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Abstract

Localizing actions in video is a core task in computer vi-

sion. The weakly supervised temporal localization problem

investigates whether this task can be adequately solved with

only video-level labels, significantly reducing the amount

of expensive and error-prone annotation that is required.

A common approach is to train a frame-level classifier

where frames with the highest class probability are se-

lected to make a video-level prediction. Frame-level acti-

vations are then used for localization. However, the ab-

sence of frame-level annotations cause the classifier to im-

part class bias on every frame. To address this, we pro-

pose the Action Selection Learning (ASL) approach to cap-

ture the general concept of action, a property we refer to

as “actionness”. Under ASL, the model is trained with

a novel class-agnostic task to predict which frames will

be selected by the classifier. Empirically, we show that

ASL outperforms leading baselines on two popular bench-

marks THUMOS-14 and ActivityNet-1.2, with 10.3% and

5.7% relative improvement respectively. We further ana-

lyze the properties of ASL and demonstrate the importance

of actionness. Full code for this work is available here:

https://github.com/layer6ai-labs/ASL.

1. Introduction

Temporal action localization is a fundamental task in

computer vision with important applications in video un-

derstanding and modelling. The weakly supervised lo-

calization problem investigates whether this task can be

adequately solved with only video-level labels instead of

frame-level annotations. This significantly reduces the ex-

pensive and error-prone labelling required in the fully su-

pervised setting [39, 29], but considerably increases the

difficulty of the problem. A standard approach is to ap-

ply multiple instance learning to learn a classifier over in-

stances, where an instance is typically a frame or a short

segment [23, 26, 14]. The classifier is trained using the top-

*Authors contributed equally to this work.

(a) Context error (b) Actionness error

Figure 1: (a) Context error for the “Cricket Shot” action due

to the presence of all cricket artifacts but absence of action.

(b) Actionness error for the “Cricket Bowling” action due

to the atypical scene despite the presence of action.

k aggregation over the instance class activation sequence

to generate video probabilities. Localization is then done

by leveraging the class activation sequence to generate start

and end predictions. However, in many cases, the instances

that are selected in the top-k contain useful information for

prediction but not the actual action. Furthermore, with top-

k selection the classification loss encourages the classifier

to ignore action instances that are difficult to classify. Both

of these problems can significantly hamper localization ac-

curacy and stem from the general inability of the classi-

fier to capture the intrinsic property of action in instances.

This property is known as “actionness” in the existing liter-

ature [7, 21].

Ignoring actionness can lead to two major types of error:

context error and actionness error. Context error occurs

when the classifier activates on instances that do not contain

actions but contain context indicative of the overall video

class [19, 14]. Figure 1 (a) shows an example of context er-

ror. Here, cricket players are inspecting a cricket pitch. The

instance clearly indicates that the video is about cricket and

the classifier predicts “Cricket Shot” with high confidence.

However, no shot happens in this particular instance and in-

cluding it in the localization for “Cricket Shot” would lead

to an error. Actionness error occurs when the classifier fails

to activate on instances that contain actions. This generally

occurs in difficult instances that have significant occlusion

or uncommon settings. An example of this is shown in Fig-

ure 1 (b). The action is “Cricket Bowling”, but the classifier
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fails to activate as the scene is indoors and differs from the

usual cricket setting.

Leading recent work [25, 14, 24] in this area propose

an attention model to filter out background and then train a

classifier on the filtered instances to predict class probabil-

ities. This has the drawback of making it more challenging

for the classifier to learn as important context is potentially

removed as background.

Our motivation is to design a learning framework that

can use the context information for class prediction and

at the same time learn to identify action instances for lo-

calization. We have seen from the supervised setting that

leading object detection [9, 27, 4] and temporal localiza-

tion [17, 18, 16] methods leverage class-agnostic proposal

networks to generate highly accurate predictions. This

demonstrates that a general objectness/actionness property

can be successfully learned across a diverse set of classes.

