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Abstract

Telecommunication with photorealistic avatars in virtual

or augmented reality is a promising path for achieving au-

thentic face-to-face communication in 3D over remote phys-

ical distances. In this work, we present the Pixel Codec

Avatars (PiCA): a deep generative model of 3D human

faces that achieves state of the art reconstruction perfor-

mance while being computationally efficient and adaptive to

the rendering conditions during execution. Our model com-

bines two core ideas: (1) a fully convolutional architecture

for decoding spatially varying features, and (2) a rendering-

adaptive per-pixel decoder. Both techniques are integrated

via a dense surface representation that is learned in a

weakly-supervised manner from low-topology mesh track-

ing over training images. We demonstrate that PiCA im-

proves reconstruction over existing techniques across test-

ing expressions and views on persons of different gender

and skin tone. Importantly, we show that the PiCA model

is much smaller than the state-of-art baseline model, and

makes multi-person telecommunicaiton possible: on a sin-

gle Oculus Quest 2 mobile VR headset, 5 avatars are ren-

dered in realtime in the same scene.

1. Introduction

Photorealistic Telepresence in Virtual Reality (VR) as

proposed in [10, 26], describes a technology for enabling

authentic communication over remote distances that each

communicating party feels the genuine co-location pres-

ence of the others. At the core of this technology is the

Codec Avatar, which is a high fidelity animatable human

face model, implemented as the decoder network of a Vari-

ational AutoEncoder (VAE). Imagine a two-way communi-

cation setting. At the transmitter end, an encoding process

is performed: cameras mounted on transmitter’s VR head-

set capture partial facial images and an encoder model en-

codes the captured images into latent code of the decoder

in realtime. At the receiver end a decoding process is per-

formed: upon receiving the latent code over the internet,

Figure 1. An multi-person configuration for teleconference in VR.

At normal interpersonal distances [20], the head occupies only

a subset of pixels in the display, where the amount of coverage

largely depends on distance to the viewer. Roughly half of the

head is not visible from any viewing angle due to self occlusion.

Our method avoids wasting computation on areas that do not di-

rectly contribute to the final image. In first row we show the gen-

erated and rasterized geometry, along with texture maps showing

visible pixels from the corresponding views; in the second row we

show the rendered avatars and the percentage of pixels they cover

over the entire image.

the decoder decodes the avatar’s geometry and appearance

so that the transmitter’s realtime photorealistic face can be

rendered onto the VR display.

Multi-person communication via Photorealistic VR

Telepresence will enable applications that are in great need

in the modern society, such as family re-union over far phys-

ical distances in which each member genuinely feels the

co-location presences of the others, or collaboration in re-

mote working where team members can effectively com-

municate face-to-face in 3D. However, rendering with the

decoder model proposed in [10] does not scale well with

the number of communicating parties. Specifically, a full
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texture of fixed resolution 1K×1K is decoded at each frame

despite the distance of the avatar to the viewer and visibility

of different facial regions. This leads to significant waste

of computation when the avatar is far away, for which case

the rendered avatar only consists a small number of pixels

(Fig. 1), resulting in a large number of pixels in the decoded

texture map unused. Also, most of the time half of the head

is not visible due to self-occlusion, so the pixels in the de-

coded texture map for the occluded part are also unused.

For a 2K display such as the one in Quest2, rendering more

than 4 avatars amounts to computing more pixels than that

of the display. This is obviously limiting, e.g. family re-

union of more than 4 persons or team collaboration of more

than 4 members are common place.

To solve this issue and scale the rendering to the number

of persons in the VR telepresence, we should compute only

the visible pixels, thus upper bounding the computation by

the number of pixels of the display. Recent works in neural

rendering such as the defferred neural rendering[24], the

neural point-based graphics[2], the implicit differentiable

rendering [27], use neural network to compute pixel values

in the screen space instead of the texture space thus comput-

ing only visible pixels. However, in all these works, either

static scene is assumed, or the viewing distance and per-

spective are not expected to be entirely free in the 3D space.

However, for telepresence, the ability to animate the face in

realtime and render it from any possible viewing angle and

distance is crucial.

