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Figure 1: SCALE. Given a sequence of posed but minimally-clothed 3D bodies, SCALE predicts 798 articulated surface

elements (patches, each visualized with a unique color) to dress the bodies with realistic clothing that moves and deforms

naturally even in the presence of topological change. The resulting dense point sets have correspondence across different

poses, as shown by the consistent patch colors. The result also includes predicted surface normals and texture, with which

the point cloud can either be turned into a 3D mesh or directly rendered as realistic images using neural rendering techniques.

Abstract

Learning to model and reconstruct humans in clothing

is challenging due to articulation, non-rigid deformation,

and varying clothing types and topologies. To enable learn-

ing, the choice of representation is the key. Recent work

uses neural networks to parameterize local surface ele-

ments. This approach captures locally coherent geome-

try and non-planar details, can deal with varying topol-

ogy, and does not require registered training data. How-

ever, naively using such methods to model 3D clothed hu-

mans fails to capture fine-grained local deformations and

generalizes poorly. To address this, we present three key

innovations: First, we deform surface elements based on

a human body model such that large-scale deformations

caused by articulation are explicitly separated from topo-

logical changes and local clothing deformations. Second,

we address the limitations of existing neural surface ele-

ments by regressing local geometry from local features, sig-

nificantly improving the expressiveness. Third, we learn a

pose embedding on a 2D parameterization space that en-

codes posed body geometry, improving generalization to

unseen poses by reducing non-local spurious correlations.

We demonstrate the efficacy of our surface representation by

learning models of complex clothing from point clouds. The

clothing can change topology and deviate from the topol-

ogy of the body. Once learned, we can animate previously

unseen motions, producing high-quality point clouds, from

which we generate realistic images with neural rendering.

We assess the importance of each technical contribution

and show that our approach outperforms the state-of-the-

art methods in terms of reconstruction accuracy and infer-

ence time. The code is available for research purposes at

https://qianlim.github.io/SCALE.

1. Introduction

While models of humans in clothing would be valuable

for many tasks in computer vision such as body pose and

shape estimation from images and videos [9, 15, 31, 32, 35,

36] and synthetic data generation [60, 61, 71, 83], most ex-

isting approaches are based on “minimally-clothed” human

body models [2, 30, 42, 49, 54, 75], which do not repre-

sent clothing. To date, statistical models for clothed hu-

mans remain lacking despite the broad range of potential

† Now at Facebook Reality Labs.
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applications. This is likely due to the fact that modeling 3D

clothing shapes is much more difficult than modeling body

shapes. Fundamentally, several characteristics of clothed

bodies present technical challenges for representing cloth-

ing shapes.

The first challenge is that clothing shape varies at dif-

ferent spatial scales driven by global body articulation and

local clothing geometry. The former requires the repre-

sentation to properly handle human pose variation, while

the latter requires local expressiveness to model folds and

wrinkles. Second, a representation must be able to model

smooth cloth surfaces and also sharp discontinuities and

thin structures. Third, clothing is diverse and varies in terms

of its topology. The topology can even change with the mo-

tion of the body. Fourth, the relationship between the cloth-

ing and the body changes as the clothing moves relative to

the body surface. Finally, the representation should be com-

patible with existing body models and should support fast

inference and rendering, enabling real-world applications.

Unfortunately, none of the existing 3D shape representa-

tions satisfy all these requirements. The standard approach

uses 3D meshes that are draped with clothing using physics

simulation [3, 38, 41]. These require manual clothing de-

sign and the physics simulation makes them inappropriate

for inference. Recent work starts with classical rigged 3D

meshes and blend skinning but uses machine learning to

model clothing shape and local non-rigid shape deforma-

tion. However, these methods often rely on pre-defined gar-

ment templates [8, 37, 45, 53], and the fixed correspondence

between the body and garment template restricts them from

generalizing to arbitrary clothing topology. Additionally,

learning a mesh-based model requires registering a com-

mon 3D mesh template to scan data. This is time consum-

ing, error prone, and limits topology change [56]. New neu-

ral implicit representations [12, 46, 51], on the other hand,

are able to reconstruct topologically varying clothing types

[13, 16, 65], but are not consistent with existing graphics

tools, are expensive to render, and are not yet suitable for

fast inference. Point clouds are a simple representation that

also supports arbitrary topology [21, 39, 77] and does not

require data registration, but highly detailed geometry re-

quires many points.