To this end, we propose a new approach called Action

Selection Learning (ASL) where the class-agnostic action-

ness model learns to predict which frames will be selected

in the top-k sets by the classifier. During inference, we

combine predictions from the actionness model with class

activation sequence and show considerable improvement in

localization accuracy. Specifically, ASL achieves new state-

of-the-art on two popular benchmarks THUMOS-14 and

ActivityNet-1.2, where we improve over leading baselines

by 10.3% and 5.7% in mAP respectively. We further an-

alyze the performance of our model and demonstrate the

advantages of the actionness approach.

2. Related Work

Weakly Supervised Temporal Action Localization A

prominent direction in the weakly supervised setting is to

leverage the class activation sequence to improve localiza-

tion. UntrimmedNet [32] focuses on improving the in-

stance selection step using class activations. Hide-and-

seek [30] applies instance dropout to reduce classifier’s de-

pendence on specific instances. W-TALC [26] incorporates

a co-activity similarity loss to capture inter-class and inter-

video relationships. 3C-Net [23] adopts a center loss to re-

duce inter-class variations while applying additional action-

count information for supervision. Focusing on class acti-

vations can be susceptible to context error, and a parallel

line of research explores how to identify context instances.

STPN [24] extends UntrimmedNet by introducing a class-

agnostic attention model with sparsity constraints. BM [24]

uses self-attention to separate action and context instances.

CMCS [19] assumes a stationary prior on context and lever-

ages it to model context instances. BaSNet [14] explicitly

models a separate context class that is used to filter in-

stances during inference. DGAM [28] trains a variational

autoencoder to model the class-agnostic instance distribu-

tion conditioned on attention to separate context from ac-

tions. More recently, TSCN [37] and EM-MIL [22] pro-

pose two-stream architectures. TSCN separates the RGB

and Flow modules and learns from pseudo labels generated

by combining the predictions of the two streams. EM-MIL

introduces a key instance and a classification module trained

alternately to maintain the multi instance learning assump-

tion.

Actionness Learning Our approach is motivated by re-

lated work in the supervised setting where a common design

choice is to learn a class-agnostic module to generate pro-

posals that are then labelled by the classifier [17, 18, 16].

Earlier work defines actionness as a likelihood of a generic

but deliberate action that is separate from context [7], and

applies it to detect human activity in both image [7] and

video [34] settings. A related concept of “interestingness”

has been proposed to identify actions at the pixel level [31].

Work in action recognition shows that generic attributes ex-

ist across action classes and can be leveraged for recog-

nition [21]. Similar concept has been demonstrated to be

successful for tracking applications [15]. Finally, in ob-

ject detection, leading approaches heavily leverage class-

agnostic proposal networks to first identify regions of high

“objectness” [9, 27, 4]. In this work, we demonstrate that

the analogous “actionness” property in videos can be effec-

tively learned with only video-level labels.

3. Approach

We treat a video as a set of T instances {x1, ..., xT },

dropping video index to reduce notation clutter. An instance

can be a frame or a fixed-interval segment, represented by a

feature vector xt ∈ R
d. In the weakly supervised temporal

localization task, each instance xt either contains an action

from one of C classes or is the background, however, this

is unknown to us. Instead, we are given video-level classes

Y ⊆ {1, ..., C} which is the union of all instance classes

in the video. The weakly supervised temporal localization

task then asks whether video-level class information can be

used to localize actions across instances. In this section, we

first outline the classification framework in Section 3.1, and

then describe our approach in Section 3.2.