In this paper, we present Pixel Codec Avatars (PiCA) that

aims to achieve efficient and yet high fidelity dynamic hu-

man face rendering that is suitable for multi-person telep-

resence in VR on devices with limited compute. To avoid

wasteful computation in areas of the face that do not con-

tribute to the final rendering, PiCA employs per-pixel de-

coding only in areas of the image covered by a rasteriza-

tion of the geometry. Similar to recent advances in im-

plicit neural rendering [11, 17, 21], this decoder relies on

a rich face-centric position encoding to produce highly de-

tailed images. We employ two strategies to generate such

encodings efficiently. First, we make use of the spatially-

shared computation of convolutional networks in texture

space to produce spatially varying expression- and view-

specific codes at a reduced resolution (256×256). This is

complemented by a pre-computed high resolution (1K×1K)

learned non-parametric positional encoding, that is jointly

rasterized into screen space similarly to [24]. To achieve

an even higher resolution result, we further compliment the

signal with 1D positional encodings at 10K resolution, in-

dependently for the horizontal and vertical dimensions of

the texture domain. Together, these maps enable the model-

ing of sharp spatial details present in high resolution facial

images. Because the best encoding values for the UV coor-

dinates are directly learned from data, a low 8-dimensional

encoding is sufficient to recover high frequencies. This is

in contrast to existing positional encoding schemes (e.g.

[11]) that achieve high details using sinusoidal functions,

but require increasing the dimensionality by 20×, with cor-

responding computational costs. Secondly, in contrast to

other works such as [24, 2, 27], we do not employ convo-

lutions in screen space, but instead apply a shallow MLP at

each contributing pixel. This has the advantage of avoiding

visual artifacts during motion and stereo inconsistencies, as

well as challenges in generalizing to changes in scale, rota-

tion and perspective, all of which are common in interactive

immersive 3D media.

Our other main insight is that the complexity of view-

dependent appearance in prior work stems mostly from in-

adequate geometric models of the face. Recent work into

implicit scene modeling (i.e. NeRF [11]) has demonstrated

that complex view dependent effects such as specularity can

be adequately modeled using a shallow network given good

estimates of the scene’s geometry. Inspired by these results,

our construction involves a variational geometry decoder

that is learned in a self-supervised manner, using image and

depth reconstruction as a supervisory signal. The resulting

mesh acquired from this decoder contains more accurate

geometry information, substantially simplifying the view-

dependent texture generation task, allowing for the use of

lightweight pixel-wise decoding.

Contributions: Our contributions are as follows:

• We propose Pixel Codec Avatar, a novel light weight

representation that decodes only the visible pixels on

the avatar’s face in the screen space towards enabling

high fidelity facial animation on compute-constrained

platforms such as mobile VR headsets.

• We make the two major technical innovations to

achieve high quality decoding with a small model:

learned positional encoding functions and fully con-

volutional dense mesh decoder trained in a weakly-

supervised fashion.

2. Related Works

2.1. Deep 3D Morphable Face Models

3D Morphable Face Models (3DMFM) are a generative

model for 3D human faces. The early works explore ways

to represent human facial deformations and appearance with

linear subspace representations. Blanz et al. [4] models

shape and texture of human faces as vector spaces and gen-

erates new faces and expressions as linear combinations of

the prototype vectors. Since then, blendshape models have

been extensively studied and applied in animation - [9] pro-

vides a good overview of such methods. To achieve highly

expressive models, a large number of blendshapes need to
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be manually created and refined, e.g. the character of Gol-

lum in the movie Lord of the Rings had 946 blendshapes

taking over a year’s time to create [12].

In recent years, deep learning techniques, especially gen-

erative models such as Variational Auto-Encoder (VAE) [8]

and Generative Adversarial Networks (GAN) [7] have been

actively studied for creating non-linear 3D Morphable Face

Model analogues. Tewari et al. [23] propose a deep con-

volutional architecture for monocular face reconstruction,

learned from morphable models. Lombardi et al. [10] pro-

pose to jointly model face shape and appearance with a

VAE: the encoder encodes the facial mesh and texture into

latent code with fully connected layers and convolutional

layers respectively, and the decoder decodes back the facial

mesh and view direction conditioned texture with fully con-

nected layers and transposed convolutional layers respec-

tively. This model has been referred to as a Codec Avatar

by several subsequent works [26, 6, 15, 14] which animate

this model using visual and/or audio sensory data. Tran et

al. [25] also use an autoencoder to model geometry and tex-

ture, but train the model from unconstrained face images

using a rendering loss. Bagautdinov et al. [3] uses a com-

positional VAE to model details of different granularities

of facial geometry via multiple layers of hidden variables.

