
Simulating Unknown Target Models for Query-Efficient Black-box Attacks

Chen Ma, Li Chen∗, and Jun-Hai Yong

School of Software, BNRist, Tsinghua University, Beijing, China

mac16@mails.tsinghua.edu.cn, {chenlee,yongjh}@tsinghua.edu.cn

Abstract

Many adversarial attacks have been proposed to inves-

tigate the security issues of deep neural networks. In the

black-box setting, current model stealing attacks train a

substitute model to counterfeit the functionality of the target

model. However, the training requires querying the target

model. Consequently, the query complexity remains high,

and such attacks can be defended easily. This study aims

to train a generalized substitute model called “Simulator”,

which can mimic the functionality of any unknown target

model. To this end, we build the training data with the form

of multiple tasks by collecting query sequences generated

during the attacks of various existing networks. The learn-

ing process uses a mean square error-based knowledge-

distillation loss in the meta-learning to minimize the dif-

ference between the Simulator and the sampled networks.

The meta-gradients of this loss are then computed and ac-

cumulated from multiple tasks to update the Simulator and

subsequently improve generalization. When attacking a

target model that is unseen in training, the trained Sim-

ulator can accurately simulate its functionality using its

limited feedback. As a result, a large fraction of queries

can be transferred to the Simulator, thereby reducing query

complexity. Results of the comprehensive experiments con-

ducted using the CIFAR-10, CIFAR-100, and TinyImageNet

datasets demonstrate that the proposed approach reduces

query complexity by several orders of magnitude compared

to the baseline method. The implementation source code is

released online1.

1. Introduction

Deep neural networks (DNNs) are vulnerable to adver-

sarial attacks [3, 13, 38], which add human-imperceptible

perturbations to benign images for the misclassification of

the target model. The study of adversarial attacks is crucial

in the implementation of robust DNNs [28]. Adversarial at-

tacks can be categorized into two types, namely, white-box

∗Corresponding author.
1https://github.com/machanic/SimulatorAttack

benign image 𝒙𝟎
Black Box Model

𝜽
Trained Simulator

𝒙𝟎 + 𝜹 ⋅ 𝒒𝟏𝒙𝟎 + 𝜹 ⋅ 𝒒𝟐
adv image 𝒙𝟏

𝒙𝟏 + 𝜹 ⋅ 𝒒𝟏𝒙𝟏 + 𝜹 ⋅ 𝒒𝟐

adv image 𝒙𝒕
𝒙𝒕 + 𝜹 ⋅ 𝒒𝟏𝒙𝒕 + 𝜹 ⋅ 𝒒𝟐

output of  𝒙𝟎 + 𝜹 ⋅ 𝒒𝟏

Fine-tuned Simulator

fine-tune for 𝑻 iterations

adv image 𝒙𝒕+𝟏
𝒙𝒕+𝟏 + 𝜹 ⋅ 𝒒𝟏𝒙𝒕+𝟏 + 𝜹 ⋅ 𝒒𝟐 𝜽 output of  𝒙𝒕+𝟏 + 𝜹 ⋅ 𝒒𝟏

output of  𝒙𝒕+𝟏 + 𝜹 ⋅ 𝒒𝟐
…

fine-tune

… …

update

update

subsequent queries  Simulator

fine-tune

update

output of  𝒙𝟎 + 𝜹 ⋅ 𝒒𝟐
output of  𝒙1 + 𝜹 ⋅ 𝒒𝟏
output of  𝒙1 + 𝜹 ⋅ 𝒒𝟐
output of  𝒙𝒕 + 𝜹 ⋅ 𝒒𝟏
output of  𝒙𝒕 + 𝜹 ⋅ 𝒒𝟐

Figure 1: The procedure of the Simulator Attack, where q1
and q2 are the corresponding perturbations for generating

query pairs in the attack (Algorithm 2). The queries of the

first t iterations are fed into the target model to estimate the

gradients. These queries and the corresponding outputs are

collected to fine-tune the Simulator, which is trained with-

out using the target model. The fine-tuned Simulator can ac-

curately simulate the unknown target model, thereby trans-

ferring the queries and improving overall query efficiency.

and black-box attacks. In the white-box attack setting, the

target model is fully exposed to the adversary. Thus, the per-

turbation can be crafted easily by using gradients [4, 13]. In

the black-box attack setting, the adversary only has partial

information of the target model, and adversarial examples

are crafted without any gradient information. Hence, black-

box attacks (i.e., query- and transfer-based attacks) are more

practical in real-world scenarios.

Query-based attacks focus on estimating gradients

through queries [6, 40, 19, 20]. These attacks are considered

highly effective because of their satisfactory attack success

rate. However, despite their practical merits, high query

complexity inevitably arises when estimating the approxi-

mate gradient with high precision, resulting in costly pro-

cedures. In addition, the queries are typically underutilized,

11835



i.e., the implicit but profound messages returned from the

target model are overlooked, because they are abandoned

after estimating the gradients. Thus, how to make full use

of the feedback of the target model to enhance the query

efficiency of attacks should be thoroughly investigated.

Transfer-based attacks generate adversarial examples by

using a white-box attack method on a source model to fool

the target model [24, 32, 10, 18]. Transfer-based attacks

have two disadvantages: (1) they cannot achieve a high suc-

cess rate, and (2) they are weak in a targeted attack. To

improve transferability, model stealing attacks train a local

substitute model to mimic the black-box model using a syn-

thetic dataset, in which the labels are given by the target

model through queries [39, 35, 33]. In this way, the differ-

ence between the substitute and the target model is mini-

mized, resulting in an increased attack success rate. How-

ever, such a training requires querying the target model.

Consequently, the query complexity increases and such at-

tacks can be defended easily by deploying a defense mecha-

nism (e.g., [34, 23]). Furthermore, the inevitable re-training

to substitute a new target model is an expensive process.

Hence, how to train a substitute model without the tar-

get model requirement is worthy of further exploration.

To eliminate the target model requirement in training, we

propose a novel meta-learning-based framework to learn a

generalized substitute model (i.e., “Simulator”) over many

different networks, thereby exploiting their characteristics

to achieve fast adaptation. Once trained and fine-tuned, the

Simulator can mimic the output of any target model that

is unseen in training, enabling it to eventually replace the

target model (Fig. 1). Specifically, the intermediate queries

of the real black-box attack are moved to the training stage,

thus allowing the Simulator to learn how to distinguish the

subtle differences among queries. All the training data are

reorganized into a format consisting of multiple tasks. Each

task is a small data subset consisting of a query sequence of

one network. In this system, a large number of tasks allow

the Simulator to experience the attacks of various networks.

