
Generative Classifiers as a Basis for Trustworthy Image Classification

Radek Mackowiak*

Visual Learning Lab, Heidelberg University

Lynton Ardizzone*

Visual Learning Lab, Heidelberg University

Ullrich Köthe

Visual Learning Lab, Heidelberg University

Carsten Rother

Visual Learning Lab, Heidelberg University

∗
equal contribution

Abstract

With the maturing of deep learning systems, trustworthiness

is becoming increasingly important for model assessment.

We understand trustworthiness as the combination of ex-

plainability and robustness. Generative classifiers (GCs)

are a promising class of models that are said to naturally

accomplish these qualities. However, this has mostly been

demonstrated on simple datasets such as MNIST and CIFAR

in the past. In this work, we firstly develop an architecture

and training scheme that allows GCs to operate on a more

relevant level of complexity for practical computer vision,

namely the ImageNet challenge. Secondly, we demonstrate

the immense potential of GCs for trustworthy image clas-

sification. Explainability and some aspects of robustness

are vastly improved compared to feed-forward models, even

when the GCs are just applied naively. While not all trust-

worthiness problems are solved completely, we observe that

GCs are a highly promising basis for further algorithms and

modifications. We release our trained model for download

in the hope that it serves as a starting point for other gen-

erative classification tasks, in much the same way as pre-

trained ResNet architectures do for discriminative classifi-

cation.

Code: github.com/VLL-HD/trustworthy GCs

1. Introduction

Generative classifiers (GCs) and discriminative classi-

fiers (DCs) represent two contrasting ways of solving classi-

fication tasks. In short, while standard DCs model the class

probability given an input directly, p(class | image) (e.g.

softmax classification), generative classifiers (GCs) take the

opposite approach: They model the likelihood of the input

image, conditioned on each class, p(image | class). The

actual classification is then performed by finding the class

under which the image has the highest likelihood.

The application of GCs has so far been limited to very

(a) Normal input

(b) Unrelated input

Cat Dog

0.55 0.45

Cat Dog

0.42 0.58

Cat Dog

6.3 6.1

Cat Dog

0.014 0.017

Discriminative Classifier

q(class Y | image X)

sums to 1 over classes

Generative Classifier

q(image X |class Y)

integrates to 1 over images

Figure 1: Example of one advantage of generative classi-

fiers: The class posterior of a DC always sums up to 1,

while the likelihoods of the GC do not have this restriction,

constituting inherently more informative outputs. E.g. the

GC can show if a prediction is uncertain because the input

agrees with both classes, or with neither.

simple datasets such as MNIST, SVHN and CIFAR-10/100.

For any practical image classification tasks, DCs are used

exclusively, due to their excellent discriminative perfor-

mance. In principle, GCs are said to have various advan-

tages over DCs, which align with the term trustworthiness.

In general agreement with [24], we understand trustworthi-

ness as the combination of explainability and robustness.

Explainability: DCs based on deep neural networks are

notorious for being ‘black boxes’, prompting many devel-

opments in the field of explainable AI. In the taxonomy

laid out in [18], most commonly used algorithms fall into

categories I or II: post-hoc methods that visualize how a

network processes information (I), or that show its internal

representations (II). The explanations can vary depending

on the chosen method, and there is no guarantee that the

results faithfully reflect what the DC is doing internally.

In contrast, GCs bring to mind Feynman’s mantra “What

I cannot create, I do not understand”. As GCs are able to

model the input data itself, not just the class posteriors, they

2971

have fundamentally more informative outputs. For instance,

GCs allow us to tell if a decision between two classes is

uncertain because the input agrees well with both classes,

or with neither (see Fig. 1). In addition, most GCs have

interpretable latent spaces with meaningful features, allow-

ing for the actual decision process to be directly visualized

without post-hoc techniques. Therefore, it could be argued

that GCs belong to category III of the explainability taxon-

omy [18], i.e. methods that intrinsically work in an explain-

able way, without relying on additional algorithms.

Robustness: A second large concern about the practical use

of deep learning based classification systems is their robust-

ness, which can have different meanings, depending on the

context. In particular, GCs have been assumed to be supe-

rior to DCs in terms of generalization under dataset shifts

[51, 39] and accurately calibrated posteriors [3]. In addi-

tion, a big advantage of GCs is their capability to explicitly

identify abnormal inputs in a natural way, thus indicating

when a decision should not be trusted. Furthermore, GCs

were found to be more robust towards adversarial attacks

[33] and allow for their explicit detection [17].

It is still unclear if GCs can also manifest these ad-

vantages in more complex tasks while remaining compet-

itive to DCs in task performance. For example, the authors

of [15] find while GCs can successfully detect adversarially

attacked MNIST images, this already fails for the CIFAR-

10 dataset. The authors of [34, 30] observe that detection

of other forms of OoD data also fails in various ways for

natural images. In [16], the authors cast doubt on whether

GCs can be used for high-dimensional input data at all.

In light of this background, our work makes the follow-

ing contributions: (i) We design and train a GC that per-

forms at a level relevant to practical image classification,

demonstrated on the ImageNet dataset. (ii) We show vari-

ous native explainability techniques unique to GCs. (iii) We

examine the model in terms of robustness.

Overall, we find our GC to work better than a compa-

rable DC in terms of trustworthiness. However, we do ob-

serve that previous findings on superior generalization un-

der dataset shift [51] and immunity to adversarial attacks

[41] do not hold for the ImageNet dataset. For other aspects

of robustness, our GC shows some great benefits, such as

naturally detecting OoD inputs and adversarial attacks.

2. Related Work

Years before the deep learning revolution, works such

as [37, 51, 39] already compared the properties of GCs vs

DCs, theoretically and experimentally, with agreement that

GCs are more robust and more explainable. Works like [6,

5, 54] presented models that combine the aspects of GCs

and DCs, to reach a more favourable trade-off compared to

each extreme. However, all these works consider simple

problems, and with the unmatched task performance later

delivered by deep-learning based DCs in the 2010s, GCs

became rarely used.