A middle ground solution is to utilize a collection of

parametric surface elements that smoothly conform to the

global shape of the target geometry [20, 25, 80, 82, 84].

As each element can be freely connected or disconnected,

topologically varying surfaces can be effectively modeled

while retaining the efficiency of explicit shape inference.

Like point clouds, these methods can be learned without

data registration.

However, despite modeling coherent global shape, exist-

ing surface-element-based representations often fail to gen-

erate local structures with high-fidelity. The key limiting

factor is that shapes are typically decoded from global la-

tent codes [25, 80, 82], i.e. the network needs to learn both

the global shape statistics (caused by articulation) and a

prior for local geometry (caused by clothing deformation)

at once. While the recent work of [24] shows the ability

to handle articulated objects, these methods often fail to

capture local structures such as sharp edges and wrinkles,

hence the ability to model clothed human bodies has not

been demonstrated.

In this work, we extend the surface element represen-

tation to create a clothed human model that meets all the

aforementioned desired properties. We support articulation

by defining the surface elements on top of a minimal clothed

body model. To densely cover the surface, and effectively

model local geometric details, we first introduce a global

patch descriptor that differentiates surface elements at dif-

ferent locations, enabling the modeling of hundreds of local

surface elements with a single network, and then regress

local non-rigid shapes from local pose information, produc-

ing folding and wrinkles. Our new shape representation,

Surface Codec of Articulated Local Elements, or SCALE,

demonstrates state-of-the-art performance on the challeng-

ing task of modeling the per-subject pose-dependent shape

of clothed humans, setting a new baseline for modeling

topologically varying high-fidelity surface geometry with

explicit shape inference. See Fig. 1.

In summary, our contributions are: (1) an extension of

surface element representations to non-rigid articulated ob-

ject modeling; (2) a revised local elements model that gen-

erates local geometry from local shape signals instead of

a global shape vector; (3) an explicit shape representation

for clothed human shape modeling that is robust to vary-

ing topology, produces high-visual-fidelity shapes, is eas-

ily controllable by pose parameters, and achieves fast in-

ference; and (4) a novel approach for modeling humans in

clothing that does not require registered training data and

generalizes to various garment types of different topology,

addressing the missing pieces from existing clothed human

models. We also show how neural rendering is used to-

gether with our point-based representation to produce high-

quality rendered results. The code is available for research

purposes at https://qianlim.github.io/SCALE.

2. Related Work

Shape Representations for Modeling Humans. Sur-

face meshes are the most commonly used representation

for human shape due to their efficiency and compatibil-

ity with graphics engines. Not only human body mod-

els [2, 42, 49, 75] but also various clothing models leverage

3D mesh representations as separate mesh layers [17, 26,

27, 37, 53, 67] or displacements from a minimally clothed

body [8, 45, 48, 69, 74, 79]. Recent advances in deep learn-
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ing have improved the fidelity and expressiveness of mesh-

based approaches using graph convolutions [45], multilayer

perceptrons (MLP) [53], and 2D convolutions [29, 37]. The

drawback of mesh-based representations is that topological

changes are difficult to model. Pan et al. [50] propose a

topology modification network (TMN) to support topologi-

cal change, however it has difficulty learning large topolog-

ical changes from a single template mesh [85].

To support various topologies, neural implicit sur-

faces [46, 51] have recently been applied to clothed human

reconstruction and registration [6, 65]. The extension of

implicit surface models to unsigned distances [14] or prob-

ability densities [10] even allows thin structures to be rep-

resented with high resolution. Recent work [23] also shows

the ability to learn a signed-distance function (SDF) di-

rectly from incomplete scan data. Contemporaneous with

our work, SCANimate [66], learns an implicit shape model

of clothed people from raw scans. Also contemporaneous

is SMPLicit [16], which learns an implicit clothing repre-

sentation that can be fit to scans or 2D clothing segmenta-

tions. Despite the impressive reconstruction quality of im-

plicit methods, extracting an explicit surface is time con-

suming but necessary for many applications.