We propose three components to optimize the general-

ization. First, a query-sequence level partition strategy is

adopted to divide each task into meta-train and meta-test

sets (Fig. 2) that match the iterations of fine-tuning and

simulation in the attack, respectively (Fig. 1). Second, the

mean square error (MSE)-based knowledge-distillation loss

carries out the inner and outer loops of meta-learning. Fi-

nally, the meta-gradients of a batch of tasks are computed

and then aggregated to update the Simulator and improve

generalization. These strategies well address the problem

of the target model requirement during training. In the at-

tack (named “Simulator Attack”), the trained Simulator is

fine-tuned using the limited feedback of the unknown target

model to accurately simulate its output, thereby transfer-

ring its query stress (Fig. 1). Therefore, the feedback of the

target model is fully utilized to improve query efficiency.

In the proposed approach, the elimination of target models

in training poses a new security threat, i.e., the adversary

with the minimal information about the target model can

also counterfeit this model for a successful attack.

In this study, we evaluate the proposed method us-

ing the CIFAR-10 [22], CIFAR-100 [22], and TinyIma-

geNet [37] datasets and compare it with natural evolution

strategies (NES) [19], Bandits [20], Meta Attack [12], ran-

dom gradient-free (RGF) [31], and prior-guided RGF (P-

RGF) [8]. Experimental results show that the Simulator At-

tack can significantly reduce query complexity compared

with the baseline method.

The main contributions of this work are summarized as

follows:

(1) We propose a novel black-box attack by training a

generalized substitute model named “Simulator”. The train-

ing uses a knowledge-distillation loss to carry out the meta-

learning between the Simulator and the sampled networks.

After training, the Simulator only requires a few queries to

accurately mimic any target model that is unseen in training.

(2) We identify a new type of security threat upon elim-

inating the target models in training: the adversary with the

minimal information about the target model can also coun-

terfeit this model for achieving the query-efficient attack.

(3) By conducting extensive experiments using the

CIFAR-10, CIFAR-100, and TinyImageNet datasets, we

demonstrate that the proposed approach achieves similar

success rates as those of state-of-the-art attacks but with an

unprecedented low number of queries.

2. Related Works

Query-based Attacks. Black-box attacks can be divided

into query- and transfer-based attacks. Query-based attacks

can be further divided into score- and decision-based attacks

based on how much returned information from the target

model can be used by the adversary. In score-based attacks,

the adversary uses the output scores of the target model to

generate adversarial examples. Most score-based attacks

estimate the approximate gradient through zeroth-order op-

timizations [6, 2]. Then, the adversary can optimize the

adversarial example with the estimated gradient. Although

this type of approach can deliver a successful attack, it re-

quires a large number of queries as each pixel needs two

queries. Several improved methods have been introduced in

the literature to reduce query complexity by using the prin-

cipal components of the data [2], a latent space with reduced

dimension [40], prior gradient information [20, 26], random

search [14, 1], and active learning [36]. Decision-based at-

tacks [5, 7] only use the output label of the target model. In

this study, we focus on the score-based attacks.

Transfer-based Attacks. Transfer-based attacks generate

adversarial examples on a source model and then transfer

11836



them to the target model [24, 10, 18]. However, this type

of attack cannot achieve a high success rate due to the large

difference between the source model and the target model.

Many efforts, including the use of model stealing attacks,

have been made to improve the attack success rate. The

original goal of model stealing attacks is to replicate the

functionality of public service [41, 39, 29, 33]. Papernot et

al. [35] expands the scope of use of model stealing attacks.

They train a substitute model using a synthetic dataset la-

beled by the target model. Then, this substitute is used to

craft adversarial examples. In this study, we focus on train-

ing a substitute model without using the target model.

Meta-learning. Meta-learning is useful in few-shot classi-

fication. It trains a meta-learner that can adapt rapidly to

new environments with only a few samples. Ma et al. [27]

propose MetaAdvDet to detect new types of adversarial at-

tacks with high accuracy in order to utilize meta-learning

in the adversarial attack field. The Meta Attack [12] trains

an auto-encoder to predict the gradients of a target model to

reduce the query complexity. However, its auto-encoder is

only trained on natural image and gradient pairs and not on

data from real attacks. Hence its prediction accuracy is not

satisfied in the attack. The prediction of the large gradient

map is also difficult for its lightweight auto-encoder. Thus,

the Meta Attack only extracts the gradients with the top-128

values to update examples, resulting in poor performance.

In comparison, the proposed Simulator in the current study

is trained with knowledge-distillation loss for logits predic-

tion; hence, the performance is not affected by the resolu-

tion of images. In addition, the training data are query se-

quences of black-box attacks, which are divided into meta-

train set and meta-test set. The former corresponds to the

fine-tuning iterations and the latter corresponds to simula-

tion iterations in the attack. These strategies connect the

training and the attack seamlessly to maximize the perfor-

mance.

3. Method

3.1. Task Generation

During an attack, the trained Simulator must accurately

simulate the outputs of any unknown target model when

the feeding queries are only slightly different from one an-

other. To this end, the Simulator should learn from the

real attack, i.e., the intermediate data (query sequences and

outputs) generated in the attacks of various networks. For

this purpose, several classification networks N1, . . . ,Nn are

collected to construct the training tasks, creating a huge

simulation environment to improve the general simulation

capability (Fig. 2). Each task contains V query pairs

Q1, . . . , QV

(

Qi ∈ R
D, i ∈ {1, · · · , V }

)

, where D is the

image dimensionality. These pairs are generated by us-

ing Bandits to attack a randomly selected network. The

data sources used by Bandits can be any image downloaded

from the Internet. In this study, we use the training sets of

the standard datasets with different data distributions from

the tested images. Each task is divided into two subsets,

namely, the meta-train setDmtr, which consists of the first t
query pairs Q1, . . . , Qt, and the meta-test setDmte with the

following query pairs Qt+1, . . . , QV . The former is used in

the inner-update step of the training corresponding to the

fine-tuning step in the attack stage. The latter corresponds

to the attack iterations of using the Simulator as the sub-

stitute (Fig. 1). This partition connects the training and at-

tack stages seamlessly. The logits outputs of N1, . . . ,Nn are

termed as “pseudo labels”. All query sequences and pseudo

labels are cached in the hard drive to accelerate training.

3.2. Simulator Learning

Initialization. Algorithm 1 and Fig. 2 present the training

procedure. In the training, we sample K tasks randomly to

form a mini-batch. At the beginning of learning each task,

the Simulator M reinitializes its weights using the weights

θ learned by the last mini-batch. These weights are kept for

computing meta-gradients in the outer-update step.

