is easier to

overfitting, due to exponentially vanishing positive samples,

which might be harmful to the performance of the detec-

tor. And it was shown to avoid the problems of overfitting

at training and quality mismatch at inference. SAPD [23]

jointly samples the anchor point as a group both within

and across feature pyramid levels and soft-weighted anchor

points and soft-sampled pyramid levels across all the pyra-

mid levels.

3. Methods

In this section, we first formulate a quality distribution as

an instance-wise representation encoding, which is adapted

to the semantic pattern of each instance and noise-robust.

Next, based on this distribution, we show how to select

samples in a probabilistic manner and train with more high-

quality samples (Sec. 3.2), which improves the overall per-

formance by a large margin.

3.1. Formulation of Quality Distribution Encoder

As mentioned in 1, previous sampling strategies [14,

15, 19, 6] suffer from these limitations above. Thus, the

key idea is to introduce a robust instance-wise distribution,
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Figure 2. The architecture of IQDet, where the parameters of the quality distribution (µ,σ,π) are predicted by Quality Distribution Encoder

(QDE), which represent location, scale, and mixing coefficient of each component respectively. The Class+Box Subnet uses the interme-

diate output (P3 - P7) from each feature-map of the feature-pyramid, which is similar to FCOS [14]. The subnets in the orange box are the

instance-wise operations and the subnets in the gray box are the sample-wise operations. Our sampling strategy is completely cost-free in

inference time, as the auxiliary structures only exist during training.

which is prediction-aware and is adapted to the semantic

pattern of an object.

We propose a novel distribution learning subnet, called

Quality Distribution Encoder(QDE). The architecture of the

encoder is demonstrated in Fig. 2. It is worth noting that all

operators in Quality Distribution Subnet in the orange box

are instance-wise. To effectively encode the instance-wise

feature, we first extract the feature of an object according to

the GT location and it is realized by applying the RoIAlign

layer [4] to each pyramid feature, where the input RoI is

the ground-truth box. Specifically, the motivation of using

GT feature is that extracting the regional feature of GT is

properly aligning with the distribution assignment in spatial

dimensions. Thus the encoder is an instance-wise extractor

and estimates an overall quality distribution for an instance

per pyramid level. To map the GT feature into an instance-

wise representation, the encoder should capture the prin-

cipal component of the ground-truth feature and then es-

timate an instance-wise quality distribution. Owing to the

unknown underlying distribution is not easy to learn, a basic

idea is to use an encoder to map the unknown distribution

(e.g. quality distribution of per-sample) to a specific distri-

bution like Gaussian.

We choose Gaussian Mixture Model (GMM) to model

the distribution. GMM enjoys the several characteristics

mentioned in [11]: (1) It can form smooth approximations

to arbitrarily shaped distribution. (2) The individual com-

ponent may model some underlying set of hidden classes.

Thus, according to the GMM modeling, we can estimate a

distribution to approximate the sample-wise quality and fil-

ter out noisy samples(e.g. the case in Fig. 1(b)). Moreover,

each component of GMM may be adapted to a semantic pat-

tern of the instance (e.g. head, body of a person) in spatial

dimensions, which may contain more semantic information

and high-quality prediction. For each ground-truth Gi, the

probability density function of the quality distribution is for-

mulated as follows:

pi(~d|Gi, I, θ) =

K∑

k=1

~πi,kΦi,k(~d|Gi, I, θ), (1)

where the parameters K, θ are component number, param-

eters of the encoder. ~π denotes mixing coefficient along

x- and y-axis in the spatial dimension of image I , and ~d

represents the offsets of the sample inside an object to the

GT’s center along x- and y-axis. Moveover, we normal-

ize ~d into range [-1, 1] by the ground-truth size. Here, we

define each component of the mixture model as: Φk(~d) =

Nk(~d|~µk, ~σk) = e
−

(~d−~µk)2

2~σ2
k .

The network architecture of the encoder is shown in

Fig. 3(a). For simplicity, the encoder consists of two fully-

connected layers, followed by fully-connected layers to pre-

dict the learnable parameters. The outputs of learnable en-

coder are ~µn,k, ~σn,k ∈ R
N×K×2 along spatial dimensions

and ~πn,k ∈ R
N×K×1, which represent the location, scale,

1719



FC

FC

N×C×P×P

N×C’

RoIAlign

C×H×W

N×4
GT

N×K×1 N×K×2 N×K×2

S

S
1

2

(a) (b)

Figure 3. (a) The details of the quality distribution encoder.