Surface element representations [20, 25, 73, 80] are

promising for modeling clothing more explicitly. These

methods approximate various topologies with locally co-

herent geometry by learning to deform single or multiple

surface elements. Recent work improves these patch-based

approaches by incorporating differential geometric regular-

ization [4, 19], demonstrating simple clothing shape recon-

struction. Although patch-based representations relax the

topology constraint of a single template by representing

the 3D surface as the combination of multiple surface el-

ements, reconstruction typically lacks details as the num-

ber of patches is limited due to the memory requirements,

which scale linearly with the number of patches. While

SCALE is based on these neural surface representations, we

address the limitations of existing methods in Sec. 3.1, en-

abling complex clothed human modeling.

Articulated Shape Modeling. Articulation often domi-

nates large-scale shape variations for articulated objects,

such as hands and human bodies. To efficiently represent

shape variations, articulated objects are usually modeled

with meshes driven by an embedded skeleton [2, 42, 62].

Mesh-based clothing models also follow the same princi-

ple [26, 37, 45, 48, 53], where shapes are decomposed into

articulated deformations and non-rigid local shape deforma-

tions. While the former are explained by body joint trans-

formations, the latter can be efficiently modeled in a canon-

ical space. One limitation, however, is that registered data

or physics-based simulation is required to learn these de-

formations on a template mesh with a fixed topology. In

contrast, recent work on articulated implicit shape model-

ing [18, 47, 66] does not require surface registration. In this

work we compare with Deng et al. [18] on a clothed human

modeling task from point clouds and show the superiority

of our approach in terms of generalization to unseen poses,

fidelity, and inference speed.

Local Shape Modeling. Instead of learning 3D shapes

solely with a global feature vector, recent work shows that

learning from local shape variations leads to detailed and

highly generalizable 3D reconstruction [11, 13, 22, 52, 55,

64, 70]. Leveraging local shape priors is effective for 3D

reconstruction tasks from 3D point clouds [11, 13, 22, 28,

55, 70] and images [52, 64, 76]. Inspired by this prior work,

SCALE leverages both local and global feature representa-

tions, which leads to high-fidelity reconstruction as well as

robust generalization to unseen poses.

3. SCALE

Figure 2 shows an overview of SCALE. Our goal is to

model clothed humans with a topologically flexible point-

based shape representation that supports fast inference and

animation with SMPL pose parameters [42]. To this end,

we model pose-dependent shape variations of clothing us-

ing a collection of local surface elements (patches) that

are associated with a set of pre-defined locations on the

body. Our learning-based local pose embedding further im-

proves the generalization of pose-aware clothing deforma-

tions (Sec. 3.1). Using this local surface element represen-

tation, we train a model for each clothing type to predict a

set of 3D points representing the clothed body shape given

an unclothed input body. Together with the predicted point

normals and colors, the dense point set can be meshed or

realistically rendered with neural rendering (Sec. 3.2).

3.1. Articulated Local Elements

While neural surface elements [25, 80, 82, 84] offer lo-

cally coherent geometry with fast inference, the existing

formulations have limitations that prevent us from applying

them to clothed-human modeling. We first review the exist-

ing neural surface elements and introduce our formulation

that addresses the drawbacks of the prior work.

Review: Neural Surface Elements. The original methods

that model neural surface elements [25, 80] learn a function

to generate 3D point clouds as follows:

fw(p; z) : R
D × R

Z → R
3, (1)

where fw is a multilayer perceptron (MLP) parameterized

by weights w, p ∈ R
D is a point on the surface element,

and z ∈ R
Z is a global feature representing object shape.