3.1. Base Classifier

We define a video classifier to predict target video-level

classes as:

sc,t = Fc,t(x1, ..., xT ) (1)

where F is a neural network applied to the entire video, and

Fc,t(·) denotes its output at class c and instance xt. Taken

over all T instances we refer to Fc,t(·) as the class activa-

tion sequence (CAS). Multiple instance learning [5] is com-

monly used to train the classifier, where top-k pooling is

applied over CAS for each class to aggregate the highest
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activated instances and make video-level predictions. We

denote the set of top-k instances for each class as T c :

T c = argmax
T ⊆{1,...,T}

|T |=k

∑

t∈T

hc,t (2)

where k is a hyper-parameter and hc,t is the instance selec-

tion probability that is used to select the top instances. In

prior work, the selection probability is straightforwardly set

to the CAS with hc,t = sc,t. However, we make a deliber-

ate distinction here which allows incorporating actionness

as we demonstrate in the following section. Aggregation,

such as mean pooling, is applied over the selected instances

in T c to make video-level class prediction:

pc = softmax

(

1

|T c|

∑

t∈T c

sc,t

)

(3)

Finally, this model is optimized with the multiple instance

learning objective:

LCLS = −
1

|Y |

∑

c∈Y

log pc (4)

3.2. Action Selection Learning in Video

The classifier introduced in the previous section opti-

mizes the classification objective which encourages only in-

stances that strongly support the target video classes to get

selected in the top-k set. This can lead to the inclusion of

instances that provide strong context support but do not con-

tain the action (actionness error), and also the exclusion of

instances that contain the action but are difficult to predict

(context error). Both of these problems do not affect video

classification accuracy, but can significantly hurt localiza-

tion. We address this by developing a novel action selec-

tion learning (ASL) approach to capture the class-agnostic

actionness property of each instance. The main idea be-

hind ASL is that the top-k set T c used for prediction is

likely capturing both context and action instances. How-

ever, context information is highly class-specific whereas

actions share similar characteristics across classes. Con-

sequently, by training a separate class-agnostic model to

predict whether an instance will be in the top-k set for any

class, we can effectively capture instances that contain ac-

tions and filter out context. We begin by defining a neural

network actionness model G:

at = σ (Gt(x1, ..., xT )) (5)

where σ is the sigmoid activation function, and Gt(·) de-

notes the output of G for instance xt. Here, at can be inter-

preted as the probability that xt contains any action.

For an instance to contain a specific action, it should si-

multaneously contain evidence of the corresponding class

and evidence of actionness. As we discussed, class evidence

alone is not sufficient and can lead to context and action-

ness errors. To account for both properties, we expand the

instance selection function:

hc,t = h(at, sc,t) (6)

This selection function combines beliefs from both mod-

els and can be implemented in multiple ways. In this work

we fuse the scores with a convex combination h(at, sc,t) =
βat + (1− β)sc,t and leave other possible architectures for

future work. After hc,t is computed, we proceed as before

and select top-k instances with the highest hc,t values to get

T c.

To train the actionness model G, we design a novel task

to predict whether a given instance xt will be in the top-

k set for any ground truth class. Since context is highly

class dependent, we hypothesize that G can only perform

well on this task by learning to capture action characteris-

tics that are ubiquitous across classes. This hypothesis is

further motivated by the fact that many leading supervised

localization methods first generate class-agnostic proposals

and then predict classes for them [17, 18, 16]. High accu-

racy of these models indicates that the proposal network is

able to learn the general actionness property independent of

the class, and we aim to do the same here. We first partition

instances into positive and negative sets:

Tpos =
⋃

c∈Y

T c (7)

Tneg = {1, ..., T}\Tpos (8)

where positive set Tpos contains the union of all instances

that appear in the top-k for the ground truth classes Y , and

negative set Tneg has all other instances. We then train G
to predict whether each instance is in the positive or neg-

ative set. In our model the classifier and actionness net-

works are tied by the instance selection function. Empiri-

cally, we observe that during training as classification accu-

racy improves better instances get selected into positive and

negative sets. This improves the actionness model which

translates to better top-k instance selection for the classifier,

leading to further improvement in classification accuracy.

The two models are thus complementary to each other, and

we show that both classification and localization accuracy

improve when the actionness network is added.

Since our target positive and negative sets contain both

context and action instances, the binary inclusion labels

can be noisy. This is particularly the case early in train-

ing when classification accuracy is poor and top selected

instances are not accurate. Traditional cross entropy clas-

sification loss assigns a large penalty when prediction de-
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(a) Diagram of the proposed approach.