Meta-train. M performs the gradient descent on the meta-

Algorithm 1 Training procedure of the Simulator

Input: Training dataset D, Bandits attack algorithm A,

pre-trained classification networks N1, . . . ,Nn, the Sim-

ulator network M and its parameters θ, feed-forward

function f of M, loss function L(·, ·) defined in Eq. (1).

Parameters: Training iterations N , query sequence size

V , meta-train set size t, batch size K, inner-update learn-

ing rate λ1, outer-update learning rate λ2, inner-update

iterations T .

Output: The learned Simulator M.

1: for iter ← 1 to N do

2: sample K benign images x1, . . . , xK from D
3: for k ← 1 to K do ⊲ iterate over K tasks

4: a network Ni ← sample from N1, . . . ,Nn

5: Q1, . . . , QV ← A(xk,Ni) ⊲ query sequence

6: Dmtr ← Q1, . . . , Qt

7: Dmte ← Qt+1, . . . , QV

8: p
train

← Ni(Dmtr)
9: p

test
← Ni(Dmte) ⊲ pseudo labels

10: θ′ ← θ ⊲ reinitialize M’s weights

11: for j ← 1 to T do

12: θ′ ← θ′ − λ1 · ∇θ′L (fθ′ (Dmtr) ,ptrain
)

13: end for

14: Li ← L (fθ′ (Dmte) ,ptest
)

15: end for

16: θ ← θ − λ2 ·
1
K

∑K
i=1∇θLi ⊲ the outer update

17: end for

18: return M

11837



benign image 𝑥1 ResNet-50

VGG-16

MobileNet

…

black-box attack 

… …

query pair 𝑸𝟏
… …

… …

Task 1

Simulator Learning 

Simulator 𝕄
query pair 𝑸𝒕+𝟏

meta-train set meta-test set

query pair 𝑸𝒕

query pair 𝑸𝟏

query pair 𝑸𝟏

outer update

input

input

input

black-box attack to generate training data
inner update
compute meta-gradients & outer update

feed-forward of pre-trained networks

benign image 𝑥𝐾
black-box attack 

benign image 𝑥2 Task 2

Task 𝐾

pseudo label

pseudo label

output

output

output

𝜽
query pair 𝑸𝒕

query pair 𝑸𝒕

query pair 𝑸𝒕+𝟏

query pair 𝑸𝒕+𝟏

query pair 𝑸𝑽

query pair 𝑸𝑽

query pair 𝑸𝑽
Query sequences generated during the attack (cached in the hard drive)

aggregate & average     
meta-gradients

MSE loss

Simulator (𝜽)

Simulator (𝜽′ )

MSE loss

MSE loss

inner update

storage

storage

storage

black-box attack Simulator (𝜽′ )inner update
Simulator (𝜽)

Simulator (𝜽′ )inner update
Simulator (𝜽)

pseudo label

Figure 2: The procedure of training the Simulator in one mini-batch. Here, the sequences of query pairs generated during

the attacks are collected as training data and then reorganized into multiple tasks. Each task contains the data generated from

attacking one network and is further divided into meta-train set and meta-test set. Next, the Simulator network M reinitializes

its weights to θ at the beginning of learning each task, after which it subsequently trains on the meta-train set. After several

iterations (inner update), M converges and its weights are updated to θ′. The meta-gradients of M are computed based on the

meta-test sets of K tasks and are then accumulated to update M (the outer update). The updated M is prepared for the next

mini-batch learning. Finally, the learned Simulator can simulate any unknown black-box model using limited queries in the

attack stage.

train set Dmtr for several iterations (the inner update). This

step is similar to training a student model in a knowledge

distillation, which matches the fine-tuning step of the attack.

Meta-test. After several iterations, M’s weights are up-

dated to θ′. Then, the loss Li is computed based on

meta-test set of the i-th task with θ′. Afterwards, the

meta-gradient ∇θLi is calculated as a higher-order gradi-

ent. Then, ∇θL1, . . . ,∇θLK of K tasks are averaged as
1
K

∑K
i=1∇θLi for updating M (the outer update), thus en-

abling M to learn the general simulation capability.

Loss Function. In the training, we adopt a knowledge-

distillation-fashioned loss to induce the Simulator to output

a similar prediction with the sampled network Ni, which we

use in both the inner and outer steps. Given the two queries

Qi,1 and Qi,2 of the i-th query pair Qi generated by Ban-

dits2, where i ∈ {1, . . . , n} and n represents the number

of query pairs in the meta-train or meta-test set. The logits

outputs of the Simulator and Ni are denoted as p̂ and p, re-

spectively. The MSE loss function defined in Eq. (1) pushes

the predictions of the Simulator and the pseudo label closer.

L(p̂,p) =
1

n

n
∑

i=1

(

p̂Qi,1
−pQi,1

)2
+
1

n

n
∑

i=1

(

p̂Qi,2
−pQi,2

)2

(1)

3.3. Simulator Attack

Algorithm 2 shows the Simulator Attack under the ℓp
norm constraint. The query pairs of the first t iterations are

2Bandits attack requires two queries in the finite difference for estimat-

ing a gradient. Thus, a query pair is generated in each iteration.

fed to the target model (the warm-up phase). These queries

and corresponding outputs are collected into a double-

ended queue D. Then, D drops the oldest item once it is

full, which is beneficial in terms of focusing on new queries

when fine-tuning M using D. After warm-up, subsequent

queries are fed into the target model every m iterations,

and the fine-tuned M takes the rest. To be consistent with

training, the gradient estimation steps follow that of Ban-

dits. The attack objective loss function shown in Eq. (2) is

maximized during the attack:

L(ŷ, t) =

{

maxj 6=t ŷj − ŷt, if untargeted attack;

ŷt −maxj 6=t ŷj , if targeted attack;
(2)

where ŷ represents the logits output of the Simulator or the

target model, t is the target class in the targeted attack or the

true class in the untargeted attack, and j indexes the other

classes.

3.4. Discussion

During an attack, the Simulator must accurately simulate

the outputs when feeding queries of the real attack. Thus,

the Simulator is trained on the intermediate data of the real

attack in a knowledge-distillation manner. None of exist-

ing meta-learning methods learn a simulator in this way, as

they all focus on the few-shot classification or reinforce-

ment learning problems. In addition, Algorithm 2 alter-

nately feeds queries to M and the target model to learn the

latest queries. The periodic fine-tuning is crucial in achiev-

ing a high success rate when faced with a difficult attack

(e.g., the result of the targeted attack in Fig. 3b).