As one example of more recent work, [16] investigates

normalizing-flow based GCs trained on natural images. The

authors find that naively trained GC models achieve very

poor classification performance, and argue that this is due

to some model properties that are not properly penalized by

maximum likelihood training. Later, [3] propose that this

problem can be avoided by training with the Information

Bottleneck loss function instead. The authors of [32] mod-

ify the problem, and train a GC on features previously ex-

tracted from a standard feed-forward network. For all these

works, the most complex dataset used is CIFAR-100, at a

resolution of 32⇥ 32 pixels.

So-called hybrid models [38] have been more success-

ful in practice. Here, a likelihood estimation method is in-

volved, commonly for the marginal p(image), while the ac-

tual classification is still performed in a discriminative way,

using shared features between the two tasks, the main mo-

tivation being semi-supervised learning. Notable examples

are [29, 14, 11, 35, 20]. They have some fundamental dif-

ferences to GCs, e.g. that the conditional likelihoods are not

directly modeled and the latent space has no explicit class

structure.

Concerning OoD detection with generative models, the

authors of [34] and later [30] observed that likelihood mod-

els trained on natural images fail to detect certain OoD in-

puts, and may perform significantly worse than random.

This problem is addressed e.g. by [36, 10, 43, 45, 55], where

different OoD scores are introduced that correct for these

shortcomings. These works only consider unconditional

likelihood models for OoD detection, while a separate clas-

sifier is still needed to perform the actual task. GCs combine

both these steps into a single model, simplifying the process

and potentially improving OoD detection at the same time.

GCs have also been examined for adversarial defense re-

cently [41, 17, 33]. While these works highlight the po-

tential of GCs, they are limited to simple datasets such as

MNIST and SVHN, and do not scale to problems with more

than approx. 10 classes, or to natural images [15].

3. Methods

3.1. Invertible Neural Networks

While VAEs have been used as generative classifiers with

some success [41, 17, 33], perhaps the most natural choice

are normalizing flows, due to their exact likelihood esti-

mation capabilities [13]. The networks used in normaliz-

ing flows are so-called invertible neural networks (INNs), a

class of neural network architectures that meet the following

conditions: (i) the network represents a diffeomorphism by

construction (essentially, a smooth and invertible function),

(ii) the inversion can be computed efficiently, and (iii) the

network has a tractable Jacobian determinant. These con-

2972

ditions place some restrictions on the architecture, e.g. that

the number of input and output dimensions have to be equal,

and that non-invertible operations such as max-pooling can

not be used. In recent years, various different invertible ar-

chitectures have been developed that fulfill these conditions

[12, 13, 4, 19]. In this work, we employ the affine coupling

block architecture proposed in [13], with additional modifi-

cations, as described in Appendix B.1.

In any generative setting, there are training images X ,

that follow some unknown image distribution p(X). The

goal is then to approximate p(X) as closely as possible with

a distribution given by the network, which we denote as

qθ(X). In the case of normalizing flows, qθ(X) is repre-

sented by transforming possible inputs X to a latent space

Z using an INN fθ (‘flow’), with a prescribed standard nor-

mal latent distribution p(Z) = N (0, 1) (‘normalizing’).

Then, the change-of-variables formula can be used to com-

pute qθ(X) at any point x through

qθ(x) = p
⇣

Z=fθ(x)
⌘

|det J(x)| (1)

with J ⌘ ∂fθ/∂X being the Jacobian. It can be shown that

the network will learn the true distribution (qθ(X) = p(X))
by maximizing the expected log-likelihood log qθ(X), as

given through Eq. 1 above [47]. After training is com-

plete, the model can not only be used to estimate likelihoods

qθ(X), but also to generate new samples by inverting the

network, in order to map sampled instances of Z back to

image space.

In our case, this approach is not sufficient, as we want to

use the INN as a generative classifier, meaning we need to

model conditional likelihoods qθ(X | Y). While different

approaches for this exist [52, 2], we adopt the form intro-

duced in [25]. Here, the latent distribution is a conditional

density p(Z | Y): The standard normal distribution p(Z) is

replaced with a Gaussian Mixture Model (GMM) contain-

ing a unit-variance mixture component per class

p(Z |Y) = N (Z;µY ,) (2)

p(Z) =
X

y

p(y) p(Z | y) =
X

y

p(y)N (Z;µy,) (3)

where µy is the mean of class y in latent space; and the

mixture weights are the class priors p(y), i.e. the frequency

of occurrence of each class in the dataset. The conditional

likelihood qθ(X|Y) can be evaluated with the change-of-

variables formula (Eq. 1) as before by replacing the full dis-

tribution p(Z) with the appropriate mixture component:

qθ(X |Y) = p
⇣

Z=fθ(X)
�

�

�
Y
⌘

|det J | . (4)

3.2. Training INNs with Information Bottleneck

An INN naively trained with a class-conditional log-

likelihood loss will perform very poorly as GC, even on

mildly challenging tasks [16]. Instead, we require a loss

function where the focus on the generative and class-

separating capabilities can be explicitly controlled. For this,

we utilize the IB objective [49], the ideal loss function for

robust classification from an information theoretic point of

view. Given some features Z of a network, inputs X , and

ground-truth outputs Y , the IB loss consists of two terms

using the mutual information I (MI):

LIB = I(X,Z)� β̂I(Y, Z). (5)

The MI quantifies the degree of shared information be-

tween variables and can be written as I(V,W) =
DKL(p(V,W)kp(V)p(W)). Minimizing the IB loss means

maximizing the information about the desired output Y con-

tained in the features, I(Y, Z). Simultaneously, it mini-

mizes the information about the original image contained in

the features, I(X,Z), resulting in robust and efficient rep-

resentations Z. The trade-off between these two aspects is

explicitly adjusted by choosing β̂.