0

0
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C
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h(at, sc,t)sc,t

at

(b) Toy example with C = 4, T = 7, k = 3.

Figure 2: ASL model architecture and toy example. (a) For every instance xt the classifier Fc,t predicts class activation

sc,t, and actionness model Gt predicts actionness score at. Class activation and actionness are combined with the instance

selection function h to get instance selection probability hc,t = h(at, sc,t). Top-k instances with the highest selection

probabilities are then added to T c and aggregated together to generate class prediction pc for the video. Finally, the union of

top-k instances across ground-truth classes Y is used to generate target sets Tpos and Tneg for the actionness model. (b) Toy

example illustrates how target sets Tpos and Tneg are computed. The video has T = 7 instances, C = 4 classes and k = 3.

For each class we select top-3 instances with the highest action selection probabilities h(at, sc,t) indicated by yellow cells.

Taking union of selected instances across ground truth classes (c ∈ Y ) we get Tpos shown in blue. All other instances form

Tneg shown in red.

viates significantly from the ground truth. This is a desir-

able property when labels are clean, enabling the model to

converge quickly [38]. However, recent work shows that

cross entropy leads to poor performance under noisy labels,

where the high penalty can force the model to overfit to

noise [8, 38]. To address this problem the generalized cross

entropy loss has been proposed that softens the penalty in

regions of high disagreement [38]. We adopt this loss here

to improve the generalization of the actionness model:

LASL =
1

|Tpos|

∑

t∈Tpos

1− (at)
q

q
+

1

|Tneg|

∑

t∈Tneg

1− (1− at)
q

q

(9)

where 0 < q ≤ 1 controls the noise tolerance. LASL

is based on the negative Box-Cox transform [2], and ap-

proaches mean absolute error when q is close to 1 which

is more tolerant to deviations from ground truth. On the

other hand, as q approaches 0, LASL behaves similarly to

the cross entropy loss with stronger penalties. By appropri-

ately setting q we can control model sensitivity to noise and

improve robustness. During training we optimize both clas-

sification and ASL losses simultaneously L = LCLS +LASL

and backpropagate the gradients through both classifier and

actionness networks.

The proposed ASL architecture is summarized in Fig-

ure 2(a). Figure 2(b) also shows a toy example that illus-

trates how positive and negative sets Tpos and Tneg are com-

puted. The video has T = 7 instances and C = 4 classes,

two of which are in the ground truth Y = {3, 4}. Moreover,

k = 3 so for each class top-3 instances with the highest in-

stances selection probabilities h(at, sc,t) are selected, indi-

cated by yellow cells. Union of instances selected for the

ground truth classes form Tpos = {x1, x2, x3, x4} shown

in red, and all other instances form Tneg = {x5, x6, x7}
shown in blue. To successfully predict instances in each

list, the actionness model must find commonalities between

all instances in Tpos and distinguish them from Tneg. As we

demonstrate in the experimental section this commonality

is the presence of actionness which significantly aids the

localization task.

After training, we use the instance selection probabil-

ities hc,t to localize actions in test videos. Given a test

video with T ′ instances, we run it through our model to get

the corresponding instance selection probability sequence

hc,1, ..., hc,T ′ . We then follow recent work [23, 14, 28] and

apply multiple thresholds 0 < α < 1. All instances where

selection probability is above the threshold hc,t > α are

considered selected, and we take all consecutive sequences

as proposal candidates. Repeating this process for each

threshold, we obtain a set of proposals for each class. We

then apply non-maximal suppression to eliminate overlap-

ping and similar proposals and generate the final localiza-

tion predictions.

