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Abstract

We address the problem of recovering multiple structures

of different classes in a dataset contaminated by noise and

outliers. In particular, we consider geometric structures de-

fined by a mixture of underlying parametric models (e.g.

planes and cylinders, homographies and fundamental ma-

trices), and we tackle the robust fitting problem by prefer-

ence analysis and clustering. We present a new algorithm,

termed MultiLink, that simultaneously deals with multiple

classes of models. MultiLink combines on-the-fly model fit-

ting and model selection in a novel linkage scheme that de-

termines whether two clusters are to be merged. The re-

sulting method features many practical advantages with re-

spect to methods based on preference analysis, being faster,

less sensitive to the inlier threshold, and able to compen-

sate limitations deriving from hypotheses sampling. Exper-

iments on several public datasets demonstrate that Multi-

Link favourably compares with state of the art alternatives,

both in multi-class and single-class problems. Code is pub-

licly made available for download1.

1. Introduction

Multi-structure recovery (also known as multi-model fit-

ting) aims at organising a set of input data in multiple ge-

ometric structures described by a few underlying paramet-

ric models. This is a fundamental step in many Computer

Vision and Pattern Recognition applications such as mo-

tion segmentation [40], template detection [17], primitive

fitting in point clouds [12], and multi-body Structure-From-

Motion [10, 22, 26]. The vast majority of fitting methods

identifies multiple structures from a single-class of mod-

els (e.g. 3D planes to fit building facades) [7, 13, 18, 32],

and cannot solve multi-class structure recovery problems,

where structures have to be identified from several classes

of models (e.g. cylinders, planes). Multi-class recovery

problems have been much less investigated [3,4,21,42,43],

1https://github.com/magrilu/multilink.git

(a) Input point cloud (b) Recovered structures

Figure 1: An example of multi-class recovery. MultiLink

extracts planes and cylinders from the input point cloud.

Structure membership is color coded.

despite they are frequently met in practical applications and

their solution typically enrich the interpretation of raw data.

Dealing with diverse classes of models enables a higher

level of abstraction and, in a broader perspective, can be

reckoned as an attempt to bridge the semantic gap separat-

ing raw visual content from reasoning. For instance, con-

sider the 3D point cloud X in Fig. 1, where the underlying

structures (groups of 3D points) can be identified by solving

a 2-class multi-model fitting problem with respect to Θp and

Θc, the class of planes and cylinders, respectively. Here, the

proposed MultiLink successfully partitions the point cloud

in s structures X = U1 ∪ . . . ∪ Us, and for each structure

it decides whether to fit a plane or a cylinder, providing an

high-level description of the Cathedral.

Structure recovery algorithms have to address multiple

challenges, including being robust to noise and structured-

outliers, and to successfully disentangle a chicken-and-egg

dilemma, since model fitting and the association of points to

structures are strictly intertwined. In fact, structures are de-

fined as set of points satisfying the same model, but models

can be instantiated only once structures have been defined.

Needless to say, all these problems become more difficult

when coping with multiple structures and diverse classes of

models, as we have to consider different data interpretations

in order to automatically choose both the number of struc-

tures s and the right class of model for each of them. De-
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spite many practical applications (e.g., Scan2Bim) solved

by multi-model fitting, this remains an ill-posed problem:

the number/type of models are in the eye of the beholder,

and either simplifying assumptions or some priors are re-

quired to make the problem tractable.

Recent solutions tackle these difficulties in two ways.

On the one hand, optimization-based solutions make single-

class algorithms able to simultaneously deal with multiple

classes of explanatory models by means of sophisticated op-

timization techniques that minimize a suitable energy func-

tion. Multi-X [3] and Prog-X [4] are prominent examples of

this approach. On the other hand, preference-based meth-

ods tackle the structure recovery problem from a cluster-

ing perspective, and typically result in simpler greedy algo-

rithms. Unfortunately, preference-based algorithms are still

far from solving general multi-class fitting problems in re-

alistic conditions. There are only few solutions that either

are not robust to outliers [42, 43] or that assume [21] that

model classes are strictly contained within each other (e.g.