N,K represent the number of GTs, components of distributions.

C,H,W are the feature pyramid sizes. µ, σ denote location, scale

of the distribution along x-axis and y-axis, and π is the mixing

coefficient. (b) We use bilinear interpolation [5] to compute the

exact values of the prediction. Dotted lines are the regular grid of

feature map, and green square represent ground-truth G. The red

points are the sampling locations of G.

and mixing coefficient of the ground-truth Gn’ k-th compo-

nent respectively. Specifically, the encoder share param-

eters θ among feature pyramid, and the distributions are

estimated separately without feature fusion. To simplify

our pipeline, we directly use the latent representation as the

quality distribution.

According to the QDE, our goal is to encode the ground-

truth feature into quality distribution, which guides the sam-

pling to select more high-quality samples. Thus we super-

vise the distribution by sample-wise quality metric (e.g. IoU

of the predicted boxes). On the one hand, the quality distri-

bution should be learnable and supervised by the quality of

each prediction. QDE is a fully differentiable subnet which

extracts the GT feature and jointly estimates the overall dis-

tribution of an instance. On the other hand, the distribu-

tion approximates the sample-wise quality by using GMM,

which is easy to learn and noise-robust. Thus, we supervise

the quality distribution by the IoU of the predicted boxes

over the grid.

3.2. Quality Distribution for Sampling

Based on the quality distribution, we formulate the sam-

pling and label assignment strategy in IQDet. First, instead

of sampling over the grid, we resample floating-number co-

ordinate predictions from the distribution. Meanwhile, the

distribution represents the quality of these predictions, thus

we supervise their scores with the soft distribution.

Resample in Spatial and Scale Dimensions. Previous

one-stage detector sample over regular grids of feature map,

and they usually select topK or IoU thresholds to reject

close false positives. However, forcing larger IoU thresh-

olds or smaller topK leads to exponentially smaller numbers

of positive training samples. They may get involved in the

problems of overfitting at training when the ground-truths

are assigned with insufficient positive samples.

Based on the distributions mentioned in Sec. 3.1, our

sampling strategy select positive samples in a probabilis-

tic manner, and a more diverse and high-quality positive

training set is available. First, based on the distribution

probability, we resample a fixed number of predictions over

floating-number locations, namely sampling continuous co-

ordinates over the feature map. The red circles and orange

circles in QDS in Fig. 2 represent the positive samples to

be trained. The predictions over these floating-number lo-

cations are hard to obtain. Thus, we avoid any quantiza-

tion of these prediction’s locations by using bilinear inter-

polation [5] to compute the exact values of the predictions.

The interpolation operators are calculated over the classifi-

cation and regression prediction maps. Under the sampling

strategy, IQDet is more likely to resample the predictions

which are close to the center of the Gaussian. Therefore, we

can resample sufficient and high-quality samples instead of

sampling over regular grids of feature maps.

According to the bilinear interpolation of the predictions,

we construct a bag of candidate predictions for each object

G by resampling K positive predictions in terms of their

quality distribution values. Based on the spatial quality

sampling above, we use the distribution to select the training

positive samples in a probabilistic manner. For the negative

samples, our sampling strategy is similar to the baseline.

Namely, we select the negative sample outside the GT box

over the grid. It should be noted that our sampling strategy

is different from the loss reweighting strategy. As shown

in 3(b), owing to the classification feature map is a nonlin-

ear distribution, thus the IQDet back-propagates different

gradient to the grid point. Moreover, the interpolation for

each sample is similar to the RoIAlign [4] when the pool-

size equals to 1. It is well aligned and preserves the per-

pixel spatial correspondence. To sum up, compared with

the previous strategies sampling over the grid, IQDet is able

to train with more diverse and high-quality samples.