Ranjan et al. [13] directly applies mesh convolution to build

a mesh autoencoder while Zhou et al. [28] extends this idea

and jointly models texture and geometry with mesh convo-

lution, leading to a colored mesh decoder.

Generative Adversarial Network (GAN) is also explored.

Among the first works that use GAN models to build

3DMFM, Slossberg et al. [18] build a GAN model that gen-

erates realistic 2D texture image as well as coefficients of a

PCA based facial mesh model. Abrevaya et al. [1] maps

mesh to geometry image (i.e. equivalent to position map

in this paper) and builds a GAN model of the mesh that

has decoupled expression and identity codes, and the de-

coupling is achieved with auxilary expression and identity

classification tasks during training. Shamai et al. [16] also

maps mesh into geometry image and builds GAN models

using convolutional layers for both geometry and texture.

Cheng et al. [5] proposes GAN model of facial geometry

with mesh convolution.

The most distinctive feature of PiCA against the pre-

vious 3DMFM is that the pixel decoder decodes color at

each pixel given underlying geometry that is generated and

rasterized to screen space, hence adaptive resolution and

computational cost is achieved. In contrast, in all previ-

ous methods, texture is either modeled as a 2D texture map

[10, 25, 18] thus fixing the output resolution, or is modeled

at mesh vertices [28, 16], thus mesh density determines the

rendering resolution. Another advantage is that our method

explicitly models the correlation between geometry and tex-

ture in the per-object decoding step, which is lacking in

most previous 3D DFMM models.

2.2. Neural Rendering

Our method is also related to recent works on Neu-

ral Rendering and [22] provides a good survey of recent

progress in this direction. In particular, Thies et al. [24] pro-

pose deferred neural rendering with a neural texture, which

in spirit is close to our work: neural textures, i.e. a feature

output from a deep neural net, is rasterized to screen space

and another neural net, i.e. the neural renderer, computes

colors from it. However, their work does not target realtime

animation or dynamics, and the usage of a heavy U-Net for

rendering the final result is not possible in our setting. Aliev

et al. [2] proposes neural point-based graphics, in which

the geometry is represented as a point cloud. Each point is

associated with a deep feature, and a neural net computes

pixel values based on splatted feature points. While be-

ing very flexible in modeling various geometric structures,

such point-cloud based methods are not yet as efficient as

mesh-based representations for modeling dynamic faces,

for which the topology is known and fixed. Yariv et al.

[27] models the rendering equation with a neural network

that takes the viewing direction, 3D location and surface

normals as input. Mildenhall et al. [11] proposes a method

for synthesizing novel views of complex scenes and mod-

els the underlying volumetric scene with a MLP: the MLP

takes a positional encoded 3D coordinate and view direction

vector and produces pixel values. A closely related idea

is presented in [17], where a MLP with sinusoidal activa-

tion functions is used to map locations to colors. The spec-

tral properties of mapping smooth, low-dimensional input

spaces to high-frequency functions using sinusoidal encod-

ings was further studied in [21]. Our method is inspired by

these methods in using the Pixel Decoder to render image

pixels, but we make innovations to adapt these ideas for the

problem of creating high-quality 3DMFM with lightweight

computations, including a learned positional encodings and

a dense geometry decoder.

3. Pixel Codec Avatar

The Pixel Codec Avatar is a conditional variational auto-

encoder (VAE) where the latent code describes the state of

the face (e.g., facial expression) and the decoder produces

realistic face images (see Fig.2) conditioned on a viewing

direction. At runtime, latent codes can be produced using

a face tracker to estimate the facial expression (e.g., from

cameras mounted on a VR headset [10, 26, 6]), and the esti-

mated code can be used to decode and render realistic face

images. At training time, a variational encoder is used to

produce the latent codes using multiview training data, sim-

ilarly to Lombardi et al. [10] (see Fig. 3(a)). The decoder

distributes computation across two phases: the Per-Object

Decoding produces the dense mesh and a small map of view
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Figure 2. A Pixel Codec Avatar renders realistic faces by decoding the color of each rasterized or raycast pixel using a shallow SIREN