11838



Algorithm 2 Simulator Attack under the ℓp norm constraint

Input: Input image x ∈ R
D where D is the image dimen-

sionality, true label y of x, feed-forward function f of

target model, Simulator M, attack objective loss L(·, ·).
Parameters: Warm-up iterations t, simulator-predict inter-

val m, Bandits exploration τ , finite difference probe δ,

OCO learning rate ηg , image learning rate η.

Output: xadv that satisfies ‖xadv − x‖p ≤ ǫ.

1: Initialize the adversarial example xadv ← x
2: Initialize the gradient to be estimated g← 0

3: Initialize D← deque(maxlen = t) ⊲ a bounded

double-ended queue with maximum length of t, adding

a full D leads it to drop its oldest item automatically.

4: for i← 1 to N do

5: u← N (0, 1
D
I) ⊲ the same dimension with x

6: q1← g + τu, q2← g − τu
7: q1← q1/‖q1‖2, q2← q2/‖q2‖2
8: if i ≤ t or (i− t) mod m = 0 then

9: ŷ1 ← f(xadv + δ · q1)
10: ŷ2 ← f(xadv + δ · q2)
11: {xadv + δ · q1, ŷ1, xadv + δ · q2, ŷ2} append D

12: if i ≥ t then

13: Fine-tune M using D ⊲ fine-tune M every

m iterations after the warm-up phase.

14: end if

15: else

16: ŷ1 ←M(xadv+δ ·q1), ŷ2 ←M(xadv+δ ·q2)
17: end if

18: ∆g ←
L(ŷ1,y)−L(ŷ2,y)

τδ
u

19: if p = 2 then

20: g← g + ηg ·∆g

21: xadv ←
∏

B2(x,ǫ)
(xadv + η · g

‖g‖2
) ⊲

∏

Bp(x,ǫ)

denotes the ℓp norm projection under ℓp norm bound.

22: else if p =∞ then ⊲ using the exponentiated

gradient update [20] in the ℓ∞ norm attack as follows.

23: ĝ← g+1

2

24: g← ĝ·exp(ηg·∆g)−(1−ĝ)·exp(−ηg·∆g)
ĝ·exp(ηg·∆g)+(1−ĝ)·exp(−ηg·∆g)

25: xadv ←
∏

B∞(x,ǫ)(xadv + η · sign(g))

26: end if

27: xadv ← Clip(xadv, 0, 1)
28: end for

29: return xadv

4. Experiment

4.1. Experiment Setting

Dataset and Target Models. We conduct the experiments

using the CIFAR-10 [22], CIFAR-100 [22], and TinyIm-

ageNet [37] datasets. Following previous studies [44],

1,000 tested images are randomly selected from their val-

idation sets for evaluation. In the CIFAR-10 and CIFAR-

100 datasets, we follow Yan et al. [44] to select the target

models: (1) a 272-layer PyramidNet+Shakedrop network

(PyramidNet-272) [15, 43] trained using AutoAugment [9];

(2) a model obtained via neural architecture search called

GDAS [11]; (3) a WRN-28 [45] with 28 layers and 10

times width expansion; and (4) a WRN-40 with 40 lay-

ers. In the TinyImageNet dataset, we select ResNeXt-101

(32x4d) [42], ResNeXt-101 (64x4d), and DenseNet-121

[17] with a growth rate of 32.

Method Setting. In the training, we generate the query

sequence data Q1, . . . , Q100 in each task. The meta-train

set Dmtr contains Q1, . . . , Q50, and the meta-test set Dmte

consists of Q51, . . . , Q100. We select ResNet-34 [16] as

the backbone of the Simulator, which we trained for three

epochs over 30,000 tasks. Here, 30 sampled tasks consti-

tute a mini-batch. Training each Simulator with an NVIDIA

Tesla V100 GPU lasted for 72 hours. The fine-tune iteration

number is set to 10 in the first fine-tuning and then reduced

to a random number from 3 to 5 for subsequent ones. In the

targeted attacks, we set the target class to yadv = (y + 1)
mod C for all attacks, where yadv is the target class, y is

the true class, and C is the class number. Following previ-

ous studies [8, 44], we use the attack success rate as well as

the average and median values of queries as the evaluation

metrics. Table 1 presents the default parameters.

Pre-trained Networks. In order to evaluate the capability

of simulating unknown target models, we ensure that the se-

lection of N1, . . . ,Nn in Algorithm 1 is different from the

target models. A total of 14 networks are selected in the

CIFAR-10 and CIFAR-100 datasets, and 16 networks are

selected for the TinyImageNet dataset. The details can be

found in the supplementary material. In experiments involv-

ing attacks of defensive models, we re-train the Simulator

by removing the data of ResNet networks. This is because

the defensive models adopt a backbone of ResNet-50.

Compared Methods. The compared methods include

NES [19], Bandits [20], Meta Attack [12], RGF [31], and

P-RGF [8]. Bandits is selected as the baseline. To ensure

a fair comparison, the training data (i.e., images and gradi-

ents) of the Meta Attack are generated by directly using the

pre-trained classification networks of the present study. We

translate the codes of NES, RGF, and P-RGF from the of-

ficial implementations of TensorFlow into the PyTorch ver-

sion for the experiments. P-RGF improves RGF query effi-

ciency by utilizing a surrogate model, which adopts ResNet-

110 [16] in the CIFAR-10 and CIFAR-100 datasets and

ResNet-101 [16] in the TinyImageNet dataset. We exclude

the experiments of RGF and P-RGF in the targeted attack

experiments, because their official implements only support

untargeted attacks. All methods are limited to the maximum

of 10,000 queries in both untargeted and targeted attacks.

We set the same ǫ values for all attacks, which are 4.6 and

8/255 in the ℓ2 norm attack and ℓ∞ norm attack, respec-

11839



name default description

λ1 of the inner update 0.01 learning rate in the inner update.

λ2 of the outer update 0.001 learning rate in the outer update.

maximum query times 10,000 the limitation of queries of each sample.

ǫ of ℓ2 norm attack 4.6 the maximum distortion in ℓ2 norm attack.

ǫ of ℓ∞ norm attack 8/255 the maximum distortion in ℓ∞ norm attack.

η of ℓ2 norm attack 0.1 the image learning rate for updating image.

η of ℓ∞ norm attack 1/255 the image learning rate for updating image.

ηg of ℓ2 norm attack 0.1 OCO learning rate for updating g.