4. Experiments

We conduct extensive experiments on two popular

weakly supervised temporal localization datasets contain-

ing untrimmed videos: THUMOS-14 [11] and ActivityNet-

1.2 [3]. THUMOS-14 contains 200 training videos with 20

action classes and 212 test videos. ActivityNet-1.2 contains

4,819 training and 2,383 test videos with 100 action classes.
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Table 1: THUMOS-14 results. mAP is the mean of

AP@IoU scores across thresholds {0.1, 0.2, ..., 0.9}. Ab-

lation results are shown at the bottom where ASL-sc,t and

ASL-at use class probability sc,t and actionness probability

at respectively to localize, and ASL-BCE trains the action-

ness network G with the binary cross entropy loss.

Approach
AP@IoU

mAP
0.1 0.3 0.5 0.7 0.9

CMCS [19] 57.4 41.2 23.1 7.0 - -

MAAN [36] 59.8 41.1 20.3 6.9 0.2 24.9

3C-Net [23] 56.8 40.9 24.6 7.7 - -

BaSNet [14] 58.2 44.6 27.0 10.4 0.5 27.9

BM [25] 60.4 46.6 26.8 9.0 0.4 28.6

DGAM [28] 60.0 46.8 28.8 11.4 0.4 29.2

ACL [10] - 46.9 30.1 10.4 - -

TSCN [37] 63.4 47.8 28.7 10.2 0.7 22.9

EM-MIL [22] 59.1 45.5 30.5 16.4 - -

ASL (ours) 67.0 51.8 31.1 11.4 0.7 32.2

Ablation

ASL-sc,t 56.9 40.5 19.7 6.0 0.4 24.0

ASL-at 55.9 40.3 20.6 6.8 0.4 30.4

ASL-BCE 66.4 50.5 30.5 10.9 0.7 31.6

Both datasets have videos that vary significantly in length

from a few seconds to over 25 minutes. This makes the

problem challenging since the model has to perform well

on both long and short action sequences. For all experi-

ments, we only use video-level class labels during training.

To make the comparison fair, we follow the same experi-

mental setup used in literature [26, 23, 14, 28], including

data splits, evaluation metrics and input features. For all ex-

periments, we report average precision (AP) at the different

intersection over union (IoU) thresholds between predicted

and ground truth localizations. For brevity, we show se-

lected thresholds in the results table for both datasets. The

mAP is computed with IoU thresholds between 0.1 to 0.9

with increments of 0.1 on THUMOS-14 and between 0.5

to 0.95 with increments of 0.05 on ActivityNet-1.2 to stay

consistent with previous work. Full results on all thresholds

used for computing mAP are found in the supplementary

material.

Implementation Details We generate instance input

features xt following the same pipeline as recent leading

approaches [23, 14, 28]. The I3D network [6] pre-trained

on the Kinetics dataset [12] is applied on each sub-sequence

of 16 consecutive frames with RGB and TVL1 flow [33] in-

puts to extract 2048-dimensional feature representation by

spatiotemporally pooling the Mixed5c layer. Linear inter-

polation across time is then applied for both datasets. To

make the comparison fair we adopt the same base classifier

for F as in [14] with 512 hidden units and ReLU activations.

Similarly, the actionness network G is fully connected with

512 hidden units. Both networks are applied across time

to every instance and operate similarly to convolutional fil-

Table 2: ActivityNet-1.2 results. mAP is the mean of

AP@IoU scores across thresholds {0.5, 0.55, ..., 0.95}.

Approach
AP@IoU

mAP
0.5 0.6 0.7 0.8 0.9

TSM [35] 28.3 23.6 18.9 14.0 7.5 17.1

3CNet [23] 35.4 - 22.9 - 8.5 21.1

CMCS [19] 36.8 - - - -

CleanNet [20] 37.1 29.9 23.4 17.2 9.2 21.6

BaSNet [14] 38.5 - - - - 24.3

DGAM [28] 41.0 33.5 26.9 19.8 10.8 24.4

TSCN [37] 37.6 - - - - 23.6

EM-MIL [22] 37.4 - 23.1 - 2.0 20.3

ASL (ours) 40.2 34.6 29.4 22.5 12.1 25.8

ters with kernel size 1. We set noise tolerance q = 0.7 for

both datasets, and use previously reported instance selection

parameters k = T/8 for THUMOS-14 and ActivityNet-

1.2 [23, 14]. We set β to be 0.5 for the instance selection

function h(at, sc,t). ASL is trained using the ADAM opti-

mizer [13] with batch size 16, learning rate 1e-4 and weight

decay 1e-4 until convergence. During inference, we use ten

localization thresholds α from 0 to 1 to generate localiza-

tion proposals. We then compute final predictions by ap-

plying non-maximum suppression to eliminate overlapping

and similar proposals.