Θp ⊂ Θc, since planes are also cylinders) and cannot cope

with models that do not conform this “Chinese-boxes” as-

sumption (e.g. cylinders and spheres).

Contributions

In this work, we present MultiLink, the first among

preference-based algorithms that is both robust to outliers

and can deal with general (i.e., non-nested) classes of

models, representing a viable alternative to sophisticated

optimization-based solutions. Specifically, MultiLink im-

plements an iterative agglomerative clustering scheme that

successfully combines on-the-fly hypotheses sampling and

a model-selection criterion to determine when structures

can be conveniently merged, and, in that case, which is the

most suited model among multiple classes. The transparent

greedy scheme underpinning MultiLink overcomes some

major limitations of other preference-based algorithms, and

allow to simultaneously identify multiple, not-necessarily

nested, classes of models. To the best of our knowledge, our

idea of combining preference information and model selec-

tion directly into agglomerative clustering has never been

explored before. MultiLink results in a multi-class multi-

model fitting method that is:

General: MultiLink copes with arbitrary model classes,

whereas existing robust preference-based methods, like

[18, 21, 32], are limited to a single class or nested classes.

Accurate: MultiLink achieves compelling accuracy com-

pared to recent state-of-the-art multi-class methods [3, 4,

13, 18] on both synthetic and real public datasets for struc-

ture recovery.

More stable and faster than other preference-based meth-

ods: MultiLink alleviates severe dependencies on the initial

hypotheses sampling and the choice of the inlier threshold,

resulting in a stable algorithm even in the single-class sce-

nario. In addition, the proposed cluster-merging scheme

doesn’t need to update distances at every iteration, and this

reduces the computational complexity w.r.t. [18, 21, 32].

2. Prior work

While single-class structure recovery is a well estab-

lished topic in Computer Vision that has attracted a lot of

interest, Multi-class structure recovery in its full general-

ity has been addressed only recently [3, 4, 21, 44], with a

few earlier work that have addressed this problem only for

specific applications [26, 27, 29, 36]. Here we survey those

methods that are most relevant for the proposed solution,

while in Sec. 2.1 we recall some aspects of preference-based

methods that are important to understand MultiLink.

Both single and multi-class recovery methods can be

broadly categorized in two major approaches: optimization-

based and preference-based.

Optimization-based methods were originally conceived

to deal with a single class of models [13,45]. These methods

minimize an objective function composed by a data fidelity

term that measures goodness of fit, and a penalty term to

account for model complexity. Additional terms can be in-

cluded to promote spatial coherence or further priors for the

application at hand [23]. These methods typically follow

a two-steps hypothesize-and-verify procedure and generate,

during the hypothesize step, a set of models via random

sampling. Hence, during the verification step, they select

the models minimizing the energy function. A variety of

techniques have been proposed, depending on the specific

definition of the energy function: from early approaches,

such as [35], to more advanced methods that rely on graph

labeling [24], alpha-expansion [5, 8], convex relaxation [2]

and integer linear programming [15, 20, 26]. Particular rel-

evant to our work is [8], where model-refitting is used to

escape form local minima and improve convergence of en-

ergy minimization.

Very recently, optimization-based methods addressed the

challenges of fitting instances from multiple classes: Multi-

X [3] combines alpha-expansion with a mean-shift step car-

ried on in each model class, and Prog-X [4] further im-

proves this approach by interleaving the hypothesize and

the verify stages. All these methods can be considered as

sophisticated implementations of a (multi-)model selection

criteria, as they select the simplest models using as measure

of simplicity a global energy function.