ηg of ℓ∞ norm attack 1.0 OCO learning rate for updating g.

inner-update iterations 12 update iterations of learning meta-train set.

simulator-predict interval 5 the prediction iteration’s interval of M.

warm-up iterations t 10 the first t iterations of the attack.

deque D’s length 10 the maximum length of D.

Table 1: The default parameters setting of Simulator Attack.

Target Model Method Avg. Query Med. Query Max Query Success Rate

PyramidNet-272

Rnd init Simulator 105 52 1470 100%

Vanilla Simulator 102 52 1374 100%

Simulator Attack 92 52 834 100%

Table 2: Comparison of different simulators by perform-

ing ℓ2 norm attack on the CIFAR-10 dataset. The Rnd init

Simulator uses an untrained ResNet-34 as the simulator; the

Vanilla Simulator uses a ResNet-34 that is trained without

using meta-learning as the simulator.

tively. The detailed configurations of all compared methods

are provided in the supplementary material.

4.2. Ablation Study

The ablation study is conducted to validate the benefit of

meta training and determine the effects of key parameters.

Meta Training. We validate the benefits of meta training

by equipping with different simulators in the proposed al-

gorithm. Simulator M is replaced with two networks for

comparison, i.e., Rnd init Simulator: a randomly initialized

ResNet-34 network without training, and Vanilla Simulator:

a ResNet-34 network trained on the data of the present study

but without using meta-learning. Table 2 shows the exper-

imental results, which indicate that the Simulator Attack is

able to achieve the minimum number of queries, thereby

confirming the benefit of meta training. To inspect the sim-

ulation capacity in detail, we calculate the average MSE be-

tween outputs of simulators and the target model at different

attack iterations (Fig. 3a). As indicated by the results, the

Simulator Attack achieves the lowest MSE at most itera-

tions, thus exhibiting its satisfactory simulation capability.

In control experiments, we check the effects of the key

parameters of the Simulator Attack by adjusting one param-

eter while keeping others fixed, as listed in Table 1. The

corresponding results are shown in Figs. 3b, 3c, and 3d.

Simulator-Predict Interval m. This parameter is the iter-

ation interval that uses Simulator M to make predictions.

A larger m results in fewer opportunities to fine-tune M.

When this happens, the Simulator cannot accurately simu-

late the target model in case of a difficult attack (e.g., the

1 10 25 50 75 100 125
attack iterations

0

5

10

15

20

M
SE

 o
f t

he
 o

ut
pu

ts

ℓ2 norm attack of Simulator Attack
ℓ2 norm attack of Vanilla Simulator
fine-tune iterations

(a) simulation’s precision study

0 35710 20 30 40 50 60 70 80 90
simulator-predict interval

0
10
20
30
40
50
60
70
80
90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

ℓ2 norm untargeted attack
ℓ2 norm targeted attack

(b) simulator-predict interval

0 10 20 30 40 50 60 70 80 90 100
warm-up iterations

0
50

100
150
200
250
300
350
400
450
500
550
600
650

Av
g.

 Q
ue

ry

ℓ2 norm untargeted attack
ℓ2 norm targeted attack

(c) warm-up study

0 5 10 20 30 40 50 60 70 80 90 100
deque ⅅ's maximum length

0
50

100
150
200
250
300
350
400
450
500
550
600
650

Av
g.

 Q
ue

ry

ℓ2 norm untargeted attack
ℓ2 norm targeted attack

(d) deque’s maximum length

Figure 3: We conduct ablation studies of the simulation’s

precision, simulator-predict interval, warm-up iterations,

and deque D’s maximum length by attacking a WRN-28

model in the CIFAR-10 dataset. The results indicate the

following: (1) the meta training is beneficial for achieving

an accurate simulation (Fig. 3a), (2) a difficult attack (e.g.,

targeted attack) requires a small simulator-predict interval

(Fig. 3b), and (3) more warm-up iterations cause higher

average queries (Fig. 3c).

targeted attack in Fig. 3b), resulting in a low success rate.

Warm-up. As shown in Fig. 3c, more warm-up iterations

lead to a higher average query, because more queries are fed

into the target model in the warm-up phase.

4.3. Comparisons with State­of­the­Art Methods

Results of Attacks on Normal Models. In this study, the

normal model is the classification model without the de-

fensive mechanism. We conduct experiments on the tar-

get models described in Section 4.1. Tables 3 and 4 show

the results of the CIFAR-10 and CIFAR-100 datasets, re-

spectively, whereas Tables 6 and 7 present the results of the

TinyImageNet dataset. The results reveal the following: (1)

the Simulator Attack can gain up to 2× reduction in the av-

erage and median values of the queries compared with the

baseline Bandits, and (2) the Simulator Attack can obtain

significantly fewer queries and a higher attack success rate

than the Meta Attack [12] (e.g., the low success rates of

Meta Attack in Tables 6 and 7). The poor performance of

the Meta Attack can be attributed to its high-cost gradient

estimation (specifically the use of ZOO [6]).