We compare our approach with an extensive set of lead-

ing recent baselines: TSM [35], CMCS [19], MAAN [36],

3C-Net [23], CleanNet [20], BaSNet [14], BM [25],

DGAM [28], TSCN [37] and EM-MIL [22]. Details for

each baseline can be found in the related work section, and

we directly use the results reported by the respective au-

thors.

Results Table 1 summarizes temporal localization re-

sults on the THUMOS-14 dataset. Our approach improves

over the prior art by a significant margin on all IoU thresh-

olds except 0.7, with a 10.3% relative gain in mAP over the

best baseline. A similar pattern can be observed from the

ActivityNet-1.2 results summarized in Table 2. We can see

that ASL improves over every baseline on all IoU thresholds

except 0.5, with a 5.7% relative gain in mAP. These results

indicate that the proposed action selection learning frame-

work is highly effective for the weakly supervised temporal

localization task. Figure 3 further breaks down THUMOS-

14 performance by class. The top four classes with the

largest relative improvement are highlighted in blue. The

most improved classes have more than 100% relative gain.

We believe this is due to the wide range of context set-

tings present in the dataset for these classes, making class-

agnostic action learning more effective for separating con-

text.

Ablation To demonstrate the importance of actionness,

we conduct ablation study on the THUMOS-14 dataset

shown at the bottom of Table 1. Here, ASL-sc,t uses class

probability hc,t = sc,t and ASL-at uses actionness proba-
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Figure 4: THUMOS-14 Tpos analysis. (a) Fraction of instances in Tpos that contain ground truth action from any target class.

(b) Validation ASL accuracy at predicting which instances will be in Tpos. (c) Averaged across training videos IoU of Tpos

sets between consecutive epochs, error bars show one standard deviation.

bility hc,t = at for localization proposals during inference.

The classification for ASL-at is done at the video level by

taking the class with the highest probability and assigning

it to every localization. Finally, ASL-BCE trains the action-

ness network G with the binary cross entropy loss instead

of the generalized LASL loss in Equation 9. We see that in-

corporating actionness in the full ASL model relatively out-

performs the classification-only ASL-sc,t approach by over

36% in mAP. Moreover, ASL-at has very strong perfor-

mance and is competitive with prior state-of-the-art results

even though at on its own has no explicit class information.

This demonstrates that the actionness network G is able to

successfully capture the general class-agnostic concept of

action through our top-k instance prediction task. Once

captured, this property can be effectively used to identify

regions within each video where the action occurs indepen-

dently of the class. We note here that attention models com-

monly used in prior work, have not been shown to be capa-

ble of localizing actions on their own. The full ASL model

further improves performance of ASL-at by 6% indicating

that classifier and actionness networks capture complemen-

tary information. Finally, using binary cross entropy instead

of the noise tolerant LASL loss hurts performance. LASL

becomes equivalent to binary cross entropy in the limit as

q → 0 [38]. In all our experiments we found that much

higher values of q such as 0.7 produced better performance

on both datasets, indicating that cross entropy is indeed not

adequate here due to the high degree of noise in the target

labels particularly at the beginning of training.