How to apply this objective to INNs is not immediately

obvious, as INNs preserve information, and the loss be-

comes ill-defined. The authors of [3] show that this can

be avoided by adding very low noise to the inputs. This is

already an established practice in the context of normaliz-

ing flows for the purpose of dequantization. From this, the

authors go on to derive two loss terms representing the IB

objective, LIB = LX + βLY . In practice, the two terms

amount to the following:

LX(x) = �log | det Jx|+
1

2
logsumexp

y0

⇣

v2y0�2wy0

⌘

(6)

LY (x, y) = onehot(y) · log softmax
y0

v2y0

2
� wy0

!

(7)

Hereby, we use vy := f(x)� µy , and wy := log p(y)
(log(1/(# classes)) for uniform class priors in our case). Jx
is the Jacobian ∂f(x)/∂x. y0 denotes the summation over

all classes in the logsumexp and log softmax operations.

The difference between β̂ in the original IB and β in the

loss is a constant weighting factor for convenience [3], pro-

ducing a sensible objective for manageable values of β in

the rough range (1, 100).
Intuitively, we find the following: The LX -loss forces

the data to follow the GMM in latent space, making the

INN a generative model. However, it has no effect on the

class-conditional aspect, as the class y is summed out. This

loss can be rearranged to look similar to the maximum-

likelihood-loss used for normalizing flows, but with a GMM

as a latent distribution. On the other hand, the LY -loss

bears resemblance to the categorical cross entropy loss, ex-

cept that the usual logits are replaced by log p(z|y)p(y) =
log p(z, y). Therefore, LY is responsible for making the

likelihood model conditional on the class, but otherwise ig-

nores the generative performance.

x

3.3. Detecting OoD Inputs

For likelihood-based generative models, detecting OoD

inputs is straight forward, by directly utilizing the estimated

2973

probability density qθ: in principle, if an input is outside

the support of the training data, and the model has learned

the true distribution, the OoD sample should be assigned

log qθ(x) = �1. In practice, it is only required that

OoD samples have lower likelihood scores than the train-

ing data. From here, any input with an inferred likelihood

below a threshold can be treated as OoD. However, in [34],

the authors identified various special cases where OoD in-

puts have an unnaturally high log-likelihood score. This

prompted the development of a typicality-test in [36], that

uses both an upper and a lower threshold. Even better per-

forming extensions to this exist [10, 43, 45, 55], but we

choose the typicality-test as the simplest option, to examine

the natural capabilities of the model. We slightly modify the

typicality-test to make it a traditional hypothesis test, with

the null hypothesis being that the input is in-distribution,

more details in Appendix A.1. The p-value for the hypoth-

esis test is the fraction of training samples with scores in

the OoD-zone, which also equals the false positive rate. To

evaluate the OoD detection capabilities independent of the

threshold, we vary the p-value of the test and produce a re-

ceiver operating characteristic (ROC) curve. The area under

this curve (ROC-AUC), in percent, serves as a scalar mea-

surement of the OoD detection capabilities, with ROC-AUC

of 100% meaning that the OoD samples and in-distribution

samples are perfectly separated, and a value at 50% or be-

low indicates a random performance or worse.

4. Experiments

A detailed description of the network architecture is

found in Appendix B.1, we summarize the main points in

the following. We construct the invertible network (INN)

from affine coupling blocks, as introduced in [13], with var-

ious modifications from other recent works [1, 2, 26, 28].

As invertible alternatives to 2 ⇥ 2 max-pooling and global

mean-pooling, we use a Haar wavelet transform [2] and a

DCT transform [26] respectively.

Because of the similarities between affine coupling

blocks and residual blocks as used in a ResNet, we match

the design of the INN to that of a standard ResNet-50 wher-

ever possible. The overall layout is summarized in Table

1, c.f. [21, Table 1]. Some differences arise due to the

constraint of invertibility: the number of feature channels

and the available receptive field vary between the two net-

works. Regarding the effective rather than maximum recep-

tive field, see Appendix B.2. The invertibility is also as-

sociated with an extra cost of parameters and computation,

summarized in Appendix Table 5: Both in terms of network

parameters, as well as FLOPs for one forward pass, the cost

of the INN is about twice as high as a standard ResNet-50.

We are optimistic that this overhead can be reduced in the

future with more efficient INN architectures.

Layer Blocks Im. size Channels R.F.

INN ResNet INN ResNet

Input 224 3 3

Entry flow 1 112 12 64 8 6

Pool (Haar/max) 56 48 64 10 10

Conv 2 x 3 56 48 256 34 34

Conv 3 x 4 28 192 512 106 90

Conv 4 x 6 14 768 1024 314 266

Conv 5 x 3 7 3072 2048 538 426

Pool (DCT/avg.) 1 150 528 2048 1 1

Table 1: For each of the resolution levels in the INN and

ResNet-50, the number of coupling/residual blocks and spa-

tial size is given, along with the number of feature channels

and the maximum possible receptive field (R.F.).

0 10 20 30

LX (←)

7.9

8.0

8.1

8.2

8.3

8.4

8.5

L
Y

(←
)

1

2

4

8

16

32
∞

β
=

0

ResNet-50

0 10 20 30 40

Bits/dim (←)

68

70

72

74

76

78

A
cc
u
ra
cy

(→
)

1

2

4

8

16

32 ∞

β
=

0

ResNet-50

Figure 2: Trade-off between the two losses LX and

LY (left), and between generative modeling accuracy in

bits/dim, and top-1 accuracy (right). Each point represents

one model, trained with a different beta. A standard ResNet

has no LX loss and is shown as a horizontal line. The model

with β = 0 (standard normalizing flow) is missing the LY

loss and is shown as a vertical line. The small numbers in-

side the markers give the value of β of that particular model.

4.1. General Performance

We train several generative classifiers, with the following

values for the hyperparameter β 2 {1, 2, 4, 8, 16, 32,1}.

Again, β controls how much the model focuses on the gen-

erative likelihood estimation aspect (low β), vs. prioritizing

good classification performance (high β). In addition, we

include a model trained with β = 0, i.e. no classification at

all, analogous to a standard normalizing flow, as well as a

standard feed-forward ResNet-50 [21], i.e. a pure DC.