Experimental Figures. Tables 3, 4, 6, and 7 show the re-

sults obtained after setting the maximum number of queries

to 10,000. To further inspect the attack success rates at dif-

ferent maximum queries, we perform ℓ∞ norm attacks by

11840



Dataset Norm Attack Attack Success Rate Avg. Query Median Query

PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40

CIFAR-10

ℓ2

NES [19] 99.5% 74.8% 99.9% 99.5% 200 123 159 154 150 100 100 100

RGF [31] 100% 100% 100% 100% 216 168 153 150 204 152 102 152

P-RGF [8] 100% 100% 100% 100% 64 40 76 73 62 20 64 64

Meta Attack [12] 99.2% 99.4% 98.6% 99.6% 2359 1611 1853 1707 2211 1303 1432 1430

Bandits [20] 100% 100% 100% 100% 151 66 107 98 110 54 80 78

Simulator Attack 100% 100% 100% 100% 92 34 48 51 52 26 34 34

ℓ∞

NES [19] 86.8% 71.4% 74.2% 77.5% 1559 628 1235 1209 600 300 400 400

RGF [31] 99% 93.8% 98.6% 98.8% 955 646 1178 928 668 460 663 612

P-RGF [8] 97.3% 97.9% 97.7% 98% 742 337 703 564 408 128 236 217

Meta Attack [12] 90.6% 98.8% 92.7% 94.2% 3456 2034 2198 1987 2991 1694 1564 1433

Bandits [20] 99.6% 100% 99.4% 99.9% 1015 391 611 542 560 166 224 228

Simulator Attack 96.5% 99.9% 98.1% 98.8% 779 248 466 419 469 83 186 186

CIFAR-100

ℓ2

NES [19] 92.4% 90.2% 98.4% 99.6% 118 94 102 105 100 50 100 100

RGF [31] 100% 100% 100% 100% 114 110 106 106 102 101 102 102

P-RGF [8] 100% 100% 100% 100% 54 46 54 73 62 62 62 62

Meta Attack [12] 99.7% 99.8% 99.4% 98.4% 1022 930 1193 1252 783 781 912 913

Bandits [20] 100% 100% 100% 100% 58 54 64 65 42 42 52 53

Simulator Attack 100% 100% 100% 100% 29 29 33 34 24 24 26 26

ℓ∞

NES [19] 91.3% 89.7% 92.4% 89.3% 439 271 673 596 204 153 255 255

RGF [31] 99.7% 98.8% 98.9% 98.9% 385 420 544 619 256 255 357 357

P-RGF [8] 99.3% 98.2% 98% 97.8% 308 220 371 480 147 116 136 181

Meta Attack [12] 99.7% 99.8% 97.4% 97.3% 1102 1098 1294 1369 912 911 1042 1040

Bandits [20] 100% 100% 99.8% 99.8% 266 209 262 260 68 57 107 92

Simulator Attack 100% 100% 99.9% 99.9% 129 124 196 209 34 28 58 54

Table 3: Experimental results of untargeted attack in CIFAR-10 and CIFAR-100 datasets.

Dataset Norm Attack Attack Success Rate Avg. Query Median Query

PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40

CIFAR-10

ℓ2

NES [19] 93.7% 95.4% 98.5% 97.7% 1474 1515 1043 1088 1251 999 881 882

Meta Attack [12] 92.2% 97.2% 74.1% 74.7% 4215 3137 3996 3797 3842 2817 3586 3329

Bandits [20] 99.7% 100% 97.3% 98.4% 852 718 1082 997 458 538 338 399

Simulator Attack (m=3) 99.1% 100% 98.5% 95.6% 896 718 990 980 373 388 217 249

Simulator Attack (m=5) 97.6% 99.9% 96.4% 94% 815 715 836 793 368 400 206 245

ℓ∞

NES [19] 63.8% 80.8% 89.7% 88.8% 4355 3942 3046 3051 3717 3441 2535 2592

Meta Attack [12] 75.6% 95.5% 59% 59.8% 4960 3461 3873 3899 4736 3073 3328 3586

Bandits [20] 84.5% 98.3% 76.9% 79.8% 2830 1755 2037 2128 2081 1162 1178 1188

Simulator Attack (m=3) 80.9% 97.8% 83.1% 82.2% 2655 1561 1855 1806 1943 918 1010 1018

Simulator Attack (m=5) 78.7% 96.5% 80.8% 80.3% 2474 1470 1676 1660 1910 917 957 956

CIFAR-100

ℓ2

NES [19] 87.6% 77% 89.3% 87.6% 1300 1405 1383 1424 1102 1172 1061 1049

Meta Attack [12] 86.1% 88.7% 63.4% 43.3% 4000 3672 4879 4989 3457 3201 4482 4865

Bandits [20] 99.6% 100% 98.9% 91.5% 1442 847 1645 2436 1058 679 1150 1584

Simulator Attack (m=3) 99.3% 100% 98.6% 92.6% 921 724 1150 1552 666 519 779 1126

Simulator Attack (m=5) 97.8% 99.6% 95.7% 83.9% 829 679 1000 1211 644 508 706 906

ℓ∞

NES [19] 72.1% 66.8% 68.4% 69.9% 4673 5174 4763 4770 4376 4832 4357 4508

Meta Attack [12] 80.4% 81.2% 57.6% 40.1% 4136 3951 4893 4967 3714 3585 4609 4737

Bandits [20] 81.2% 92.5% 72.4% 56% 3222 2798 3353 3465 2633 2132 2766 2774

Simulator Attack (m=3) 89.4% 94.2% 79% 64.3% 2732 2281 3078 3238 1854 1589 2185 2548

Simulator Attack (m=5) 83.7% 91.4% 74.2% 60% 2410 2134 2619 2823 1754 1572 2080 2270

Table 4: Experimental results of targeted attack in CIFAR-10 and CIFAR-100 datasets, where m is simulator-predict interval.

limiting the different maximum queries of each adversarial

example. The superiority of the proposed approach in terms

of attack success rate is shown in Fig. 4. Meanwhile, Fig. 5

demonstrates the average number of queries that reaches

different desired success rates. Fig. 5 reveals that the pro-

posed approach is more query-efficient than other attacks

and that the gap is amplified for higher success rates.

Results of Attacks on the Defensive Models. Table 5

shows the experimental results obtained after attacking the

defensive models. ComDefend (CD) [21] and Feature Dis-

tillation (FD) [25] are equipped with a denoiser to trans-

form the input images to their clean versions before feeding

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Maximum Query Number Threshold

0
10
20
30
40
50
60
70
80
90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

Bandits
P-RGF
RGF
Meta Attack
NES
Simulator Attack

(a) PyramidNet-272 in CIFAR-100

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Maximum Query Number Threshold

0
10
20
30
40
50
60
70
80
90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

Bandits
P-RGF
RGF
Meta Attack
NES
Simulator Attack

(b) R32 in TinyImageNet

Figure 4: Comparison of the attack success rate at differ-

ent limited maximum queries in untargeted attack under ℓ∞
norm, where R32 indicates ResNext-101 (32×4d).

to the target model. Prototype conformity loss (PCL) [30]

11841



Dataset Attack Attack Success Rate Avg. Query Median Query

CD [21] PCL [30] FD [25] Adv Train [28] CD [21] PCL [30] FD [25] Adv Train [28] CD [21] PCL [30] FD [25] Adv Train [28]