Preference-based methods represent the second main-

stream approach and our work falls in this category. In con-

trast with optimization-based methods that concentrate on

models, preference-based ones put the emphasis on struc-

tures, and cast multi-structure recovery as a clustering prob-

lem, following an hypothesize-and-clusterize scheme. Dur-

ing the first step, tentative models are randomly sampled

and points are embedded in a preference space based on the
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preferences granted by the hypothesized models. A wide

variety of techniques have been proposed to segment prefer-

ences: hierarchical schemes [32,34] such as T-linkage [18],

Kernel Fitting [6], robust matrix factorization [19, 31], bi-

clustering [9, 30], higher order clustering [1, 11, 14, 46] and

hypergraph partitioning [16, 25, 38, 39, 41]. In this work we

build upon hierarchical clustering, that is robust to outliers

and, in contrast to divisive alternatives, does not need to

know the number of structures in advance.

The preference-based approach has been only lately in-

vestigated to address multi-class problems: Multi-class

Cascaded T-linkage (MCT) [21] assumes that model classes

are nested and it executes T-linkage in a stratified manner,

from the most general to the simplest class. Then, the model

selection tool [36] GRIC (Geometric Robust Information

Criterion) is used to compare each cluster deduced from the

general class with the corresponding nested clustering de-

duced from simpler structures. Unfortunately, MCT is not

designed for models belonging to classes that are not strictly

contained in each other. The motion segmentation algo-

rithm presented in [42] can be seen as a multi-class pref-

erence method as well. The focus is on nearly-degenerate

structures, which are difficult to characterize for real data.

To overcome this limitation, rather than dealing with elu-

sive model selection problems, authors fit models of mul-

tiple classes to data, and combine the resulting partitions

through an ad-hoc multi-view spectral clustering. Regret-

fully, this cannot handle data contaminated by outliers.

It is also worth mentioning that structure recovery so-

lutions based on deep-learning are now appearing. For in-

stance, [44] tackles the multi-class multi-model fitting prob-

lem by learning, from annotation, an embedding of the

points, that are subsequently segmented by k-means.

MultiLink follows a different approach and combines

the strengths of optimization and preference-based methods

owning both the neat formulation of model selection meth-

ods and the flexibility of clustering. Specifically, we extend

preference representation to jointly deal with multiple, not

necessarily nested, mixed classes of models.

2.1. Preference analysis

The core concept of preference analysis is the preference

embedding, that was used for single class of models Θ1. Let

X be the input data and ε > 0 a fixed inlier threshold, the

preference function of xi ∈ X w.r.t. a model ϑj ∈ Θ1 is:

p(xi, ϑj) =

{

φ(eij) if eij = err(xi, ϑj) ≤ ε

0 otherwise
, (1)

where err(xi, ϑj) measures the residual eij between a

model ϑj and a point xi, and φ is a monotonic decreasing

function in [0, 1] such that φ(0) = 1. Intuitively, p(xi, ϑj)
represents the preference that a point xi grants to a model

ϑj : the lower err(xi, ϑj) , the higher the preference.
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Figure 2: MultiLink combines single-linkage clustering and

GRIC. Clusters are merged as long as the GRIC score im-

proves when fitting suitable models on-the-fly. Colors indi-

cate how cluster aggregation proceeds in the dendrogram.

In practice, a finite pool H = H1 ⊂ Θ1 of m model

hypotheses is randomly sampled from the parameter space

Θ1 and used to compute the preferences as in Eq. (1), defin-

ing an embedding of data points as vectors2 p(x,H) in the

unitary cube [0, 1]m. The rationale behind this embedding

is that points belonging to the same structure share simi-

lar preferences, thus are nearby. Several metrics have been

proposed to measure distance/similarity in the preference

space, e.g. Ordered Residual Kernel [6], Jaccard [32] and

Tanimoto [18] distance. In this work we rely on the Tani-

moto distance that, given two points u, v ∈ X , is defined as

d(u, v) = 1− τ(p(u,H), p(v,H)), where

τ(a, b) =
〈a, b〉

‖a‖2 + ‖b‖2 − 〈a, b〉
. (2)

3. Proposed method

Here we present the key principles of MultiLink by

an illustrative structure recovery problem (Fig. 2). At a

high level, MultiLink follows a hypothesize-and-clusterize

framework with two major differences w.r.t. existing solu-

tions: first, the preference embedding is computed by sam-

pling hypotheses from a “multi-class” preference space, in

our example H ⊂ Θl ∪ Θc, the space of lines and circles.