Soft Label Assignment. For each sample selected from

the quality distribution, we also calculate the label accord-

ing to bilinear interpolation. Different from the label as-

signment in previous work, we use the quality distribution

as the labels to supervise the classification prediction. With-

out dividing the samples into positive and negative samples,

IQDet assigns the quality distribution as a soft label to each

sample. The predictions with high-quality value are more

likely supervised by higher classification target. For pre-

dictions located outside the ground-truth region, we assign

them as negative samples for sure, which the classification

targets are set to zero. It is worth noting that Quality Dis-

tribution Sampling (QDS) is applied to all feature pyramid

levels. Due to the GMM variables of an instance in each

FPN layer are different, the distributions encoded by differ-

ent pyramid layers are not similar. Namely, for an instance
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in different pyramid layers, we assign the label with differ-

ent quality distributions independently. Across all feature

pyramid levels, only the K samples in terms of distribution

values are supervised by the distribution, and the others are

supervised as zero. For the regression branch, we use the

offset of the sampling location with ground-truth as the re-

gression target, which is similar to the previous works. Fur-

thermore, to compensate for the interference caused by the

different downsampling rates of FPN, we normalize the dis-

tance ~d by its FPN stage’s downscale ratio.

3.3. IQDet

Network Architecture. We now present the network ar-

chitecture of our IQDet. The framework of IQDet is demon-

strated in Fig. 2. In our experiments, we adopt a simple

anchor-free object detector FCOS [14] as our baseline. The

network consists of a backbone, a feature pyramid, and one

detection head per pyramid level, in a fully convolutional

network. The pyramid levels are denoted as P3−P7, which

is similar to the baseline.

The Quality Distribution Subnet is shown in the orange

box of Fig. 2. First, taking the pyramid feature maps as in-

put, the Quality Distribution Encoder extracts the regional

feature of the ground-truth, then it estimates a quality dis-

tribution which guides the sampling and label assignment

strategy. The operators in this Quality Distribution Sub-

net are instance-wise, and the samples of an object are es-

timated and supervised jointly. Moreover, This subnet acts

as an auxiliary supervision to the detection backbone during

training and it is completely cost-free in inference time. In

Class+Box Subnet, the operators are sample-wise, and each

sample is estimated and supervised separately. The subnet

architecture is exactly the same as the one in FCOS [14]

and ATSS [19], which is RetinaNet [8] with modified fea-

ture subnets and an auxiliary prediction head. In our ex-

periments, we use predicted IoUs with corresponding GT

boxes, instead of centerness scores when using the auxil-

iary prediction as in [14].

Training and Inference. The proposed IQDet is easy

to optimize in an end-to-end way using a multi-task loss.

Combining the output of the IQDet, we define our training

loss function as follows:

L =Lcls + Lreg + Laux + λIQLIQ (2)

In the implementation, focal loss [8], IoU loss and Bi-

nary Cross-Entropy (BCE) loss are used as the classification

loss, regression loss and auxiliary loss respectively, which

are the same as FCOS [14]. For the LIQ loss shown in

Fig. 2, we supervise the quality distribution by the IoUs of

predicted boxes. As the loss function, we use the BCE loss

between the target values and the distribution predictions.

Table 1. Ablation study of Quality Distribution Encoder (QDE)

and Quality Distribution sampling (QDS). “∗” denotes centerness

as auxiliary task, while others use IoU prediction.

Method QDE QDS AP AP50 AP75

FCOS∗ 38.7 57.5 41.7

FCOS 39.4 57.9 42.4

IQDet X 40.4 57.7 44.1

IQDet X 39.6 57.5 43.0

IQDet X X 41.1 58.9 44.8

4. Experiments

4.1. Implementation Details

Following the common practice, our experiments are

trained on the large-scale detection benchmark COCO train-

val35k set (115K images) and evaluated on COCO val set

(5K images). To compare with the state-of-art approaches,

we report COCO AP on the test-dev set (20K images).

Training Details. We use ResNet-50 with FPN as our

backbone network for all the experiments, if not specified.

We use synchronized stochastic gradient descent (SGD)

over 8 GPUs with a total of 16 images per minibatch (2

images per GPU) for 90k iterations. With an initial learn-

ing rate of 0.01, we decrease it by a factor of 10 after 60k

iterations and 80k iterations respectively. Weight decay of

0.0001 and momentum of 0.9 are used. And the input im-

ages are resized to ensure their shorter edge being 800 and

the longer edge less than 1333 unless noted. In our ex-

periments, λIQ is 1 and the number of GMM components

equals 2, and our method is not sensitive to these values.

Inference Details. During the inference phase, we resize

the input image in the same way as in the training phase,

and then forward it to obtain the predicted bounding boxes

with a predicted class. The following post-processing is ex-

actly the same with RetinaNet and we directly use the same

post-processing hyper-parameters (such as the threshold of

NMS) of RetinaNet. Finally, the Non-Maximum Suppres-

sion (NMS) is applied with the IoU threshold 0.6 per class

to yield the final top 100 confident detections per image.