The primary performance metrics used in Table 2 and

Fig. 2 are firstly, the top-1 accuracy on the test set (in our

case, the ILSVCR 2012 validation set [40]). We use 10-

crop testing, which is most commonly used for performance

evaluation in this setting. Secondly, for the generative likeli-

hood estimation performance, we use the bits per dimension

(‘bits/dim’) metric, as this is the prevalent evaluation met-

ric for likelihood-based generative models such as normal-

izing flows. It quantitatively measures the accuracy of the

density estimation (i.e. generative performance), explained

e.g. in [48], where a lower bits/dim corresponds to a more

accurate generative model.

In Table 2, we report the test losses and the two dis-

2974

β L(test)
X (#) L(test)

Y (#) Bits/dim (#) Acc. (%) (") OCE (#)

1 �1.90 8.52 4.34 67.30 3.87
2 �0.65 8.26 6.14 71.73 4.13
4 1.14 8.14 8.72 73.69 4.31
8 3.66 8.10 12.35 74.59 4.73

16 7.17 8.06 17.43 75.54 4.15
32 10.81 8.01 22.68 76.18 4.94
1 27.68 7.99 47.01 76.27 5.12
0 �3.11 – 2.59 – –

ResNet – 7.87 – 77.40 6.75

Table 2: Test losses and metrics for models trained with dif-

ferent β. Bits/dimension quantifies the performance of den-

sity estimation models (see text, smaller is better, i.e. more

accurate generative model). As with the original ResNet,

the classification accuracy uses 10-crop testing. OCE is the

overconfidence error, i.e. how often confident predictions

are wrong (see text, smaller is better).

cussed performance metrics for the different models. Fur-

ther shown in Fig. 2, changing β moves smoothly between

the limit cases of a feed-forward network, and a pure den-

sity estimation model: the classification accuracy increases

continuously with β, but a minor gap remains to the feed-

forward ResNet-50, in line with works such as [27]. Si-

multaneously and as expected, the bits/dim get worse as we

move away from a purely generative model (β = 0).

Lastly, we examine the uncertainty calibration, a quan-

titative measure of the quality of the predictive posteriors.

The full analysis is provided in the Appendix Table 6. Here

we only report the overconfidence error ‘OCE’, which mea-

sures the normalized classification error of predictions with

a high confidence C � Ccrit = 99.7%. For instance, if

the error rate in these cases is 1.1%, although it should only

be 0.3% according to the confidence, this gives an OCE of

1.1/0.3 ⇡ 3.7. Our findings are in line with previous works,

in that the uncertainty calibration improves with lower β

and better generative capabilities [3].

4.2. Explainability

In the following, we demonstrate several examples on

how GCs can be used for native and intuitive explanations

of the data and the prediction outputs. Certainly, algorithms

and approaches exist that can generate similar results for

DCs. The point of the following examples is to show that

in GCs a range of explanations is available using only the

structure of latent space and the learned likelihoods, with-

out requiring additional modifications or algorithms applied

in a post-hoc manner.

Visualizing decision-space: The properties of a classifica-

tion decision are fully determined by the latent code of an

input image in relation to the surrounding classes. The only

difficulty consists in reducing the high-dimensional latent

space to a 2D plot. Fig. 3 shows one possibility: latent

codes are visualized in a plane through the centers of the

two most probable classes, such that relative distances to

−4 −3 −2 −1 0 1 2 3 4

9.0

7.3

5.6

3.9

2.1

0.4

-1.3

-3.0

groenendael

91.5%

american black bear

1.72%

True: groenendael

−4 −3 −2 −1 0 1 2 3 4

9.0

7.3

5.6

3.9

2.1

0.4

-1.3

-3.0

missile

54.6%

projectile

45.2%

True: missile

−4 −3 −2 −1 0 1 2 3 4

9.0

7.3

5.6

3.9

2.1

0.4

-1.3

-3.0

refrigerator

28.2%

siamese cat

27.8%

True: refrigerator

−4 −3 −2 −1 0 1 2 3 4

9.0

7.3

5.6

3.9

2.1

0.4

-1.3

-3.0

arabian camel

10.3%

seat belt

8.63%

True: miniature poodle

Figure 3: Latent space location of input images (black

point) in the decision space spanned by the µy of the top 5

predicted classes. The horizontal axis of the plot is the axis

connecting the top 2 predicted classes (red and blue points).

The vertical axis of the plot shows the radial distance from

the horizontal axis in the 5D space. The illustrative circles

are chosen such that in both the vertical and horizontal di-

rections, 90% of the mass of the Gaussian mixture com-

ponent lies inside. Note that the axes in the plot are scaled

differently to make it appear as a circle. Test examples from

left to right: a confident in-distribution decision, an uncer-

tain in-distribution decision due to ambiguous classes, an

uncertain decision due to multiple plausible image interpre-

tations, an uncertain out-of-distribution decision.

the centers and to their connecting axis are preserved. A

second approach is given in Appendix C.1, where the clas-

sification among a subset of classes can be fully visualized.

Class similarities: Building on Fig. 3, we see that different

classes have various amounts of overlap, which represents

the relationship between them. This is not possible for a

feed-forward model, as there is no latent space where the

input data is embedded in such a way. We observe that the

locations µy of the Gaussian mixture components are close

together for classes that are semantically similar, and far

apart for classes that are dissimilar.

Importantly, this also has implications for predictions the

model makes. For instance, in Fig. 3, top right, the classes

overlap a lot. This means more points will lie in the over-

lap zone, and consequently more of these decisions will be

uncertain, compared to e.g. bottom left, where most inputs

will be in only one of two classes. More precisely, the closer

two class centers are, the larger is the overlap, and the larger

2975

tiger

egyptian cat

tabby

tiger cat

arctic fox

grey fox

red fox

kit fox

hard disc

cassette

modem

loudspeaker

radio

cd player

cassette player

tape player

rapeseed

african elephant

tusker

indian elephant

bison

water buffalo

ox

oxcart

Figure 4: Latent similarity between different classes. The colormap indicates the pairwise distance of the µy as well as the

expected pairwise posterior, meaning e.g. the binary decision between “tabby cat” and “tiger cat” is associated with 20%
expected uncertainty, by construction (see text). The distance on the diagonal is 0 (outside colormap range).