Second, the clustering is performed in the preference space

using single-linkage (see dendrogram in Fig. 2). The ma-

jor novelty of MultiLink is to determine whether each pair

of closest clusters can be conveniently merged by select-

ing which class of models describes its union at best. This

problem is solved by fitting new models on-the-fly, in order

to better describe points belonging to the two clusters, and

by deciding whether to merge them through a model selec-

tion criterion. Specifically, we use GRIC to determine the

best interpretation of the data in terms of both data fidelity

2Given H = {h1, . . . , hm}, p(x,H) is a succinct notation for

[p(x, h1), . . . , p(x, hm)].
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and model complexity, hence we merge clusters when the

model fitted on their union yields a GRIC score lower than

the sum of individual GRIC scores. With reference to Fig. 2,

clusters are first merged in a in a circle, then in b and c in

a line, while in d the merge is inhibited since no model can

describe the two segments better than two separate lines.

3.1. MultiLink

MultiLink is summarized in Algorithm 1 and starts by

randomly sampling a finite pool of tentative models H =
H1 ∪ · · · ∪HK where each Hk comes from its correspond-

ing model class Θk (line 1). Hence, for each x ∈ X , prefer-

ences are computed using Eq. (1) yielding vectors p(x,H)
living in the preference space [0, 1]|H| (line 2). The agglom-

erative step then consists in an iterative block (lines 3-15),

where the inter-cluster distance between two clusters U and

V is defined using the single-linkage rule

d(U, V ) = min
u∈U,v∈V

d(u, v) . (3)

With a slight abuse of notation, let ϑk(U) denote a model

in Θk fitted to the cluster U ⊆ X . Then, for each model

class Θk, the models ϑk(U), ϑk(V ), ϑk(U ∪ V ) are fitted

on-the-fly to U, V and U ∪ V , respectively. The GRIC is

then computed to assess the cost of these 3K models (lines

7-10). The GRIC cost of a cluster U ⊆ X , w.r.t. a model

class Θk, is defined as [36]:

gk(U) =
∑

xi∈U

ρ

(

err(xi, ϑk(U))

σ

)2

+λ1d|U |+λ2µ, (4)

where err(xi, ϑk(U)) is, as in Eq. (1), a data fidelity term

that measures the residual between xi ∈ U and the fitted

model ϑk(U) ∈ Θk. Here σ is an estimate of the residuals

standard deviation, and ρ is a robust function that bounds

the loss at outliers. The other two terms in Eq. (4) account

for model complexity: d is the dimension of the manifold

Θk, µ the number of model parameters, and |U | the cardi-

nality of U .

We use GRIC to determine in a principled manner

whether U and V are conveniently aggregated and, in that

case, which class of models describes U ∪ V at best (line

11-13). To this purpose, we compare the GRIC scores of the

union gk(U ∪ V ) with the sum of the costs for two separate

fits gk(U) + gk(V ). There are two alternatives:

1. There exists k̂ yielding the minimum cost at g
k̂
(U∪V ):

∃ k̂ : g
k̂
(U ∪ V ) ≤ gk(U) + gk(V ) ∀ k (5)

2. There exists k̂ yielding the minimum cost at g
k̂
(U) +

g
k̂
(V ):

∃ k̂ : g
k̂
(U) + g

k̂
(V ) < gk(U ∪ V ) ∀ k (6)

Algorithm 1: MultiLink

Input: X data, {Θk}k=1,...,K model classes, ε
inlier threshold, λ1, λ2 GRIC parameters.

Output: A partition of the data in structures

X = U1 ∪ . . . ∪ Us.