Specifically, fw maps p on the surface element to a point

on the surface of a target 3D object conditioned by a shape

code z. Due to the inductive bias of MLPs, the resulting

3D point clouds are geometrically smooth within the ele-
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Figure 2: Method overview. Given a posed, minimally-clothed body, we define a set of points on its surface and associate a local element

(a square patch) with each of them. The body points’ positions in R
3 are recorded on a 2D UV positional map, which is convolved by a

UNet to obtain pixel-aligned local pose features zk. The 2D coordinates uk = (uk, vk) on the UV map, the pose features zk, and the 2D

coordinates within the local elements p = (p, q) are fed into a shared MLP to predict the deformation of the local elements in the form of

residuals from the body. The inferred local elements are finally articulated by the known transformations of corresponding body points to

generate a posed clothed human. Each patch and its corresponding body point is visualized with the same color.

ment [73]. While this smoothness is desirable for surface

modeling, to support different topologies, AtlasNet [25] re-

quires multiple surface elements represented by individual

networks, which increases network parameters and mem-

ory cost. The cost is linearly proportional to the number of

patches. As a result, these approaches limit expressiveness

for topologically complex objects such as clothed humans.

Another line of work represents 3D shapes using a col-

lection of local elements. PointCapsNet [84] decodes a lo-

cal shape code {zk}
K
k=1

, where K is the number of local

elements, into local patches with separate networks:

fwk
(p; zk) : R

D × R
Z → R

3. (2)

While modeling local shape statistics instead of global

shape variations improves the generalization and training

efficiency for diverse shapes, the number of patches is still

difficult to scale up as in AtlasNet for the same reason.

Point Completion Network (PCN) [82] uses two-stage

decoding: the first stage predicts a coarse point set of the

target shape, then these points are used as basis points for

the second stage. At each basis location bk ∈ R
3, points

p from a local surface element (a regular grid) are sampled

and fed into the second decoder as follows:

fw(bk,p; z) : R
3 × R

D × R
Z → R

3. (3)

Notably, PCN utilizes a single network to model a large

number of local elements, improving the expressiveness

with an arbitrary shape topology. However, PCN relies on

a global shape code z that requires learning global shape

statistics, resulting in poor generalization to unseen data

samples as demonstrated in Sec. 4.3.

Articulated Local Elements. For clothed human model-

ing, the shape representation needs to be not only expres-

sive but also highly generalizable to unseen poses. These

requirements and the advantages of the prior methods lead

to our formulation:

gw(uk,p; zk) : R
D1 × R

D2 × R
Z → R

3, (4)

where uk ∈ R
D1 is a global patch descriptor that pro-

vides inter-patch relations and helps the network gw distin-

guish different surface elements, and p ∈ R
D2 are the local

(intra-patch) coordinates within each surface element. Im-

portantly, our formulation achieves higher expressiveness

by efficiently modeling a large number of local elements us-

ing a single network as in [82] while improving generality

by learning local shape variations with zk.

Moreover, unlike the existing methods [24, 25, 80, 84],

where the networks directly predict point locations in R
3,

our network gw(·) models residuals from the minimally-

clothed body. To do so, we define a set of points tk ∈ R
3

on the posed body surface, and predict a local element

(in the form of residuals) for each body point: rk,i =
gw(uk,pi; zk), where pi denotes a sampled point from a

local element. In particular, an rk,i is relative to a local

coordinate system1 that is defined on tk. To obtain a local

element’s position in the world coordinate xk,i, we apply

articulations to rk,i by the known transformation Tk asso-

ciated with the local coordinate system, and add it to tk:

xk,i = Tk · rk,i + tk. (5)

Our network gw(·) also predicts surface normals as an ad-

ditional output for meshing and neural rendering, which are

also transformed by Tk. The residual formulation with ex-

plicit articulations is critical to clothed human modeling as

the network gw(·) can focus on learning local shape varia-

tions, which are roughly of the same scale. This leads to the

successful recovery of fine-grained clothing deformations

1See SupMat. for more details on the definition of the local coordinates.
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as shown in Sec. 4. Next, we define local and global patch

descriptors as well as the local shape feature zk.