[17] that takes as input a local expression code, z, the 3D coordinates in object space, x, and the positional encoded surface coordinates,

u, (Section 4). This particular combination allows the feature dimensions and network size to remain small and computationally efficient

while retaining image fidelity (Section 6). The local expression codes and geometry are decoded using fully convolutional architectures

from a global latent code and the viewing direction (Section 3), and require only small resolutions of 256×256. Learnable components (in

blue) are supervised on multiview images, depth, and tracked coarse mesh.

conditioned expression codes (Left of Fig.2), and the Per-

Pixel Decoding computes the on-screen facial pixel values

after determining visibility through rasterization or raycast-

ing. We use a pixel decoder f in this second step:

c = f(p), p = [z,x,u] (1)

where c is the decoded RGB color for a facial pixel, and

p is the feature vector for that pixel which is concatena-

tion of the local facial expression code z, the encoded face-

centric 3D coordinates x, and the encoded surface coordi-

nates (UV) u. We parameterize f as a small SIREN (see

Fig. 2) and we describe the encoding inputs in Section 4.

The right side of Fig.2 illustrates the Per-Pixel Decoding.

We outline the major components:

Encoder (see Fig. 3)(a)) encodes the average texture, com-

puted over unwrapped textures of all camera views, and a

tracked mesh into a latent code. Note this tracked mesh is

coarse, containing 5K vertices, and doesn’t contain vertices

for tongue and teeth. We only assume availability of such

coarse mesh for training because face tracking using dense

mesh over long sequences with explicit teeth and tongue

tracking is both challenging and time consuming. Requiring

only coarse mesh in training makes our method more prac-

tical. In Lombardi et al. [10], the 3D coordinates of mesh

vertices are encoded using a fully connected layer and fused

with texture encoder; in contrast, we first convert the mesh

into a position map using a UV unwrapping of the mesh.

Joint encoding of the geometry and texture is then applied,

and the final code is a grid of spatial codes, in our case an

8x8 grid of 4 dimensional codes.

Geometry Decoder takes the latent code as input and de-

codes a dense position map describing face-centric 3D co-

Figure 3. (a) The encoder. (b) The basic block in the geometry

decoder and expression decoder.

ordinates at each location. The architecture is fully convo-

lutional, and the basic building block is shown in Fig. 3(b).

We convert the position map to a dense mesh by sampling

at each vertex’s UV coordinates, and rasterize it to deter-

mine visible pixels. In our experiments, the position map is

256×256 and the extracted dense mesh has 65K vertices.

Expression Decoder uses the latent code and the viewing

direction to decode a low resolution, view-dependent map

of local codes. It consists of the decoder block in Fig. 3(b)

and the output map is 256×256 in our experiments.

Pixel Decoder decodes the color at each facial pixel given

p. Specifically, rasterization determines whether a screen

pixel corresponds to a visible mesh point, and, if so, the

triangle id and barycentric coordinates of the mesh point.

This allows us to compute the encoding inputs p from the

expression map, the vertex coordinates, and the UV coordi-

nates of the triangle. Inspired by the pixel-wise decoding of

67



images in Sitzmann et al. [17], the pixel decoder is designed

as a SIREN. However, we use a very lightweight network

by design, with 4 layers and a total of 307 parameters. We

utilize effective encoding in u to produce facial details with

such a light model, described in Section 4.

4. Positional Encodings for Pixel Decoders

While neural networks and MLPs in particular can repre-

sent functions of arbitrary complexity when given sufficient

capacity, lightweight MLPs tend to produce low-frequency

outputs when given smoothly varying inputs [17, 21, 11].

Thus, given only the smooth face-centric coordinates and

surface coordinates as input, a lightweight pixel decoder

tends to produce smooth output colors for neighboring pix-

els, leading to a loss of sharpness in the decoded image. In-

stead, we encode information about such spatial discontinu-

ities at the input of the Pixel Decoder using two strategies:

a low resolution local expression code z for dynamics, and

a learned non-parametric positional encoding u of surface

coordinates for detail. These complement the mesh coor-

dinate input x, which encodes face-centric xyz coordinates

using a two-layer SIREN.