/* Preference embedding over H */

1 Sample hypotheses H = H1 ∪ · · · ∪HK ;

2 Compute preferences p(xi,H) ∀xi ∈ X as in (1);

/* Clustering starts */

3 Put each point xi in its own cluster {xi};

4 Compute inter-cluster distances d as in (3);

5 while min d < +∞ do

6 Find clusters (U, V ) with the min distance;

// Fit models, compute GRIC (4)

7 for k = 1 . . .K do

8 Fit a model ϑk(U) to U and compute gk(U);
9 Fit a model ϑk(V ) to V and compute gk(V );

10 Fit a model ϑk(U ∪ V ) to U ∪ V and

compute gk(U ∪ V );

// Test merge condition

11 if ∃k̂ : g
k̂
(U ∪ V ) ≤ gk(U) + gk(V ) ∀ k then

12 merge U and V , the structure is ϑ
k̂
(U ∪ V );

13 update inter-cluster distances d as in (3);

14 else

15 d(U, V ) = +∞;

U
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(b) Accepted with circles

Figure 3: Illustration of merge with GRIC.

In the first case, we merge U and V and consider U ∪ V as

a structure of class Θ
k̂

(line 12). A new cluster is created

and the inter-cluster distances are updated accordingly to

the single-linkage rule (line 13). Otherwise, U and V are

considered as separate structures, and the merge is inhibited

by setting d(U, V ) = +∞ (line 15).

Our greedy strategy guides the clustering towards the

simplest explanations of the data, since a merge is accepted

only when the union of two clusters leads to a decrease in

the GRIC cost. Fig. 3 shows that, when the U and V do

not belong to the same structure, the advantage of fitting a

single model over U ∪V is cancelled out by the large resid-

uals, and the higher GRIC cost prevents the merge. On the

contrary, when the points of U and V belong to the same

structure of a class Θ
k̂
, the cost g

k̂
(U ∪V ) is lower because

the two regularization terms increase the cost of fitting two

separate models. Note that since models are fitted on-the-
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fly (line 8-10) during clustering, MultiLink explores new

models over Θ = Θ1 ∪ · · · ∪ΘK while being driven by the

linking procedure, therefore these models turn to be more

relevant than those randomly sampled in H.

Rationale During the hypothesize step, MultiLink sam-

ples models from all the classes Θ and embeds all the

points in the same space, disregarding the class they re-

fer to. Clusters are initially formed by aggregating points

that share similar preferences, thus there is not yet a model

associated to each cluster as the latter might be too small.

Nevertheless, clusters typically gather inliers of the same

model, since these points have strong preferences in com-

mon. Models are then associated to clusters during the clus-

terize step, as soon as clusters contain a sufficient number of

points to allow fitting models from different classes. There-

fore, in the early stages, MultiLink exploits reliable prefer-

ence information associated to single points, and only later

exploits reliable information from clusters. During cluster

merging, MultiLink performs on-the-fly model fitting to re-

cover model instances missed in the initial sampling and, at

the same, to time identify different class of models.

Implementation details The inlier threshold ε should be

tuned on the level of noise that is however typically difficult

to estimate in presence of multiple models. Therefore, we

perform our experiments using both a manually tuned fixed

inlier threshold, and combining the meta-heuristic based on

Silhouette index [33]. This latter is a way to automatically

estimate the best ε inside a search interval. Despite this

typically yields a very rough estimate of the best ε, it was

enough for MultiLink to achieve good performance con-

firming the good stability of the method to ε values. Finally,

let us remark that, in principle, an ad-hoc inlier threshold εk
could be defined for each class Θk, even though we used the

same ε for all the classes in our experiments.

Preference embedding was implemented as described

in Eq. (1). As in [18], we set φ as a Gaussian function

φ(x) = exp(−x2/σ2) where σ2 = −ε2/ log(0.05). The

robust function ρ in Eq. (4) is ρ(x) = min(x, r− d), where

r is the dimension of the ambient space of the data and d is

the dimension of the model manifold [36].