CIFAR-10

NES [19] 60.4% 65% 54.5% 16.8% 1130 728 1474 858 400 150 450 200

RGF [31] 48.7% 82.6% 44.4% 22.4% 2035 1107 1717 973 1071 306 768 510

P-RGF [8] 62.8% 80.4% 65.8% 22.4% 1977 1006 1979 1158 1038 230 703 602

Meta Attack [12] 26.8% 77.7% 38.4% 18.4% 2468 1756 2662 1894 1302 1042 1824 1561

Bandits [20] 44.7% 84% 55.2% 34.8% 786 776 832 1941 100 126 114 759

Simulator Attack 54.9% 78.2% 60.8% 32.3% 433 641 391 1529 46 116 50 589

CIFAR-100

NES [19] 78.1% 87.9% 77.6% 23.1% 892 429 1071 865 300 150 250 250

RGF [31] 50.2% 95.5% 62% 29.2% 1753 645 1208 1009 765 204 408 510

P-RGF [8] 54.2% 96.1% 73.4% 28.8% 1842 679 1169 1034 815 182 262 540

Meta Attack [12] 20.8% 93% 59% 27% 2084 1122 2165 1863 781 651 1043 1562

Bandits [20] 54.1% 97% 72.5% 44.9% 786 321 584 1609 56 34 32 484

Simulator Attack 72.9% 93.1% 80.7% 35.6% 330 233 250 1318 30 22 24 442

TinyImageNet

NES [19] 69.5% 73.1% 33.3% 23.7% 1775 863 2908 945 850 250 1600 200

RGF [31] 31.3% 91.8% 9.1% 34.7% 2446 1022 1619 1325 1377 408 765 612

P-RGF [8] 37.3% 91.8% 25.9% 34.4% 1946 1065 2231 1287 891 436 985 602

Meta Attack [12] 4.5% 75.8% 3.7% 20.1% 1877 2585 4187 3413 912 1792 2602 2945

Bandits [20] 39.6% 95.8% 12.5% 49% 893 909 1272 1855 85 206 193 810

Simulator Attack 43% 84.2% 21.3% 42.5% 377 586 746 1631 32 148 157 632

Table 5: Experimental results after performing the ℓ∞ norm attacks on defensive models, where CD represents ComDefend

[21], FD is Feature Distillation [25], and PCL is prototype conformity loss [30].

Attack Attack Success Rate Avg. Query Median Query

D121 R32 R64 D121 R32 R64 D121 R32 R64

NES [19] 74.3% 45.3% 45.5% 1306 2104 2078 510 765 816

RGF [31] 96.4% 85.3% 87.4% 1146 2088 2087 667 1280 1305

P-RGF [8] 94.5% 83.9% 85.9% 883 1583 1581 448 657 690

Meta Attack [12] 71.1% 33.8% 36% 3789 4101 4012 3202 3712 3649

Bandits [20] 99.2% 94.1% 95.3% 964 1737 1662 520 954 1014

Simulator Attack 99.4% 96.8% 97.9% 811 1380 1445 431 850 878

Table 6: Experimental results of untargeted attack under ℓ∞
norm in TinyImageNet dataset. D121: DenseNet-121, R32:

ResNeXt-101 (32×4d), R64: ResNeXt-101 (64×4d).

Attack Attack Success Rate Avg. Query Median Query

D121 R32 R64 D121 R32 R64 D121 R32 R64

NES [19] 88.5% 88% 88.2% 4625 4959 4758 4337 4703 4440

Meta Attack [12] 24.2% 21% 18.2% 5420 5440 5661 5506 5249 5250

Bandits [20] 85.1% 72.2% 72.4% 2724 3550 3542 1860 2700 2854

Simulator Attack 89.8% 84.9% 83.9% 1959 2558 2488 1399 1966 1982

Table 7: Experimental results of targeted attack under ℓ2
norm in TinyImageNet dataset. D121: DenseNet-121, R32:

ResNeXt-101 (32×4d), R64: ResNeXt-101 (64×4d).

0 10 20 30 40 50 60 70 80 90 100
Attack Success Rate (%)

0
100
200
300
400
500
600
700
800
900

1000

Av
g.

 Q
ue

ry

Bandits
P-RGF
RGF
Meta Attack
NES
Simulator Attack

(a) PyramidNet-272 in CIFAR-100

0 10 20 30 40 50 60 70 80 90 100
Attack Success Rate (%)

0
100
200
300
400
500
600
700
800
900

1000

Av
g.

 Q
ue

ry

Bandits
P-RGF
RGF
Meta Attack
NES
Simulator Attack

(b) GDAS in CIFAR-100

Figure 5: Comparisons of the average query at different

success rates under the untargeted ℓ∞ norm attack. More

results are presented in the supplementary material.

introduces a new loss function to maximally separate the in-

termediate features of each class. Here, the PCL defensive

model is obtained without using adversarial training in our

experiments. Adv Train [28] is a powerful defense method

based on adversarial training. Following the results shown

in Table 5, we derive the following conclusions:

(1) Among all methods, the Simulator Attack exhibits

the best performance in breaking CD, particularly outper-

forming the baseline method Bandits significantly.

(2) The Meta Attack demonstrates poor performance in

CD and FD based on its unsatisfactory success rate. In com-

parison, the Simulator Attack can break this type of defen-

sive model with a high success rate.

(3) In experiments in which the Adv Train is attacked,

the Simulator Attack consumes fewer queries to achieve a

comparable success rate with Bandits.

5. Conclusion

In this study, we present a novel black-box attack named

Simulator Attack. It focuses on training a generalized sub-

stitute model (“Simulator”) to accurately mimic any un-

known target model with the aim of reducing the query

complexity of the attack. To this end, the query sequences

generated while attacking many different networks are used

as the training data. The proposed approach uses an MSE-

based knowledge-distillation loss in the inner and outer up-

dates of meta-learning to learn the Simulator. After training,

a high number of queries can be transferred to the Simula-

tor, thereby reducing the query complexity of the attack by

several orders of magnitude compared with the baseline.

Acknowledgments

This research is supported by the National Key R&D

Program of China (2019YFB1405703) and TC190A4DA/3,

the National Natural Science Foundation of China (Grant

Nos. 61972221, 61572274).

11842



References

[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-

marion, and Matthias Hein. Square attack: A query-efficient

black-box adversarial attack via random search. In An-

drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael

Frahm, editors, Computer Vision – ECCV 2020, pages 484–

501, Cham, 2020. Springer International Publishing.

[2] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song.

Practical black-box attacks on deep neural networks using ef-

ficient query mechanisms. In European Conference on Com-

puter Vision, pages 158–174. Springer, 2018.

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-

son, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto, and

Fabio Roli. Evasion attacks against machine learning at test

time. In Joint European conference on machine learning and

knowledge discovery in databases, pages 387–402. Springer,

2013.

[4] Nicholas Carlini and David A. Wagner. Towards evaluating

the robustness of neural networks. In IEEE Symposium on

Security and Privacy (SP), pages 39–57, May 2017.

[5] Jianbo Chen, Michael I Jordan, and Martin J Wainwright.

HopSkipJumpAttack: a query-efficient decision-based ad-

versarial attack. In 2020 IEEE Symposium on Security and

Privacy (SP). IEEE, 2020.