Actionness Learning The main idea behind ASL is that

actionness can be captured by predicting top-k membership

for each instance. In this section, we analyze this learning

task in detail. Figure 4 shows various properties of the Tpos

set throughout training. In Figure 4(a) we plot the fraction

of instances in Tpos that contain ground truth action from

any target class over training epochs. For comparison, we

also plot this fraction for ASL-sc,t and ASL-at where top-

k instances are chosen according to class sc,t and action-

ness at probabilities respectively. We observe that without

the actionness model, ASL-sc,t hovers around 63% whereas

for ASL it steadily increases to over 72%. Furthermore,

ASL-at reaches a much higher fraction of over 70% com-

pared to ASL-sc,t, capturing a significantly larger portion of

instances with action. This again indicates that the action-

ness network is better at identifying action instances than

the classifier.

Figure 4(b) shows the validation accuracy of the action-

ness model G in predicting which instances are in the Tpos

set. Despite the fact that Tpos is a moving target that can

change with each iteration, the prediction accuracy remains

stable and gradually improves throughout learning reaching

over 84%. The model is thus able to reach an equilibrium

between the two networks and no divergence is observed.

Furthermore, Figure 4(c) shows the intersection over union
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Figure 5: THUMOS-14 error and ablation analysis. (a) Error analysis across all test instances by type. TP, FP, TN, FN indicate

true positives, false positives, true negatives and false negatives respectively. (b) Class-agnostic localization Recall@100

using G when it is trained from scratch on Tpos with different proportion of instances that contain action. (c) Effect of

training schedules in ASL. F and G is joint ASL training, F then G is sequential training of F followed by G, F :n G:m is

an alternating schedule where F is updated for n epochs followed by G for m epochs.

(IoU) between the Tpos sets from consecutive epochs during

training. A higher IoU indicates a larger overlap between

consecutive Tpos sets which in turn makes targets for G more

stable and easier to learn. We observe that the initial IoU

starts around 0.5 and rapidly approaches 1 as training pro-

gresses. Furthermore, the variance in IoU across training

videos decreases throughout training so Tpos sets stabilize

after the first few epochs. These results indicate that the

top-k selection remains consistent for the majority of train-

ing epochs, and G is able to successfully learn these targets;

we observe this pattern in all our experiments.

Figure 5a breaks down the predictions made by ASL by

error type. We use all test instances and show the total num-

ber of true positives (TP), false positives (FP), false nega-

tives (FN) and true negatives (TN). Note that we treat this

as a binary problem and consider an instance as true posi-

tive if it contains an action and is selected for localization

by ASL. In this setting, FP and FN represent context and

actionness errors respectively, TP and TN are correctly pre-

dicted instances. We compare ASL with the classifier-only

ASL-sc,t model and show the relative increase/decrease for

each category in blue. Figure 5a shows that ASL improves

each category predicting more instances correctly and mak-

ing fewer mistakes. Specifically, ASL reduces context and

actionness errors by 31% and 16% respectively.

In Figure 4 we showed that ASL can capture action-

ness because a significant proportion of instances in Tpos

sets contain actions, and these sets remain stable through-

out training. Moreover, even though not all instances in

Tpos contain actions, our noise tolerant loss is robust and

can still perform well when a portion of labels is incor-

rect. Here, we further investigate the degree of noise that

can be tolerated in this setting. Specifically, we evaluate the

ability of G to capture actionness when it is trained on Tpos

with different proportions of action instances. Throughout

training, we sample instances from Tpos sets to lower the

fraction of instances that contain actions. This simulates

a challenging learning environment where G has to learn

from increasingly noisier labels. Figure 5b shows these

results on the THUMOS-14 dataset where we reduce the

fraction of instances containing actions in Tpos (Class Rate)

from 70% to 30%. For comparison, the actual class rate

on this dataset reaches around 72% (see Figure 4(a)). To

more directly evaluate the impact of this setting we com-

pute the instance-level Recall@100 using only predictions

from G. Recall@100 is computed by measuring the fraction

of instances that contain any action amongst the top-100 in-

stances predicted by G. We can see that Recall@100 for

the noise-tolerant ASL setting remains relatively stable be-

tween 50% and 70% but starts to drop significantly below

40% class rate. These results suggest that the top-k selec-

tion strategy can tolerate a high degree of noise with up to

50% of incorrect labels. However, this also implies that the

classifier needs to be sufficiently accurate in the top-k se-

lection for ASL to work.