4.2. Ablation Study

4.2.1 Quality Encoder and Quality Sampling.

To demonstrate the effectiveness of the two key compo-

nents, we gradually add the Quality Distribution Encoder

(QDE) and Quality Distribution sampling (QDS) to the

baseline to investigate the performance of our proposed

IQDet. Based on the FCOS as our baseline, we first analyze

the impact of QDE. According to the quality distribution,

we just use the soft label assignment and sample over the
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Table 2. The ablation experiments of learnable parameters in qual-

ity distribution. “X” means this parameter is learnable.

~µ ~σ ~p AP AP50 AP75

Center Region 38.7 57.5 41.7

29.8 47.9 32.1

IQ-Distribution X 38.6 57.2 41.8

(GMM) X X 40.0 57.9 43.3

X X X 40.4 58.4 43.6

grid of the feature map. As the results in the second row

of Table. 1, QDE brings relatively significant performance

gain by 1.7 AP, which suggests that the quality distribution

is critical for guiding the training. Then we also analyze the

effectiveness of QDS in the third row of the table, where the

sampling distribution is only based on the center region. We

select positive samples with continuous coordinates. The

proposed QDS also improves FOCS by 0.9 AP. Finally, the

implementation of the IQDet can improve the performance

by 2.4 AP in total.

4.2.2 Quality Distribution Encoder.

Learnable Parameters of Quality Distribution. IQDet

uses Gaussian Mixture Model (GMM) to estimate the qual-

ity distribution, which guides the sampling strategy. To an-

alyze the design of the quality distribution, we compare dif-

ferent quality distributions in Table. 2. To simplify the anal-

ysis, we denote the“X” as learnable parameters and analyze

the learnable part of the mixture distribution to verify the

gains of each part. We can see that the learnable ~µ leads

to a gain of nearly 10 AP and the learnable ~σ can further

improve 1.4 AP. Learnable peak ~p of the gaussian distribu-

tion shows improvements of 0.4 AP. From the whole table,

we can see that the quality distribution brings major im-

provement and the design of learnable quality distribution

is critical.

Architecture of Encoder. To analyze the impact of the

RoI feature extractor, we compare the different architec-

ture of feature extractor, shown in Table. 3. We notice

that RoiAlign extractor achieves 41.1 AP in the third row,

outperforming the counterpart with pooling by 1.0 AP. It

demonstrates that the spatial information is crucial for our

distribution modeling. We also compare different pooling

size of RoIAlign. Considering the speed/accuracy trade-off,

pooling size equals 7 in all our experiments.

4.2.3 Quality Distribution Sampling.

Quantified Sampling vs. Continuous Sampling As de-

scribed in Sec. 3.1, IQDet selects samples according to

quality distribution. We conduct several experiments to

Table 3. For the second row, we use the RoIAlign to extract feature,

then we eliminate the spatial information by a pooling layer. We

also compare different pooling size of RoIAlign.

Methods AP AP50 AP75 APS APM APL

RoIPool [10] 40.6 58.3 44.0 23.5 44.4 53.2

RoIAlign (pool) 40.1 58.3 43.6 23.0 44.0 52.5

RoIAlign [4] 41.1 58.9 44.8 23.5 44.9 54.4

RoI (3× 3) 40.6 58.8 44.4 23.2 44.5 53.7

RoI (7× 7) 41.1 58.9 44.8 23.5 44.9 54.4

RoI (14× 14) 41.1 58.8 44.9 23.7 44.9 54.6

Table 4. Analysis of Quality sampling. “†” represents that we se-

lect the prediction with bilinear interpolation [5], while the experi-

ments without “†” use quantified locations to sample the prediction

to train.

Methods AP AP50 AP75 APS APM APL

Uniform 40.4 57.7 44.1 22.7 44.1 53.1

QD 40.8 58.6 44.6 23.4 44.4 54.1

QD†(ours) 41.1 58.9 44.8 23.5 44.9 54.4

Table 5. Varying K for the number of positive predictions resam-

pling based on quality distribution.