True: bow tie

(93.8%)

Qclass(bow tie)

(4.1%)

Qclass(suit)

(1.1%)

Qclass(sunglass)

True: limpkin

(33.1%)

Qclass(limpkin)

(23.3%)

Qclass(vulture)

(2.7%)

Qclass(bald eagle)

True: Rottweiler

(92.1%)

Qclass(Rottweiler)

(3.5%)

Qclass(Appenzeller)

(0.9%)

Qclass(soccer ball)

Figure 5: Examples of the prediction heatmaps. Summing

the bright areas directly gives the final class prediction. Top:

bowtie and sunglasses are located, suit is distributed over a

large area. Middle: The head of the bird causes it to be clas-

sified as a limpkin, whereas the feathers are more indicative

of an eagle or vulture. Bottom: The heatmaps of both Rot-

tweiler and Appenzeller classes are located in the same area

(ambiguous classes), while the soccer ball is separate.

the proportion of split decisions between these classes. In

fact, if a class A is the top prediction, the expected confi-

dence for any other class B can be worked out explicitly

from the distance between µA and µB in latent space, see

Appendix C.2. Some examples are shown in Fig. 4, with

the full similarity matrix in Appendix Fig. 16.

These considerations highlight an important fact: the la-

tent mixture model contains a built-in uncertainty between

classes. A decision between similar classes will always be

uncertain, by the structure of the latent space alone. This

may be one of the reasons explaining why the predictive

uncertainties are better calibrated in such GCs.

Posterior Heatmaps: To increase the trust in a decision, it

is often helpful to show which regions of the image were

relevant. Examples are widespread where models e.g. base

the decision on the background of the image, not the object

in question, or focus only on a specific detail that identifies

an object. Approaches such as CAM or GradCAM [56, 42]

are used to generate coarse heatmaps showing regions that

are influential for a particular decision. With the IB-INN,

we can provide such heatmaps as a direct decomposition

of the prediction output, meaning they can be understood

simply as a different way of representing the model output,

rather than a post-hoc explanation technique.

To produce a spatially structured output, we consider

the following: Due to the invertibility of every part of the

model, we can start from the output z, and transform it back

through the DCT operation. Unlike standard mean-pooling,

the DCT pooling does not lose any information in either di-

rection. We define the following for short:

w(y) = DCT�1
�

z � µy

�

. (8)

Importantly, w(y) has the spatial structure of the final con-

volutional outputs, w
(y)
kl , with height- and width indexes k

and l. Because the DCT is linear and orthogonal, it con-

serves distances, i.e. kz � µyk = kw(y)k, which allows us

to write

q(z|y)/exp

✓

�
kw(y)k2

2

◆

=exp

�
X

kl

�

w
(y)
kl

�2

2

!

(9)

This means the latent density is can be written as a sum

over spatial coordinates inside the exponential. We can do

the same kind of decomposition to the posterior with a few

extra steps, noting q(y|x) = q(z|y)p(y)/q(z). This leads to

our heatmap QClass(k, l, y), that sums to the class posterior

over space in the same way as in Eq. 9:

qθ(y|x) = exp

X

kl

QClass(k, l, y)

!

. (10)

QClass has a single hyperparameter that adjusts the contrast

of the heatmaps. The derivation is given in Appendix C.4.

Examples are shown in Fig. 5. Similarly, we can compute a

salience map QSalience(k, l, y), that decomposes qθ(x) spa-

tially, showing which parts of the image contain the most

information according to the model, explained and shown

in Appendix C.3.

2976

Noise Blur Weather Digital

β Clean Error mCE rel. mCE ∆ entrop. OoD Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

0 – – – – 77.51 94.9 94.3 98.0 95.7 89.8 88.3 89.5 38.1 43.1 94.8 44.7 96.7 65.5 63.0 66.2

1 32.7 98.5 116 1.62 67.9 95.3 95.2 98.6 92.9 87.1 84.9 87.4 33.0 45.4 96.5 43.5 97.0 60.4 61.9 55.6

2 28.27 92.5 119 1.75 73.6 94.8 95.2 98.5 87.8 82.6 81.3 84.9 30.9 43.2 96.5 44.1 95.2 56.6 61.0 51.2

4 26.31 88.2 117 1.72 70.84 92.7 93.8 97.4 77.6 76.7 75.6 81.7 31.0 43.2 95.5 44.5 89.2 54.1 61.7 48.0

8 25.41 86.8 117 1.81 65.85 89.3 91.2 94.6 56.9 63.5 63.1 73.7 37.6 46.6 87.8 45.1 71.2 53.1 65.1 49.1

16 24.46 84.9 115 1.79 62.43 83.7 84.6 88.0 46.7 56.7 63.5 67.9 43.2 52.0 80.2 45.6 66.3 53.3 62.0 42.7

32 23.82 83.1 113 1.71 55.83 81.6 81.5 84.0 39.8 51.6 50.1 54.8 43.9 44.3 61.6 44.6 53.9 52.4 52.5 41.1

1 23.73 83.4 114 1.58 44.24 39.5 44.5 40.6 42.8 48.1 46.3 46.0 40.9 38.9 36.1 44.3 48.5 52.2 47.9 47.0

ResNet 22.6 78.2 109 1.51 – –

Table 3: We report the error on the unperturbed images (clean error), the mean corruption error (mCE) and the relative

mCE, describing the relative performance degradation caused the corruptions (∆ entrop.). Furthermore, we report the OoD

ROC-AUC detection score (OoD) averaged over all corruptions as well as for the individual corruptions. Meaning of colors:

good detection � 85%; some detection > 55%; random or worse detection 55%.

4.3. Robustness

Different Measures of Robustness: In current literature,

there is no agreement upon a single measurement that

clearly defines robustness in deep learning. In general, the

question is how a model reacts to out-of-distribution (OoD)

inputs, meaning inputs that do not come from the same dis-

tribution as the training data. We identify four different con-

cepts of robustness, which are commonly used:

(1) Especially for dataset shifts that preserve the semantic

information, a robust model is one that retains good per-

formance for the OoD inputs.