Facial Expression Positional Encodings The global ex-

pression code, i.e. output of the Encoder, is decoded to a

low resolution map of local expression codes (bottom left of

Fig.2) and is further rasterized to the screen space (bottom

middle in Fig.2). This leads to a low dimensional encoding

z of local facial expression at each pixel position. We find it

crucial to use the local expression codes for decoding high

fidelity facial dynamics.

Facial Surface Positional Encodings The local expression

codes are too low resolution to capture high-frequency de-

tails. We therefore additionally provide the pixel decoder

with a positional encoding u of the facial surface coor-

dinates (u, v) at each pixel. While generic positional en-

codings such as sinusoids [11] may achieve highly detailed

reconstructions, they require a large number of frequency

levels and therefore high dimensionality, incurring compu-

tational cost. Instead, we dramatically reduce the dimen-

sionality of the input features by designing a learned non-

parametric positional encoding function,

u = [muv(u, v), mu(u), mv(v)] (2)

where muv jointly encodes both u and v; mu and mv en-

codes u and v respectively. We directly model muv , mv

and mu as non-parametric functions that retrieve a low-

dimensional encoding from a learned encoding map given

(u, v). Specifically, muv retrives a 4 dimensional vector

from a 1024×1024×4 encoding map at position (u, v) us-

ing bilinear interpolation; and, similarly, mu and mv re-

trieve 2-dimensional vectors from two separate 10000x1

maps respectively. All three maps are jointly learned with

the rest of the model. Intuitively, muv , mu, and mv are

piece-wise linear functions with 1K×1K breakpoints in 2D,

and 10K breakpoints in 1D respectively, and the break-

points’ values in the maps contain spatial discontinuity in-

formation on the face surface, learned directly from the

data. We use 1D encoding functions mu and mv in addi-

tion to the 2D encoding function muv as a cost-effective

way to model higher resolution while avoiding a quadratic

increase in model parameters. Empirically, we found that

the combination of the two generates better reconstructions

than using either one in isolation (Section 6.2).

5. Joint Learning with a Dense Mesh Decoder

The geometry used for pixel decoders needs to be ac-

curate and temporally corresponded to prevent the pixel

decoders from having to compensate for geometric mis-

alignments via complex view-dependent texture effects. To

achieve this, we learn the variational decoder of geometry

and expression jointly with the pixel decoder.

We use a set of multiview images, Ict , (i.e., image from

camera c at frame t), with calibrated intrinsics Kc and ex-

trinsics, Rc|tc. For a subset of frames we compute depth

maps Dc
t using multiview stereo (MVS). Additionally, we

use a vision-based face tracker to produce a coarse mesh

Mt represented as a position map to provide rough tempo-

ral correspondences. Note, however, that the input tracked

mesh is low resolution, lacking detail in difficult to track ar-

eas like the mouth and eyes (Fig. 4(c)). Intuitively, the more

accurate the geometry is, the easier and better the pixel de-

coder may decode the pixel’s color. Therefore, our geome-

try decoder generates a position map G of a dense mesh of

∼65K vertices, including the mouth interior, without direct

supervision from a tracked dense mesh (Fig. 4(d)).

For each training sample, we compute an average texture

T
avg
t by backprojecting the camera images onto the coarse

tracking mesh, similarly to [10]. The texture and the posi-

tion map computed from the coarse mesh are used as input

to the convolutional encoder, E(·), Fig. 3(a), to produce the

latent code Z=E(Tavg
t ,Mt) ∈ R

8×8×4, where the chan-

nel dimension is last. Additionally, we compute the cam-

era viewing direction as RT
c tc normalized to unit length,

in face-centric coordinates. We tile this vector into an 8x8

grid V∈R8×8×3. The geometry and expression decoders in

Fig. 2 produce the geometry and local codes,

G = Dg(Z), E = De(Z,V), (3)

where G∈R256×256×3 is a position map, and

E∈R256×256×4 is a map of expression codes. The

position map is sampled at each vertex’s UV coordinates to

produce a mesh for rasterization. Rasterization assigns to a

pixel at screen position s its corresponding uv coordinates

and face-centric xyz coordinates, from which the encoding
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(a) Camera 

Image

(c) Input

Mesh

(d) Learned 

Dense Mesh
(e) Render

(b) Input

Depth
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Figure 4. We supervise on (a) images, (b) depth, and (c) a coarse

tracking mesh of 7K vertices, from which we learn a corresponded,

dense face mesh (d) at a higher resolution of 65K vertices, even

in places where the coarse tracked mesh provides no information.