K AP AP50 AP75 APS APM APL

4 40.6 58.4 44.0 23.4 44.4 53.8

8 40.6 58.6 44.1 23.1 44.1 53.6

12 41.1 58.9 44.8 23.5 44.9 54.4

16 40.6 58.3 44.5 23.4 44.5 53.0

20 40.5 58.4 44.0 23.6 44.3 53.5

study the effect of the quality sampling strategy. In our ex-

periment, we first select the samples by uniform distribution

in spatial dimensions, which is shown in the first row of Ta-

ble. 4. Then we use quality distribution to sample, but we

quantify the locations by rounding off the coordinates. The

quality distribution sampling with quantified location show

0.4 AP relative improvement over the baseline. Finally, we

use bilinear interpolation to supervise the train samples with

continuous coordinates. Specifically, IQDet uses the value

of the distribution as the probability to sample, leading to

sample more high quality and sufficient samples than other

sampling strategies. It increases the performance by 0.7

AP which demonstrating that sampling sufficient and high-

quality bounding boxes by QDS will improve detector per-

formance.

Number of Positive Samples of Resampling. Moreover,

IQDet selects K positive samples in terms of their quality

distribution values. It achieves better performance when the

number of positive samples is set to 12, shown in Table. 5.

Quality Distribution Target. We conduct additional ab-

lation studies regarding the target of quality distribution.
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Figure 4. (a)(b) are the µ, σ of Gaussian components respectively and each blue point denotes a quality distribution for an instance. (c)

Comparison of IoU curves for different sampling strategies, it suggests that IQDet trains with more high-quality samples.

Table 6. Ablation study of quality distribution target. “Comb-loss”

denotes the combined loss of the classification loss and regression

loss.

AP AP50 AP75 APS APM APL

Cls-loss 40.7 58.4 44.4 24.2 44.1 53.3

Reg-loss 40.6 58.7 43.9 23.1 44.6 54.0

Comb-loss 40.6 58.2 44.2 23.9 44.3 54.0

Ours(IoU) 41.1 58.9 44.8 23.5 44.9 54.4

The quality of the bounding box can be represented in many

forms (e.g. IoU or training loss) to guide the label assign.

We compare the performance of detectors with different

forms of quality distribution targets. In the first three rows,

the predicted boxes with the K smallest Lcls and Lreg as the

positives samples, and we normalize the loss value into the

range [-1, 1]. Table. 6 shows that loss-based label assign-

ments are comparable. For the comb-loss, we combine the

Lcls and Lreg to guide the label assign, marked as comb-

loss in the Table. Finally, the last row of the table is our

label assign strategy which uses the IoU of predicted boxes

to guide the label assign strategy. We also verify that IoU

prediction is more effective than the other forms of the as-

signments (40.6 AP vs. 41.1 AP).

4.3. Analysis of IQDet

Analysis of Quality Distribution. We evidence our ex-

periments by visualization of distribution representation.

We can see that the peaks of the distribution are mainly

distributed in some semantic parts of an object, such as

the head and trunk of the human in Fig. 5. For the sam-

pling locations, IQDet is able to select more samples with

higher quality than the other strategies. We also provide

some statistics on the µ, σ of quality distribution. As shown

in Fig. 4.2.3(a)(b), each blue point in this figure represents

the value of µ or σ for the distribution. The statistics show

that sampling over the center region is not always the best

choice for an instance in COCO.

Training curves of Quality Distribution Sampling.

The train curves of different strategies are depicted in

Fig. 4.2.3(c). Obviously, the average IoUs of positive sam-

ples’ in IQDet are higher than the other methods, and it

demonstrates that training with more high-quality samples

can boost the performance of the baseline.

4.4. Comparison with State­of­the­art Detectors.

We compare IQDet with other state-of-the-art detectors

on MS COCO test-dev set. We adopt 180K training itera-

tions following the previous works. Results are shown in

Table. 7. Our IQDet with ResNet-101 backbone achieves

45.1 AP, outperforming all state-of-the-art one-stage detec-

tors with the same backbone as we known. By changing

the backbone and training setting the same to other meth-

ods, our method consistently surpasses the label assign ap-

proaches including ATSS, PAA. By adopting advanced set-

tings, IQDet reaches 51.6 AP, the state of the art among

existing one-stage cost-free methods.