(2) There are other cases where definition (1) is not applica-

ble: There is no ‘correct’ prediction if the OoD input does

not contain any of the classes which were trained for. The

second idea of robustness is therefore that the model should

at least make uncertain predictions for OoD inputs, mea-

sured by discrete entropy of the predictive outputs [44]. In

reality, standard (non-robust) models make highly confident

predictions on OoD data [44].

(3) A robust model can be one that is able to explicitly de-

tect OoD inputs. In this case, along with the usual task

output, the model has some auxiliary output that indicates

whether an input is OoD. The model is robust by explicitly

indicating that it’s prediction may not be trusted in these

cases. GCs are uniquely suited for this, as the estimated

likelihood of the inputs can serve as a built-in OoD detec-

tion mechanism, but other approaches also exist [31, 23, 9].

To measure this, metrics such as the area under the receiver-

operator curve can be used (AUC-ROC).

(4) In the context of adversarial attacks, robustness is com-

monly understood to be the amplitude of adversarial per-

turbation necessary to trick the model [53].

Handling Corrupted Images: We first consider the robust-

ness test in the sense of (1) established by [22]. Here, the

existing ImageNet validation images are corrupted with 5
severity levels in 15 different ways, examples are shown in

Appendix D.1. The authors propose the mean corruption er-

ror (mCE) and the relative mean corruption error (rel. mCE)

score to measure the robustness of a classifier. We also mea-

sure the increase in predictive entropy as in [44] for robust-

ness in the sense of (2), and perform OoD detection (3).

As can be seen in Table 3 the GC does not show an im-

provement compared to the ResNet in terms of (rel.) mCE,

regardless of β. However, it infers more uncertain predic-

tions on corrupted data. For OoD detection, we observe

overall better scores for smaller values for β. We find the

GC trained with β = 2 to be the most robust classification

model: It is able to detect a wide range of corruption types

while being a reasonably good classifier (4.54 percentage

point classification accuracy gap compared to the β = 1
model and 5.67 gap compared to the ResNet).

Handling Adversarial Attacks: We are interested in find-

ing out if generative classifiers are more robust to adversar-

ial attacks in the sense of (4). We are not proposing a new,

competitive method of adversarial attack defense, the goal

is simply to examine whether GCs are naturally more ro-

bust to adversarial attacks on ImageNet, in the same way it

was observed for e.g. MNIST previously [33, 41]. For this,

we perform the well established ‘Carlini-Wagner’ white-

box targeted attack introduced in [8], which optimizes the

following objective:

LCW = kx� xadvk
2 + c · L

(κ)
class(ytarget), (11)

i.e. the attacked image xadv should be close to the original

image x, while being classified as a target class ytarget. κ is

a hyperparameter that specifies how large the difference in

logits should be between ytarget and the next highest class,

controlling how confident the classifier will be forced to be

in its (wrong) decision. When facing a model such as a GC,

which can detect attacks, it is also possible to add an extra

loss term Ldetect in order to fool the detection mechanism

as well, as proposed in [7]:

LCWD = kx�xadvk
2+c·L

(κ)
class(ytarget)+d·Ldetect (12)

The full formulation of the attack objectives is given in Ap-

pendix D.2.

For evaluation, we examine standard CW attacks and

two detection-fooling attacks with d = 66 and d = 1000,

2977

−3 −2 −1 0 1

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Confidene not reached

Confidence satisfied

x
a
d
v

|x
−

x
a
d
v
|

Figure 6: Trajectory of four adversarial attacks shown in la-

tent space (colored curves), with κ = 1, d = 0 (standard

CW). The large black dot indicates the position of µtarget,

the target class being ‘Harvestman (spider)’. The solid

black lines are the decision boundaries to the surrounding

classes. The dashed black lines are the boundaries of the

region where the classifier is fooled with sufficiently high

confidence corresponding to κ. In the dotted section of the

colored trajectories, the classifier is not yet fooled with suf-

ficiently high confidence. In the solid section, the classi-

fier has been fooled, and the attack only tries to reduce the

perturbation. Below, the four perturbed images are shown,

along with the absolute perturbation. More examples and

detailed explanation in Appendix D.3.

each for three values of κ 2 {0.01, 1,1}. For these 9 at-

tack settings, we measure the L2 perturbation of the images

after the attack and the ROC-AUC of the attack detection.

The results are presented in Fig 7, from which we make

several key observations. We conclude that the GC requires

roughly 2⇥ larger perturbations for a standard adversarial

compared to the ResNet, in line with [33]. We also ob-

serve the attack detection mechanism to be partially robust

against attacks; even with d = 1000 it still works reason-

ably well for some cases. Furthermore, within this setting,

the size of the perturbation is even more extensive compared

to the standard attack setting. Fooling the classifier to pre-

dict the wrong class with greater confidence also increases

the necessary perturbation as the detectability. An intu-

itive visualization of the adversarial attack in latent space

is shown in Fig. 6.

1 2 4 8 16 32 ∞ RN

0.00

0.01

0.02

0.03

0.04

L2 Pertubation

1 2 4 8 16 32 ∞

40

60

80

100

κ
=

0
.
0
1

Detection ROC-AUC

1 2 4 8 16 32 ∞ RN

0.00

0.01

0.02

0.03

0.04

1 2 4 8 16 32 ∞

40

60

80

100

κ
=

1
.
0

1 2 4 8 16 32 ∞ RN

0.00

0.05

0.10

0.15

0.20

1 2 4 8 16 32 ∞

40

60

80

100

κ
=

∞

Figure 7: Behaviour of GCs under adversarial attacks. The

first column of plots shows the mean perturbation, the sec-

ond shows the detection ROC-AUC. The three rows of plots

correspond to adversarial attacks with κ = 0.01 (any con-

fidence for the target prediction is enough), κ = 1 (should

have high confidence), and κ = 1 (should be as confident

as possible). The labels on the x-axis give the values of

β, ‘RN’ is a ResNet-50. The three bars for each β corre-

spond to: standard adversarial attack (d = 0), d = 66, and

d = 1000, i.e. the detection mechanism is fooled at the

same time as the prediction. The dotted line in the pertur-

bation plots roughly indicates the level at which attacks are

visible by eye. Note that this is subjective and only a rough

indication. The line in the detection plots indicates random

performance, i.e. the OoD detection does nothing useful.