The final render (e) can represent difficult-to-track expressions,

e.g., involving the tongue.

p is derived as described in Sect. 4. The final pixel color is

decoded producing a rendered image, Îct(s)=f(p). At each

SGD step, we compute a loss

L = λiLI +λdLD +λnLN +λmLM +λsLS +λklLKL ,

(4)

where LI=||Ict−Îct ||2 measures image error, and

LD=||(Dc
t−D̂c

t) ⊙ WD||1 measures depth error, where

WD is a mask selecting regions where the depth error

is below a threshold of 10mm. We additionally use a

normal loss, LN=||(N(Dc
t)−N(D̂c

t))⊙WD||2 where

N(·) computes normals in screen space and encourages

sharper geometric details. The remaining terms are regu-

larizations: LM=||(S(G)−S(Mt))⊙WM ||2, where S(·)
is a function that samples the position map at the vertex

UVs, penalizes large deviations from the coarse tracking

mesh using a mask WM to avoid penalizing the mouth area

(where the tracked mesh is inaccurate). LS is a Laplacian

smoothness term [19] on the dense reconstructed mesh.

These terms prevent artifacts in the geometry stemming

from noise in the depth reconstructions, images with no

depth supervision, and noisy SGD steps. Implementation

details for the smoothness term and on how differentiable

rendering is used to optimize these losses can be found in

the supplemental materials. LKL is the Kullback-Leibler

divergence term of the variational encoder.

The above procedure recovers detailed geometry in the

decoded dense mesh that is not captured in the input tracked

meshes. Especially note-worthy is the automatic assign-

ment of vertices inside the mouth to the teeth and tongue,

as well as hair, see Fig. 6 for examples.

6. Experiments

Experiment Setting We evaluate our model on 6 identities

on 5 different viewing directions: front, upward, downward,

left and right (see example images in the supplemental ma-

terial). We capture multiview video data for each identity

using two face capture systems: Subject 1-4 are captured

Model Front Up Down Left Right

S1

Baseline 23.03 20.78 18.13 16.32 18.97

Full 21.39 19.71 17.52 15.52 18.00

No-UV 22.16 20.38 18.28 16.27 18.57

Coarse 21.64 20.04 17.84 16.02 18.69

S2

Baseline 19.53 20.90 16.62 15.44 13.52

Full 18.31 19.96 16.36 14.28 12.14

No-UV 19.34 20.52 17.61 15.40 13.29

Coarse 19.88 21.62 17.97 15.97 13.92

S3

Baseline 24.41 22.83 16.54 16.09 16.81

Full 23.11 22.22 16.04 15.29 15.64

No-UV 23.95 22.99 16.42 15.86 16.12

Coarse 23.94 23.04 16.44 15.81 16.79

S4

Baseline 7.26 6.03 7.34 7.15 7.76

Full 6.81 5.78 7.33 7.05 7.63

No-UV 7.20 6.13 7.40 7.32 8.05

Coarse 7.19 6.02 7.48 7.21 8.25

S5

Baseline 9.20 10.87 7.24 7.27 6.54

Full 8.74 10.37 7.16 7.09 6.53

No-UV 9.06 10.96 7.39 7.46 6.76

Coarse 9.09 10.64 7.49 7.49 6.56

S6

Baseline 6.86 6.53 5.85 5.66 5.29

Full 6.22 6.06 5.39 4.97 4.95

No-UV 6.86 6.72 5.85 5.90 5.62

Coarse 6.54 6.33 5.69 5.29 5.16

Table 1. MSE on pixel values of the rendered images against the

ground truth images on test set, evaluated on 5 views. Baseline is

the model in [10]; Full is our model PiCA (Fig.2), No-UV is PiCA

variant that is not using surface coordinates; Coarse is PiCA vari-

ant that decodes coarse mesh (7K vertices). Full PiCA model con-

sistently outperform others on all tested identities over all views.