Local Descriptor. Each local element approximates a con-

tinuous small region on the target 2-manifold. Following

[82], we evenly sample M points on a 2D grid and use

them as a local patch descriptor: p = (pi, qi) ∈ R
2, with

pi, qi ∈ [0, 1], i = 1, 2, · · · ,M . Within each surface el-

ement, all sampled points share the same global patch de-

scriptor uk and patch-wise feature zk.

Global Descriptor. The global patch descriptor uk in

Eq. (4) is the key to modeling different patches with a single

network. While each global descriptor needs to be unique,

it should also provide proximity information between sur-

face elements to generate a globally coherent shape. Thus,

we use 2D location on the UV positional map of the human

body as a global patch descriptor: uk = (uk, vk). While the

3D positions of a neutral human body can also be a global

descriptor as in [24], we did not observe any performance

gain. Note that Tk and tk in Eq. (4) are assigned based on

the corresponding 3D locations on the UV positional map.

Pose Embedding. To model realistic pose-dependent cloth-

ing deformations, we condition the proposed neural net-

work with pose information from the underlying body as

the local shape feature zk. While conditioning every sur-

face element on global pose parameters θ is possible, in

the spirit of prior work [37, 45, 53, 78], we observe that

such global pose conditioning does not generalize well to

new poses and the network learns spurious correlations be-

tween body parts (a similar issue was observed and dis-

cussed in [49] for parametric human body modeling). Thus,

we introduce a learning-based pose embedding using a 2D

positional map, where each pixel consists of the 3D coordi-

nates of a unique point on the underlying body mesh nor-

malized by a transformation of the root joint. This 2D po-

sitional map is fed into a UNet [63] to predict a 64-channel

feature zk for each pixel. The advantage of our learning-

based pose embedding is two-fold: first, the influence of

each body part is clothing-dependent and by training end-

to-end, the learning-based embedding ensures that recon-

struction fidelity is maximized adaptively for each outfit.

Furthermore, 2D CNNs have an inductive bias to favor local

information regardless of theoretical receptive fields [44],

effectively removing non-local spurious correlations. See

Sec. 4.3 for a comparison of our local pose embedding with

its global counterparts.

3.2. Training and Inference

For each input body, SCALE generates a point set X that

consists of K deformed surface elements, with M points

sampled from each element: |X| = KM . From its cor-

responding clothed body surface, we sample a point set Y

of size N (i.e., |Y| = N ) as ground truth. The network is

trained end-to-end with the following loss:

L = λdLd + λnLn + λrLr + λcLc, (6)

where λd, λn, λr, λc are weights that balance the loss terms.

First, the Chamfer loss Ld penalizes bi-directional point-

to-point L2 distances between the generated point set X and

the ground truth point set Y as follows:

Ld = d(x,y) =
1

KM

K
∑

k=1

M
∑

i=1

min
j

∥

∥xk,i − yj

∥

∥

2

2

+
1

N

N
∑

j=1

min
k,i

∥

∥xk,i − yj

∥

∥

2

2
.

(7)

For each predicted point xk,i ∈ X, we penalize the L1 dif-

ference between its normal and that of its nearest neighbor

from the ground truth point set: Ln =

1

KM

K
∑

k=1

M
∑

i=1

∥

∥

∥
n(xk,i)− n(argmin

yj∈Y

d(xk,i,yj))
∥

∥

∥

1

, (8)

where n(·) denotes the unit normal of the given point. We

also add L2 regularization on the predicted residual vectors

to prevent extreme deformations:

Lr =
1

KM

K
∑

k=1

M
∑

i=1

∥

∥rk,i
∥

∥

2

2
. (9)

When the ground-truth point clouds are textured, SCALE

can also represent RGB color inference by predicting an-

other 3 channels, which can be trained with an L1 recon-

struction loss:

Lc =
1

KM

∥

∥

∥
c(xk,i)− c(argmin

yj∈Y

d(xk,i,yj))
∥

∥

∥

1

, (10)

where c(·) represents the RGB values of the given point.