5. Conclusion

In this work we have addressed the question of trustworthi-

ness for image classification. In the past, many properties

linked with trustworthiness have been ascribed to genera-

tive classifier (GCs), such as increased robustness and ex-

plainability. Our GC performs nearly on-par with a standard

discriminative classifier (DC), here ResNet, when tuned for

discriminative performance. We observe that our GC offers

significant improvements over standard DCs in terms of ex-

plainability and native out-of-distribution detection capabil-

ity, but does not automatically solve all aspects of trustwor-

thiness: Contrary to common belief, it does not generalize

better under image corruptions than a DC, and it does not

fully prevent adversarial attacks. In the future, we expect

that robustness can be increased with further modifications

or additional post-processing algorithms, as already exist

for DCs. Finally, we contribute downloadable GC models

pre-trained on ImageNet.

2978

References

[1] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich

Köthe. Analyzing inverse problems with invertible neural

networks. In Intl. Conf. on Learning Representations, 2019.

[2] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten

Rother, and Ullrich Köthe. Guided image generation

with conditional invertible neural networks. arXiv preprint

arXiv:1907.02392, 2019.

[3] Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and

Ullrich Köthe. Training normalizing flows with the informa-

tion bottleneck for competitive generative classification. Ad-

vances in Neural Information Processing Systems, 33, 2020.

[4] Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacob-

sen. Invertible residual networks. arXiv:1811.00995, 2018.

[5] Christopher M. Bishop and Julia Lasserre. Generative or dis-

criminative? getting the best of both worlds. Bayesian statis-

tics, 8(3):3–24, 2007.

[6] Guillaume Bouchard and Bill Triggs. The tradeoff between

generative and discriminative classifiers. In 16th IASC In-

ternational Symposium on Computational Statistics (COMP-

STAT’04), pages 721–728, 2004.

[7] Nicholas Carlini and David Wagner. Adversarial examples

are not easily detected: Bypassing ten detection methods. In

Proceedings of the 10th ACM Workshop on Artificial Intelli-

gence and Security, pages 3–14, 2017.

[8] Nicholas Carlini and David A. Wagner. Towards evaluating

the robustness of neural networks. In 2017 IEEE Symposium

on Security and Privacy, SP 2017, San Jose, CA, USA, May

22-26, 2017, pages 39–57. IEEE Computer Society, 2017.

[9] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh

Jha. Robust out-of-distribution detection in neural networks.

CoRR, abs/2003.09711, 2020.

[10] Hyunsun Choi, Eric Jang, and Alexander A Alemi. Waic, but

why? generative ensembles for robust anomaly detection.

arXiv preprint arXiv:1810.01392, 2018.

[11] LI Chongxuan, Taufik Xu, Jun Zhu, and Bo Zhang. Triple

generative adversarial nets. In Advances in neural informa-

tion processing systems, pages 4088–4098, 2017.

[12] Laurent Dinh, David Krueger, and Yoshua Bengio.

NICE: Non-linear independent components estimation.

arXiv:1410.8516, 2014.

[13] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.

Density estimation using Real NVP. arXiv:1605.08803,

2016.

[14] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. In Intl. Conf. on

Learning Representations, 2017.

[15] Ethan Fetaya, Jörn-Henrik Jacobsen, Will Grathwohl, and

Richard S. Zemel. Understanding the limitations of con-

ditional generative models. In 8th International Confer-

ence on Learning Representations, ICLR 2020, Addis Ababa,

Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[16] Ethan Fetaya, Jörn-Henrik Jacobsen, and Richard S. Zemel.

Conditional generative models are not robust. CoRR,

abs/1906.01171, 2019.

[17] Partha Ghosh, Arpan Losalka, and Michael J. Black. Resist-

ing adversarial attacks using gaussian mixture variational au-

toencoders. In The Thirty-Third AAAI Conference on Artifi-

cial Intelligence, AAAI 2019, The Thirty-First Innovative Ap-

plications of Artificial Intelligence Conference, IAAI 2019,

The Ninth AAAI Symposium on Educational Advances in

Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,

January 27 - February 1, 2019, pages 541–548. AAAI Press,

2019.

[18] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa,

Michael Specter, and Lalana Kagal. Explaining explana-

tions: An overview of interpretability of machine learning.

In 2018 IEEE 5th International Conference on data science

and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[19] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya

Sutskever, and David Duvenaud. Ffjord: Free-form con-

tinuous dynamics for scalable reversible generative models.

arXiv preprint arXiv:1810.01367, 2018.

[20] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen,

David Duvenaud, Mohammad Norouzi, and Kevin Swersky.

Your classifier is secretly an energy based model and you

should treat it like one. arXiv preprint arXiv:1912.03263,

2019.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[22] Dan Hendrycks and Thomas G. Dietterich. Benchmarking

neural network robustness to common corruptions and per-

turbations. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May

6-9, 2019. OpenReview.net, 2019.

[23] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt

Kira. Generalized ODIN: detecting out-of-distribution im-

age without learning from out-of-distribution data. CoRR,

abs/2002.11297, 2020.

[24] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James

Sharp, Youcheng Sun, Emese Thamo, Min Wu, and Xinping

Yi. A survey of safety and trustworthiness of deep neural

networks. arXiv preprint arXiv:1812.08342, 2018.

[25] Pavel Izmailov, Polina Kirichenko, Marc Finzi, and An-

drew Gordon Wilson. Semi-supervised learning with nor-

malizing flows. arXiv preprint arXiv:1912.13025, 2019.