While testing the merging conditions in Eq.(5) and (6)

on U and V , if any of the two clusters is too small to instan-

tiate a model in Θk, we resort to the merging criterion in

T-linkage [18] which merges two clusters when there exists

in H at least one sampled model explaining all the points

of the two clusters. We also find beneficial to remove, from

the initial pool of models H, those hypotheses that occurred

by chance. To this purpose, we validate each hypothesis

h ∈ H through the preprocessing stage presented in [30],

which implements a Gestalt principle to determine whether

h is significant or not. A model is not significant when its

supporting points are uniformly distributed in space. This

T-linkage MCT MultiLink

Class single H = H1 nested H1 ⊂ H2 multi H = H1 ∪ . . . ∪HK

Models sampled sampled sampled and on-the-fly

Linkage centroid-link. centroid-link. single-linkage & GRIC

Model selection no a posteriori inside clustering

Table 1: Differences among T-linkage, MCT and MultiLink

condition is verified by checking wheter the number of in-

liers at distance kε is almost k times inliers at ε.

3.2. Features and benefits

MultiLink shares a few peculiar features with preference

methods based on hierarchical clustering, such as T-linkage

and MCT, but, thanks to some crucial differences, it over-

comes the main limitations of these two algorithms, even

in the single-class scenario. Tab. 1 summarizes the key im-

provements of MultiLink w.r.t. T-linkage and MCT.

Preference embedding: MultiLink implements a

“multi-class” preference embedding that, in contrast to

MCT, allows to deal with multiple classes of models not

necessarily nested. However, multi-class embedding alone

would not be enough to recover multi-class structures. In

fact, this in T-linkage would result in the more general mod-

els always prevailing over the simpler ones, being model

complexity ignored.

On-the-fly sampling: A second key feature of Multi-

Link is that, during iterations, it fits additional models to

those derived in the original sampling H. Models fitted on-

the-fly are more reliable than those in H as they are instan-

tiated on emerging clusters of inliers rather than on mini-

mal sample sets. This makes MultiLink more robust than

T-linkage and MCT w.r.t. sampling imbalance. For this

reason its performance are more stable, as demonstrated in

the experiments. Note, that models are typically fitted on-

the-fly in fast close-form, while more demanding non-linear

refinement can be used at the end, once clusters are formed.

Agglomerative scheme: T-linkage and MCT exploit

a variant of centroid-linkage specifically designed for the

preference space. In practice, two clusters U and V are

merged when there exists at least a sampled model in H that

passes through all the points of U ∪ V within a maximum

distance of ε, or equivalently when the centroids of the two

clusters have distance lower than 1. Therefore, even a sin-

gle outlier in a cluster can heavily affect the cluster centroid

resulting in over-segmentation. The single-linkage mecha-

nism of MultiLink not only sidesteps this problem, but also

reduces the computational burden, since its distance update

mechanism is more efficient for single-linkage as it does not

involve the computation of a cluster representative.

Model selection: Note that GRIC was also adopted in
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(a) Worst result (3σ) (b) ME vs. inlier threshold ε
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(c) ME vs. outlier rate

Figure 4: Line fitting: MultiLink vs T-linkage. Fig. 4a: the worst result of MultiLink for ε = 3σ over 50 trials. Figs. 4b and

4c: the median ME (solid line), IQR (shaded area), maxima (+) and minima (◦) as a function of ε and outlier ratio.

MCT to determine which model(s) fit to each structure at

the end of a stratified clustering. In contrast, MultiLink uses

GRIC as a key ingredient during clustering. Moreover, tun-

ing λ1, λ2 in MCT is rather difficult, since GRIC compares

a varying number of model instances. MultiLink instead al-

ways compares one-vs-a-pair of models, and we safely set

λ1 = 1, λ2 = 2 in all our experiments, as in Tab. 6a.

4. Experimental validation

We test MultiLink on both single-class and multi-class

structure recovery problems. We first address 2D primi-

tive fitting problems (Sec. 4.1), which represent a standard

benchmark for structure recovery algorithms, and demon-

strate that MultiLink outperforms MCT. Then, we test Mul-

tiLink on real-world datasets (see Fig. 7) for the estimate of

two view relations from correspondences (Sec. 4.2) and for

video motion segmentation (Sec. 4.3). In all these experi-

ments, we show that MultiLink favorably compares or per-

forms on par with recent multi-class structure recovery al-

ternatives [4]. The results of MultiLink on 3D primitive fit-

ting in a sparse input point cloud [47] are reported in Fig. 1a.