Inference, Meshing, and Rendering. SCALE inherits the

advantage of existing patch-based methods for fast infer-

ence. Within a surface element, we can sample arbitrarily

dense points to obtain high-resolution point clouds. Based

on the area of each patch, we adaptively sample points to

keep the point density constant. Furthermore, since SCALE

produces oriented point clouds with surface normals, we

can apply off-the-shelf meshing methods such as Ball Pivot-

ing [5] and Poisson Surface Reconstruction (PSR) [33, 34].

As the aforementioned meshing methods are sensitive to hy-

perparameters, we present a method to directly render the

SCALE outputs into high-resolution images by leveraging

neural rendering based on point clouds [1, 57, 81]. In Sec. 4,

we demonstrate that we can render the SCALE outputs us-

ing SMPLpix [57]. See SupMat for more details on the

adaptive point sampling and our neural rendering pipeline.
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4. Experiments

4.1. Experimental Setup

Baselines. To evaluate the efficacy of SCALE’s novel

neural surface elements, we compare it to two state-of-

the-art methods for clothed human modeling using meshes

(CAPE [45]) and implicit surfaces (NASA [18]). We also

compare with prior work based on neural surface elements:

AtlasNet [25] and PCN [82]. Note that we choose a

minimally-clothed body with a neutral pose as a surface el-

ement for these approaches as in [24] for fair comparison.

To fully evaluate each technical contribution, we provide an

ablation study that evaluates the use of explicit articulation,

the global descriptor uk, the learning-based pose embed-

ding using UNet, and the joint-learning of surface normals.

Datasets. We primarily use the CAPE dataset [45] for eval-

uation and comparison with the baseline methods. The

dataset provides registered mesh pairs (clothed and mini-

mally clothed body) of multiple humans in motion wearing

common clothing (e.g. T-shirts, trousers, and a blazer). In

the main paper we choose blazerlong (blazer jacket, long

trousers) and shortlong (short T-shirt, long trousers) with

subject 03375 to illustrate the applicability of our approach

to different clothing types. The numerical results on other

CAPE subjects are provided in the SupMat. In addition,

to evaluate the ability of SCALE to represent a topology

that significantly deviates from the body mesh, we syntheti-

cally generate point clouds of a person wearing a skirt using

physics-based simulation driven by the motion of the sub-

ject 00134 in the CAPE dataset. The motion sequences are

randomly split into training (70%) and test (30%) sets.

Metrics. We numerically evaluate the reconstruction qual-

ity of each method using Chamfer Distance (Eq. (7), in m2)

and the L1-norm of the unit normal discrepancy (Eq. (8)),

evaluated over the 12, 768 points generated by our model.

For CAPE [45], as the mesh resolution is relatively low,

we uniformly sample the same number of points as our

model on the surface using barycentric interpolation. As

NASA [18] infers an implicit surface, we extract an iso-

surface using Marching Cubes [43] with a sufficiently high

resolution (5123), and sample the surface. We sample and

compute the errors three times with different random seeds

and report the average values.

Implementation details. We use the SMPL [42] UV map

with a resolution of 32× 32 for our pose embedding, which

yields K = 798 body surface points (hence the number of

surface elements). For each element, we sample M = 16
square grid points, resulting in 12, 768 points in the final

output. We uniformly sample N = 40, 000 points from

each clothed body mesh as the target ground truth scan.

More implementation details are provided in the SupMat.

Ours Patch-colored Meshed CAPE [45] NASA [18]

Figure 3: Qualitative comparison with mesh and implicit

methods. Our method produces coherent global shape, salient

pose-dependent deformation, and sharp local geometry. The

meshed results are acquired by applying PSR [34] to SCALE’s

point+normal prediction. The patch color visualization assigns a

consistent set of colors to the patches, showing correspondence

between the two bodies.