[26] Jörn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and

Matthias Bethge. Excessive invariance causes adversarial

vulnerability. arXiv preprint arXiv:1811.00401, 2018.

[27] Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and

Edouard Oyallon. i-RevNet: deep invertible networks. In In-

ternational Conference on Learning Representations, 2018.

[28] Diederik P Kingma and Prafulla Dhariwal. Glow:

Generative flow with invertible 1x1 convolutions.

arXiv:1807.03039, 2018.

[29] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende,

and Max Welling. Semi-supervised learning with deep gen-

erative models. In Advances in neural information process-

ing systems, pages 3581–3589, 2014.

[30] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wil-

son. Why normalizing flows fail to detect out-of-distribution

2979

data. Advances in neural information processing systems,

33, 2020.

[31] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A

simple unified framework for detecting out-of-distribution

samples and adversarial attacks. In Samy Bengio, Hanna M.

Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-

Bianchi, and Roman Garnett, editors, Advances in Neu-

ral Information Processing Systems 31: Annual Conference

on Neural Information Processing Systems 2018, NeurIPS

2018, 3-8 December 2018, Montréal, Canada, pages 7167–

7177, 2018.

[32] Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li,

and Jinwoo Shin. Robust inference via generative classifiers

for handling noisy labels. arXiv preprint arXiv:1901.11300,

2019.

[33] Yingzhen Li, John Bradshaw, and Yash Sharma. Are gener-

ative classifiers more robust to adversarial attacks? In Ka-

malika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-

ceedings of the 36th International Conference on Machine

Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-

fornia, USA, volume 97 of Proceedings of Machine Learning

Research, pages 3804–3814. PMLR, 2019.

[34] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan

Görür, and Balaji Lakshminarayanan. Do deep generative

models know what they don’t know? In 7th International

Conference on Learning Representations, ICLR 2019, New

Orleans, LA, USA, May 6-9, 2019, 2019.

[35] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan

Görür, and Balaji Lakshminarayanan. Hybrid models with

deep and invertible features. In Proceedings of the 36th In-

ternational Conference on Machine Learning, ICML 2019,

9-15 June 2019, Long Beach, California, USA, pages 4723–

4732, 2019.

[36] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and

Balaji Lakshminarayanan. Detecting out-of-distribution in-

puts to deep generative models using a test for typicality.

CoRR, abs/1906.02994, 2019.

[37] Andrew Y. Ng and Michael I. Jordan. On discriminative

vs. generative classifiers: A comparison of logistic regres-

sion and naive bayes. In Advances in Neural Information

Processing Systems 14 [Neural Information Processing Sys-

tems: Natural and Synthetic, NIPS 2001, December 3-8,

2001, Vancouver, British Columbia, Canada], pages 841–

848, 2001.

[38] Rajat Raina, Yirong Shen, Andrew Mccallum, and

Andrew Y Ng. Classification with hybrid genera-

tive/discriminative models. In Advances in neural informa-

tion processing systems, pages 545–552, 2004.

[39] Christian Raymond and Giuseppe Riccardi. Generative and

discriminative algorithms for spoken language understand-

ing. In Eighth Annual Conference of the International

Speech Communication Association, 2007.

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet large scale visual recognition chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015.

[41] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland

Brendel. Towards the first adversarially robust neural net-

work model on MNIST. In 7th International Conference

on Learning Representations, ICLR 2019, New Orleans, LA,

USA, May 6-9, 2019. OpenReview.net, 2019.

[42] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.

Grad-cam: Visual explanations from deep networks via

gradient-based localization. In Proceedings of the IEEE in-

ternational conference on computer vision, pages 618–626,

2017.

[43] Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia,

José F Núñez, and Jordi Luque. Input complexity and out-of-

distribution detection with likelihood-based generative mod-

els. arXiv preprint arXiv:1909.11480, 2019.

[44] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshmi-

narayanan, Sebastian Nowozin, D Sculley, Joshua Dillon, Jie

Ren, and Zachary Nado. Can you trust your model’s un-

certainty? evaluating predictive uncertainty under dataset

shift. In Advances in Neural Information Processing Sys-

tems, pages 13969–13980, 2019.

[45] Jiaming Song, Yang Song, and Stefano Ermon. Unsuper-

vised out-of-distribution detection with batch normalization.

arXiv preprint arXiv:1910.09115, 2019.

[46] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016.

[47] Esteban G Tabak and Cristina V Turner. A family of non-

parametric density estimation algorithms. Communications

on Pure and Applied Mathematics, 66(2):145–164, 2013.

[48] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A

note on the evaluation of generative models. arXiv preprint

arXiv:1511.01844, 2015.

[49] Naftali Tishby, Fernando C. N. Pereira, and William

Bialek. The information bottleneck method. CoRR,

physics/0004057, 2000.

[50] Jakub M Tomczak and Max Welling. Improving varia-

tional auto-encoders using householder flow. arXiv preprint

arXiv:1611.09630, 2016.

[51] Ilkay Ulusoy and Christopher M. Bishop. Comparison of

generative and discriminative techniques for object detection

and classification. In Toward Category-Level Object Recog-

nition, pages 173–195, 2006.

[52] Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and

Max Welling. Learning likelihoods with conditional normal-

izing flows. arXiv preprint arXiv:1912.00042, 2019.

[53] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu,

Jiliang Tang, and Anil Jain. Adversarial attacks and de-

fenses in images, graphs and text: A review. arXiv preprint

arXiv:1909.08072, 2019.

[54] Jing-Hao Xue and D. M. Titterington. On the generative-

discriminative tradeoff approach: Interpretation, asymptotic

efficiency and classification performance. Computational

Statistics & Data Analysis, 54(2):438–451, 2010.

[55] Yufeng Zhang, Wanwei Liu, Zhenbang Chen, Ji Wang,

Zhiming Liu, Kenli Li, Hongmei Wei, and Zuoning Chen.

2980

Out-of-distribution detection with distance guarantee in deep

generative models. arXiv preprint arXiv:2002.03328, 2020.

[56] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimina-

tive localization. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2921–2929,

2016.

2981