Model Front Up Down Left Right

S1

Full 21.39 19.71 17.52 15.52 18.00

NERF-PE 21.85 20.10 17.86 15.90 18.61

UV-NoPE 21.45 19.93 17.70 15.98 18.53

2D-PE 21.56 19.85 17.97 15.98 18.80

1D-PE 21.40 19.67 17.60 15.70 18.29

S2

Full 18.31 19.96 16.36 14.28 12.14

NERF-PE 18.99 20.35 17.35 15.19 13.18

UV-NoPE 19.17 20.51 17.53 15.40 13.29

2D-PE 19.05 20.23 17.47 15.02 13.02

1D-PE 19.30 20.61 17.64 15.43 13.39

S6

Full 6.22 6.06 5.39 4.97 4.95

NERF-PE 6.41 6.16 5.60 5.29 5.14

UV-NoPE 6.59 6.53 5.68 5.33 5.24

2D-PE 6.28 6.00 5.48 5.26 5.09

1D-PE 6.58 6.39 5.68 5.26 5.21

Table 2. Ablation on usage of UV coordinates: encoding with

learned encoding maps (Full), directly using UV (UV-NoPE), en-

coding with sinusoidal functions [11] (NERF-PE ), joint encoding

only (2D-PE) and separate encoding only (1D-PE)

with 40 cameras with 50mm focal length, while Subject 5

and 6 are captured with 56 cameras at 35mm focal length.

We use images of size 2048×1334 for training and testing.

The data of each identity consists of expressions, range of

facial motion, and reading sentences. We randomly select

expressions and sentence readings as testing data, leading to
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18cm (2.7M) 65cm (0.9M) 120cm (0.2M)

DSP Step
Baseline 44.76 ms 44.76 ms 44.76 ms

PiCA 2.16 ms 2.16 ms 2.16ms

GPU Step
Baseline 2.67 ms 2.47 ms 1.94 ms

PiCA 8.70 ms 3.27 ms 2.70 ms

Table 3. Runtime performance on the Oculus Quest 2, measured at

3 different avatar distances (the numbers in parenthesis are avatar

pixels to render). Note that 60-120cm are typical interpersonal

distances [20], while 18cm would be considered intimate.

Figure 5. The MSE distribution over test expressions, sorted in de-

creasing order for the Full model: x-axis is expressions and y-axis

is MSE. We can see that the performance of our model is similar

or better than the baseline across expressions for all identities.

∼12K frames for training and ∼1K frames for testing per

identity. The total number of images is roughly the num-

ber of frames multiplied by the number of cameras. All

models are trained with batchsize 4, at learning rate 0.001,

for 400000 iterations. The weights for different loss terms

in Eq. 4 for λi, λd, λn, λm, λs and λkl are set to 2, 10,

1, 0.1, 1 and 0.001 respectively. We report Mean Squared

Error (MSE) between rendered image and original image

on rasterized pixels on testing data as the evaluation metric

for reconstruction quality. Note that the results of different

identities are not directly comparable due to different cam-

era settings and subject appearance such as facial skin tone

and hair style.

6.1. Overall Performance

The baseline model has 19.08M parameters and PiCA

has 5.47M. In particular, the pixel decoder of PiCA only

has 307 parameters. When rendering 5 avatars (evenly

spaced in a line, 25cm between neighboring pair) in the

same scene on a Oculus Quest 2, PiCA runs at ∼50 FPS

on average, showing the possibility of multi-way telep-

resence call. In Table 1 and Fig. 5 we report quantita-

tive comparisons which show PiCA consistently achieves

better reconstruction across all tested identities, expres-

sions and views, despite a 3.5× reduction in model size

and much faster computation (Table 3). Specifically, Ta-

ble 1 compares the reconstruction quality over 5 views, av-

eraged over all testing expressions. Fig. 5 plots MSE values

of Full and Baseline over all testing expressions (sorted in

decreasing order of Full’s results). Qualitative examples are

shown in Fig. 6 and we invite the readers to see more high

resolution results in supplemental materials. Example re-

sult frames for both our Full model (left) and the baseline

model (right) are shown, and we also show local regions at

higher resolution for closer inspection. Overall, both mod-

els produce very realistic looking faces. Our model pro-

duces sharper results in many facial regions, especially the

selected regions showing teeth, tongue, and hair.

6.2. Ablation Studies

UV Positional Encoding Many details of the facial surface

is represented as discontinuities in color values in neigh-

boring pixels, e.g. a skin pixel adjacent to a hair pixel.

We model such discontinuities with learned encoding maps

such that the encoding function is piece-wise linear with the

map entries as the learned breakpoint values (Section 4). In

this section, we study the benefit of this proposed method.