4.2. Comparison: Mesh and Implicit Surface

Block I of Tab. 1 quantitatively compares the accu-

racy and inference runtime of SCALE, CAPE [45] and

NASA [18]. CAPE [45] learns the shape variation of artic-

ulated clothed humans as displacements from a minimally

clothed body using MeshCNN [59]. In contrast to ours,

by construction of a mesh-based representation, CAPE re-

quires registered templates to the scans for training. While

NASA, on the other hand, learns the composition of ar-

ticulated implicit functions without surface registration, it

requires watertight meshes because the training requires

ground-truth occupancy information. Note that these two

approaches are unable to process the skirt sequences as the

thin structure of the skirt is non-trivial to handle using the

fixed topology of human bodies or implicit functions.

For the other two clothing types, our approach not only

achieves the best numerical result, but also qualitatively

demonstrates globally coherent and highly detailed recon-

struction results as shown in Fig. 3. On the contrary, the

mesh-based approach [45] suffers from a lack of details and

fidelity, especially in the presence of topological change.

Despite its topological flexibility, the articulated implicit

function [18] is outperformed by our method by a large

margin, especially on the more challenging blazerlong data

(22% in Chamfer-L2). This is mainly due to the artifacts

caused by globally incoherent shape predictions for unseen

poses, Fig. 3. We refer to the SupMat for extended qualita-

tive comparison with the baselines.

The run-time comparison illustrates the advantage of fast
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Table 1: Results of pose dependent clothing deformation prediction on unseen test sequences from the 3 prototypical garment types, of

varying modeling difficulty. Best results are in boldface.

Methods / Variants
Chamfer-L2 (×10−4m2) ↓ Normal diff. (×10−1) ↓

Inference time (s) ↓
blazerlong shortlong skirt blazerlong shortlong skirt

I. Comparison with SoTAs, Sec. 4.2

CAPE [45] 1.96 1.37 – 1.28 1.15 – 0.013

NASA [18] 1.37 0.95 – 1.29 1.17 – 12.0

Ours (SCALE, full model) 1.07 0.89 2.69 1.22 1.12 0.94 0.009 (+ 1.1)

II. Global vs Local Elements, Sec. 4.3

a). global z [24] + AN [25] 6.20 1.54 4.59 1.70 1.86 2.46 –

b). global z [24] + AN [25] + Arti. 1.32 0.99 2.95 1.46 1.23 1.20 –

c). global z [24] + PCN [82] + Arti. 1.43 1.09 3.07 1.59 1.40 1.32 –

d). pose param θ + PCN [82] + Arti. 1.46 1.04 2.90 1.61 1.39 1.33 –

III. Ablation Study: Key Components, Sec. 4.4

e). w/o Arti. Tk 1.92 1.43 2.71 1.70 1.53 0.96 –

f). w/o uk 1.08 0.89 2.71 1.22 1.12 0.94 –

g). UNet → PointNet, with uk 1.46 1.03 2.72 1.34 1.16 0.95 –

h). UNet → PointNet, w/o uk 1.92 1.42 3.06 1.69 1.52 1.39 –

i). w/o Normal pred. 1.08 0.99 2.72 – – – –

inference with the explicit shape representations. CAPE di-

rectly generates a mesh (with 7K vertices) in 13ms. SCALE

generates a set of 13K points within 9ms; if a mesh out-

put is desired, the PSR meshing takes 1.1s. Note, however,

that the SCALE outputs can directly be neural-rendered

into images at interactive speed, see Sec. 4.5. In contrast,

NASA requires densely evaluating occupancy values over

the space, taking 12s to extract an explicit mesh.

4.3. Global vs. Local Neural Surface Elements

We compare existing neural surface representations [24,

25, 82] in Fig. 4 and block II of Tab. 1. Following the orig-

inal implementation of AtlasNet [25], we use a global en-

coder that provides a global shape code z ∈ R
1024 based on

PointNet [58]. We also provide a variant of AtlasNet [25]