[6] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and

Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-

box attacks to deep neural networks without training sub-

stitute models. In Proceedings of the 10th ACM Workshop

on Artificial Intelligence and Security, pages 15–26. ACM,

2017.

[7] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, Jin-

Feng Yi, and Cho-Jui Hsieh. Query-efficient hard-label

black-box attack: An optimization-based approach. In

7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-

Review.net, 2019.

[8] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and

Jun Zhu. Improving black-box adversarial attacks with a

transfer-based prior. In Advances in Neural Information Pro-

cessing Systems, volume 32. Curran Associates, Inc., 2019.

[9] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-

sudevan, and Quoc V. Le. Autoaugment: Learning augmen-

tation strategies from data. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

[10] Ambra Demontis, Marco Melis, Maura Pintor, Matthew

Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru,

and Fabio Roli. Why do adversarial attacks transfer? ex-

plaining transferability of evasion and poisoning attacks. In

28th USENIX Security Symposium (USENIX Security 19),

pages 321–338, Santa Clara, CA, Aug. 2019. USENIX As-

sociation.

[11] Xuanyi Dong and Yi Yang. Searching for a robust neural ar-

chitecture in four gpu hours. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1761–1770, 2019.

[12] Jiawei Du, Hu Zhang, Joey Tianyi Zhou, Yi Yang, and Ji-

ashi Feng. Query-efficient meta attack to deep neural net-

works. In International Conference on Learning Represen-

tations, 2020.

[13] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Inter-

national Conference on Learning Representations, 2015.

[14] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon

Wilson, and Kilian Weinberger. Simple black-box adversar-

ial attacks. In Kamalika Chaudhuri and Ruslan Salakhut-

dinov, editors, Proceedings of the 36th International Con-

ference on Machine Learning, volume 97 of Proceedings of

Machine Learning Research, pages 2484–2493. PMLR, 09–

15 Jun 2019.

[15] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyra-

midal residual networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

5927–5935, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), July 2017.

[18] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Be-

longie, and Ser-Nam Lim. Enhancing adversarial example

transferability with an intermediate level attack. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 4733–4742, 2019.

[19] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy

Lin. Black-box adversarial attacks with limited queries

and information. In Jennifer Dy and Andreas Krause, ed-

itors, Proceedings of the 35th International Conference on

Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 2137–2146. PMLR, 10–15 Jul

2018.

[20] Andrew Ilyas, Logan Engstrom, and Aleksander Madry.

Prior convictions: Black-box adversarial attacks with bandits

and priors. In International Conference on Learning Repre-

sentations, 2019.

[21] Xiaojun Jia, Xingxing Wei, Xiaochun Cao, and Hassan

Foroosh. Comdefend: An efficient image compression

model to defend adversarial examples. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6084–6092, 2019.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[23] T. Lee, B. Edwards, I. Molloy, and D. Su. Defending against

neural network model stealing attacks using deceptive per-

turbations. In 2019 IEEE Security and Privacy Workshops

(SPW), pages 43–49, May 2019.

[24] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.

Delving into transferable adversarial examples and black-

box attacks. In Proceedings of 5th International Conference

on Learning Representations, 2017.

11843



[25] Zihao Liu, Qi Liu, Tao Liu, Nuo Xu, Xue Lin, Yanzhi Wang,

and Wujie Wen. Feature distillation: Dnn-oriented jpeg com-

pression against adversarial examples. In 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 860–868. IEEE, 2019.

[26] Chen Ma, Shuyu Cheng, Li Chen, and Junhai Yong. Switch-

ing transferable gradient directions for query-efficient black-

box adversarial attacks. arXiv preprint arXiv:2009.07191,

2020.

[27] Chen Ma, Chenxu Zhao, Hailin Shi, Li Chen, Junhai Yong,

and Dan Zeng. Metaadvdet: Towards robust detection of

evolving adversarial attacks. In Proceedings of the 27th

ACM International Conference on Multimedia, MM ’19,

page 692–701, New York, NY, USA, 2019. Association for

Computing Machinery.

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learn-

ing models resistant to adversarial attacks. In International

Conference on Learning Representations, 2018.

[29] Smitha Milli, Ludwig Schmidt, Anca D Dragan, and Moritz

Hardt. Model reconstruction from model explanations. In

Proceedings of the Conference on Fairness, Accountability,

and Transparency, pages 1–9, 2019.

[30] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland

Goecke, Jianbing Shen, and Ling Shao. Adversarial defense

by restricting the hidden space of deep neural networks. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3385–3394, 2019.

[31] Yurii Nesterov and Vladimir Spokoiny. Random gradient-

free minimization of convex functions. Foundations of Com-

putational Mathematics, 17(2):527–566, 2017.

[32] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards

reverse-engineering black-box neural networks. In Ex-

plainable AI: Interpreting, Explaining and Visualizing Deep

Learning, pages 121–144. Springer, 2019.

[33] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.

Knockoff nets: Stealing functionality of black-box models.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4954–4963, 2019.

[34] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.

Prediction poisoning: Towards defenses against dnn model

stealing attacks. In International Conference on Learning

Representations, 2020.

[35] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practi-

cal black-box attacks against machine learning. In Proceed-

ings of the 2017 ACM on Asia conference on computer and

communications security, pages 506–519. ACM, 2017.

[36] Li Pengcheng, Jinfeng Yi, and Lijun Zhang. Query-efficient

black-box attack by active learning. In 2018 IEEE Inter-

national Conference on Data Mining (ICDM), pages 1200–

1205. IEEE, 2018.

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[38] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-

triguing properties of neural networks. In International Con-

ference on Learning Representations, 2014.

[39] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,

and Thomas Ristenpart. Stealing machine learning models

via prediction apis. In 25th {USENIX} Security Symposium

({USENIX} Security 16), pages 601–618, 2016.

[40] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan

Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng.

Autozoom: Autoencoder-based zeroth order optimization

method for attacking black-box neural networks. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 742–749, 2019.

[41] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperpa-

rameters in machine learning. In 2018 IEEE Symposium on

Security and Privacy (SP), pages 36–52. IEEE, 2018.

[42] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1492–1500,

2017.

[43] Y. Yamada, M. Iwamura, T. Akiba, and K. Kise. Shake-

drop regularization for deep residual learning. IEEE Access,

7:186126–186136, 2019.

[44] Ziang Yan, Yiwen Guo, and Changshui Zhang. Subspace

attack: Exploiting promising subspaces for query-efficient

black-box attacks. In Advances in Neural Information Pro-

cessing Systems, pages 3820–3829, 2019.

[45] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016.

11844