We train a PiCA variant No-UV that does not use UV co-

ordinates for decoding pixel values. In Table 1 one can see

that Full PiCA model consistently outperforms the No-UV

variant, showing clear advantage of using encoded UV co-

ordinates. We Further compare our approach with directly

using UV without encoding, and encoding UV with sinu-

soidal functions [11]. We train two additional PiCA variants

UV-NoPE that uses UV without any encoding, and NERF-

PE that encodes UV using the encoding function of [11] (a

40-dimensions code compared to 8-dimensions for Eq. (2)).

The comparison results are shown in Table 2. The Full

model consistently outperforms both variants over all tested

views and subjects, proving the effectiveness of encoding

UV with learned encoding maps. We also ablate on our en-

coding scheme: we train a PiCA variant 2D-PE that only

performs 2D joint encoding (muv in Eq. (2)) and 1D-PE

that only performs 1D separate encodings (mu,mv). The

comparison results are shown in Table 2. The Full PiCA

model combining both joint encoding and 1D encodings

outperforms these two variants, showing that the two en-

coding methods are complementary and by combining both

we can achieve consistent performance improvement.

Dense Mesh Decoder In Fig. 6, we show depth images

alongside the rendered images. The dense mesh gener-

ated by our model contains more geometry information and

the corresponding rendered images are sharper: in partic-

ular, one may inspect the teeth, tongue and hair regions.

In Fig. 7 we compare novel viewpoint rendering results of

Full and Baseline at a viewing position that is very close

to the mouth: there are no such views in our training set.

While the baseline results look like a pasted plane inside

the mouth, ours look more realistic thanks to the more ac-

curate geometry in the generated dense mesh e.g. at teeth,

tongue and lips. For quantitative study, we train a PiCA

model variant Coarse which decodes coarse meshes of the

same topology used in [10]. In Table 1, we evaluate it on
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Figure 6. Example rendered faces comparing our Full model (left) with the baseline [10] (right). For each example, we show the rendered

full face and the depth image, and close looks for two facial regions. The visual qualities of rendered images are good for both models,

while our model produce sharper details at teeth, tongue and hair. The depth images show more geometry details generated by our model.

Figure 7. Rendering at a novel viewing position, much closer to the

mouth than any training views. Two example frames are shown

with the rendered depth as well: left column is PiCA Full, and

right is the Baseline model [10], best viewed when magnified.

the test set, and the results show it being consistently infe-

rior to the Full PiCA model, illustrating the benefit of the

dense geometry decoder in the Pixel Codec Avatar.

6.3. Runtime Performance on Mobile SoC

We present runtime performance on a Oculus Quest 2

VR headset 1 in Table 3. We measure the time spent on

both the DSP (Digital-Signal-Processing unit) and the GPU

steps - note the two steps are pipelined at runtime. There is

20× reduction for DSP time from Baseline to PiCA. Over-

all, Baseline runs at ∼22 FPS, while PiCA hits the Quest 2’s

1The baseline model and the geometry and expression decoders of

PiCA are 8-bit quantized to execute on the DSP, with small quality drops.

maximum framerate at 90 FPS. While the baseline model

always decodes entire texture map of the avatar head at fixed

resolution, PiCA decodes only visible regions with resolu-

tion adaptive to the distance of the avatar. Further more,

PiCA allows a pipelined decoding process balanced in com-

putation load distribution on a mobile SoC: while the per-

object decoding needs to be done on the DSP for the convo-

lution operations, the lightweight pixel decoder can be im-

plemented in the highly optimized fragment shader so that

the per-pixel decoding can be done on the GPU. In con-

trast, for the baseline model the decoding computation of

the mesh and the texture needs to be done entirely on the

DSP and the GPU only performs the final rendering given

decoded texture and mesh.

7. Conclusion and Future Work

We present the Pixel Codec Avatar as a high quality
lightweight deep deformable face model, as a potential tech-
nology for enabling multi-person telecommunication in vir-
tual reality on a mobile VR headset. This work only fo-
cuses on the decoder and we can follow the method in
Wei et al. [26] to build the encoder for the telepresence
communication system. Achieving high fidelity low la-
tency telepresence communication by improving the en-
coder and decoder models is the main direction for future
work.
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