4.5. Generalization of IQDet.

To prove the generalization ability of the IQDet, we eval-

uate our proposed methods with other cost-free one-stage

detectors on different detection datasets. For a fair com-

parison, without modifying any setting of these methods,

we only adjust the training setting following the common

paradigm of each dataset. As shown in Table. 8, IQDet still

has a strong generalization ability on other datasets. Es-

pecially for the WiderFace dataset, our method has 1.4 AP

gain than all state-of-the-art one-stage detectors on Wider-

Face Dataset.

5. Conclusion

In this paper, we proposed an instance-wise quality dis-

tribution sampling framework, called IQDet. It is a learn-

able and prediction-aware sampling strategy according to a

mixture model. Our sample selection is guided by a quality

distribution which automatically selects samples according

to the spatial pattern of the object. This architecture was
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Table 7. IQDet vs. the state-of-the-art mothods (single model) on COCO test-dev set. “†” indicates the multi-scale testing

Method Iteration Backbone AP AP50 AP75 APS APM APL

FCOS [14] 180k ResNet-101-FPN 41.5 60.7 45.0 24.4 44.8 51.6

FreeAnchor [20] 180k ResNet-101-FPN 43.1 62.2 46.4 24.5 46.1 54.8

SAPD [23] 180k ResNet-101-FPN 43.5 63.6 46.5 24.9 46.8 54.6

ATSS [19] 180k ResNet-101-FPN 43.6 62.1 47.4 26.1 47.0 53.6

PAA [6] 180k ResNet-101-FPN 44.6 63.3 48.4 26.4 48.5 56.0

IQDet(Ours) 180k ResNet-101-FPN 45.1 63.4 49.3 26.7 48.5 56.6

FCOS [14] 180k ResNeXt-64x4d-101 44.7 64.1 48.4 27.6 47.5 55.6

FreeAnchor [20] 180k ResNeXt-64x4d-101 44.9 64.3 48.5 26.8 48.3 55.9

SAPD [23] 180k ResNeXt-64x4d-101 45.4 65.6 48.9 27.3 48.7 56.8

ATSS [19] 180k ResNeXt-64x4d-101 45.6 64.6 49.7 28.5 48.9 55.6

PAA [6] 180k ResNeXt-64x4d-101 46.3 65.3 50.4 28.6 50.0 57.1

IQDet(Ours) 180k ResNeXt-64x4d-101 47.0 65.7 51.1 29.1 50.5 57.9

SAPD [23] 180k ResNeXt-64x4d-101-DCN 45.4 65.6 48.9 27.3 48.7 56.8

ATSS [19] 180k ResNeXt-64x4d-101-DCN 47.7 66.5 51.9 29.7 50.8 59.4

PAA [6] 180k ResNeXt-64x4d-101-DCN 48.6 67.5 52.7 29.9 52.2 61.5

IQDet(Ours) 180k ResNeXt-64x4d-101-DCN 49.0 67.5 53.1 30.0 52.3 62.0

ATSS [19]† 180k ResNeXt-64x4d-101-DCN 50.7 68.9 56.3 33.2 52.9 62.2

PAA [6]† 180k ResNeXt-64x4d-101-DCN 51.3 68.8 56.6 34.3 53.5 63.6

IQDet(Ours)† 180k ResNeXt-64x4d-101-DCN 51.6 68.7 57.0 34.5 53.6 64.5

PAA Ours

scale=800

scale=900

FCOS PAA OursFCOS

Figure 5. The visualization of label assignment and sampling. The red points are the sampling locations of these strategies.

Table 8. Generalization ability of IQDet. Performance comparison

with typical one-stage detectors on PASCAL VOC and WiderFace.

Method
PASCAL VOC [2] WiderFace [17]

AP AP50 AP75 AP AP50 AP75

FCOS∗ [14] 56.2 79.9 61.9 50.6 89.1 51.7

ATSS [19] 56.7 79.9 62.3 51.6 89.5 53.9

PAA(w/o vote) [6] 58.3 80.7 64.4 51.0 87.2 53.8

IQDet(Ours) 59.0 81.4 65.0 52.4 89.6 55.1

shown to select more high-quality predictions and avoid the

problems of overfitting at training. This method achieves

nearly 2.5 AP boost over baseline, and surpassed all previ-

ous one-stage object detector on COCO test-dev set. Be-

sides, extensive experiments on other datasets demonstrate

that IQDet can conveniently transfer to other datasets and

tasks without additional modification. We believe that it can

be useful for many future object detection research efforts.
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