and PCN [82], where the networks predict residuals on top

of the input body and then are articulated as in our ap-

proach. AtlasNet with the explicit articulation (b) signifi-

cantly outperforms the original AtlasNet without articula-

tion (a). This shows that our newly introduced articulated

surface elements are highly effective for modeling articu-

lated objects, regardless of neural surface formulations. As

PCN also efficiently models a large number of local ele-

ments using a single network, (c) and (d) differ from our

approach only in the use of a global shape code z instead

of local shape codes. While (c) learns the global code in

an end-to-end manner, (d) is given global pose parameters

θ a priori. Qualitatively, modeling local elements with a

global shape code leads to noisier results. Numerically,

our method outperforms both approaches, demonstrating

the importance of modeling local shape codes. Notably, an-

other advantage of modeling local shape codes is its param-

eter efficiency. The global approaches often require high

dimensional latent codes (e.g. 1024), leading to the high us-

age of network parameters (1.06M parameters for the net-

works above). In contrast, our local shape modeling allows

us to efficiently model shape variations with significantly

smaller latent codes (64 in SCALE) with nearly half the

trainable parameters (0.57M) while achieving the state-of-

the-art modeling accuracy.

4.4. Ablation Study

We further evaluate our technical contributions via an ab-

lation study. As demonstrated in Sec. 4.3 and Tab. 1 (e),

explicitly modeling articulation plays a critical role in the

success of accurate clothed human modeling. We also ob-

serve a significant degradation by replacing our UNet-based

pose embedding with PointNet, denoted as (g) and (h). This

indicates that the learning-based pose embedding with a 2D

CNN is more effective for local feature learning despite the

conceptual similarity of these two architectures that incor-

porate spatial proximity information. Interestingly, the lack

of a global descriptor derived from the UV map, denoted as

(f), has little impact on numerical accuracy. As the similar

ablation study between (g) and (h) shows significant im-

provement by adding uk in the case of the PointNet archi-

tecture, this result implies that our UNet local encoder im-

plicitly learns the global descriptor as part of the local codes

zk. As shown in Tab. 1 (i), another interesting observation

is that the joint training of surface normals improves recon-

struction accuracy, indicating that the multi-task learning of

geometric features can be mutually beneficial.
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Full model z + AN z + AN + Arti. z + PCN + Arti. θ + PCN + Arti. w/o Arti. Tk
PointNet PointNet
with uk w/o uk

Figure 4: Qualitative results of the ablation study. Points are colored according to predicted normals. Our full model produces globally

more coherent and locally more detailed results compared to the baselines. Note the difference at the bottom of the blazer (upper row) and

the skirt (lower row).

Figure 5: Neural Rendering of SCALE. The dense point set

of textured (upper row) or normal-colored (lower row) predictions

from SCALE (the left image in each pair) can be rendered into

realistic images with a state-of-the-art neural renderer [57].

4.5. Neural Rendering of SCALE

The meshing process is typically slow, prone to arti-

facts, and sensitive to the choice of hyperparameters. To

circumvent meshing while realistically completing missing

regions, we show that generated point clouds can be directly

rendered into high-resolution images with the help of the

SMPLpix [57] neural renderer, which can generate e.g. a

512×512 image in 42ms. Figure 5 shows that the dense

point clouds generated by SCALE are turned into complete

images in which local details such as fingers and wrinkles

are well preserved. Note that we show the normal color-

coded renderings for the synthetic skirt examples, since they

lack ground-truth texture information.

5. Conclusion

We introduce SCALE, a highly flexible explicit 3D

shape representation based on pose-aware local surface ele-

ments with articulation, which allows us to faithfully model

a clothed human using point clouds without relying on

a fixed-topology template, registered data, or watertight

scans. The evaluation demonstrates that efficiently mod-

eling a large number of local elements and incorporating

explicit articulation are the key to unifying the learning of

complex clothing deformations of various topologies.

Limitations and future work. While the UV map builds a

correspondence across all bodies, a certain patch produced

by SCALE is not guaranteed to represent semantically the

same region on the cloth in different poses. Jointly opti-

mizing explicit correspondences [7, 72] with explicit shape

representations like ours remains challenging yet promis-

ing. Currently, SCALE models clothed humans in a subject-

specific manner but our representation should support learn-

ing a unified model across multiple garment types. While

we show that it is possible to obviate the meshing step by us-

ing neural rendering, incorporating learnable triangulation

[40, 68] would be useful for applications that need meshes.
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