Throughout the training, we simultaneously update both

F and G. We discussed that this results in moving targets

for G where instances in Tpos change as the classifier is up-

dated. Alternative training strategies are explored in Fig-

ure 5c. We experiment with first training F to convergence

and then G (F then G), and alternating between training

F and G. We denote these alternating schedules by F :n
G:m to indicate training F for n epochs followed by train-

ing G for m epochs and repeating. We observe that train-

ing F then G results in the lowest performance, since the

model cannot adjust the classifier to work better with the

actionness model. Alternating between F and G updates

improves performance but still lags behind joint training.

This corroborates our intuition that the classifier and action-

ness models complement each other in ASL and should be

trained together.

We further show DETAD [1] analysis on THUMOS-14

dataset in Figure 7. Here, the top row shows false positive

analysis (context error) and false negative analysis (action-
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(a) Hammer Throw (b) Diving

(c) Diving (d) Cricket Bowling

Figure 6: THUMOS-14 qualitative results comparing ASL-sc,t and ASL on four videos. Ground truth (GT) localizations are

indicated with green segments, and we show sample frames from action (green) and context (red) instances. Predictions are

shown in blue where darker color indicates higher confidence.
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Figure 7: THUMOS-14 error analysis following DETAD

[1]. Top row breaks down false positives errors while bot-

tom row shows false negatives by segment lengths.

ness error) is shown in the bottom row. The false positive

profiles show that ASL-at significantly reduces the back-

ground (41.7 vs 47.7) and localization (28.3 vs 32.5) errors

compared to ASL-sc,t, further demonstrating that G is able

to learn actionness concepts that the classifier fails to cap-

ture. On the other hand, we observe higher double detection

(14.8 vs 9.6) and wrong label (2.9 vs 0.9) errors in ASL-at
since it lacks class information. This corroborates our hy-

pothesis that both models are needed to maximize localiza-

tion accuracy. In the top predictions 1G, nearly all of the

reduction in background error translates to more true posi-

tives in both ASL and ASL-at compared to ASL-sc,t. On

the false negatives, ASL-at improves on shorter and more

frequent action segments and complements ASL-sc,t which

captures longer and more infrequent action segments better.

Qualitative Results Figure 6 shows qualitative results

for ASL-sc,t and ASL models. Ground truth segments are

shown in green, and model predictions are shown in blue

with darker colors indicating higher confidence. In fig-

ure 6(a) for a video containing the “Hammer throw” action,

the ASL-sc,t localization alone is focusing on one very spe-

cific region of the video which likely contains the easiest

instances (actionness error) to predict the video class. ASL

spreads the localization predictions and correctly identifies

all regions of actions. The opposite pattern is observed

in Figures 6(b) and 6(c) which show the “Diving” action

class. ASL-sc,t activations are high on many context in-

stances (context error) as they all contain highly informa-

tive scenes for the target “Diving” class. ASL, however,

focuses on the regions that contain the action. Lastly, Fig-

ure 6(d) shows “Cricket Bowling” action in an uncommon

indoor setting. Here, ASL-sc,t has difficulty recognizing

the action and most activations have low confidence. The

actionness model is able to identify the action of throwing

as shown in the first two sample frames. Predictions of ASL

are significantly more confident and identifies all of the ac-

tion segments.

5. Conclusion

We propose the Action Selection Learning (ASL) ap-

proach for weakly supervised video localization. ASL in-

corporates a class-agnostic actionness network that learns

a general concept of action independent of the class. We

train the actionness network with a novel prediction task by

classifying which instances will be selected in the top-k set

by the classifier. Once trained, this network is highly ef-

fective on its own and can accurately localize actions with

minimal class information from the classifier. Empirically,

ASL demonstrates superior accuracy, outperforming lead-

ing recent benchmarks by a significant margin. Future work

includes further investigation into actionness and its gener-

alization to other related video domains.
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