Performance is measured, as customarily, in terms of

misclassification error (ME), i.e. the fraction of misclas-

sified points w.r.t. the ground-truth labelling. If not stated

otherwise, we always report ME averaged over 5 runs. Pa-

rameters used to configure MultiLink in each dataset are

reported in Tab. 6a. Matlab code of MultiLink is available

on-line at [48].

4.1. 2D fitting problems

We first consider a single-class structure recovery prob-

lem (line fitting) and show that MultiLink outperforms T-

linkage in terms of accuracy, robustness to outliers and

runtime. Then, we address a multi-class structure recov-

ery problem (conic fitting) and show that MultiLink outper-

forms MCT and PEARL.

Line fitting We consider T-linkage as the closest alter-

native to MultiLink on the single-class problem illustrated

in Fig. 4a. The dataset, containing multiple lines corrupted

by noise and outliers, and the MATLAB implementation of

T-linkage are from [49].

Fig. 4b reports the median ME over 50 runs as a function

of the inlier thresholds ε = nσ, where σ is the noise level

and n = 2, . . . , 8. This plot displays the inter-quantile range

(IQR) of the ME (shadowed regions), together with the min-

imum (◦) and maximum (+) errors. Both these methods

were provided with the same initial hypotheses H, leading

to the same preference representation of points. This plot

indicates that MultiLink outperforms T-linkage, achieving

the best performance both in terms of median, maximum

and minimum ME. Remarkably, except for ε = 2σ where

both methods over-segment the data, MultiLink provides

very stable outputs, as indicated by the small IQR. This

confirms that, fitting new models on-the-fly during cluster-

ing, improves the stability of MultiLink w.r.t. both ε and

the randomly sampled hypotheses H. On the contrary, T-

linkage, which rely exclusively on the fixed pool of mod-

els H, suffers of higher instability across multiple runs as

demonstrated by its large IQR and maximum error. We

also calculated the ME on star5 dataset at increasing out-

lier rates (Fig. 4c), and MultiLink always outperforms T-

linkage, demonstrating to be more robust.

Despite, due to merge rejections, MultiLink features in

principle a worst-case complexity that T-linkage, in practice

it exhibit no computational overheads, as the single-linkage

scheme makes the clustering phase of MultiLink (0.26 s)

faster than that of T-linkage (0.76 s), on average. This ex-

periment confirms that MultiLink outperforms its closest,

single-class, alternative both in terms of effectiveness and

efficiency, being more stable thus more practical.

Line and conic fitting Fig. 5 illustrates 2D simulated

datasets used in [21] to recover lines, circles and parabolas,

where we report the worst results attained by MultiLink. All

the datasets comprise instances of lines and circles, while

(a), (b) and (c) include also parabolas. Here, MultiLink re-

covers all the geometric structures even in the worst runs.
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Figure 5: Worst results by MultiLink on conic fitting.

ε λ1 λ2

conic (a-c) 0.180 1 2

conic (d-g) 0.900 1 2

plane seg. 0.070 1 2

2-view seg. 0.058 1 2

video seg. [0.01, 0.3] 1 2

(a) Parameters used
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Time [s]
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clust

MCT MLink

(b) Execution times

(a) (b) (c) (d) (e) (f) (g)

PEARL 6.00 16.22 14.44 8.05 8.33 17.38 19.21
MCT 0.67 2.00 2.33 5.23 7.12 5.38 6.23
MLink 2.17 2.13 1.55 1.83 0.87 2.46 4.28

(c) ME

Figure 6: Quantitative results on conic fitting: ME (bottom)

and execution times on the problem of Fig. 5.a (right).

Tab. 6c shows the performance of PEARL [13] and MCT

as reported in [21], and indicates that MultiLink favorably

compares with both methods achieving a lower ME on 5

cases out of 7. In the two cases where MCT scores the

best, the ME of MultiLink is rather small. Fig. 6b compares

the running times of MCT and MultiLink on the dataset of

Fig. 5.a w.r.t. |H|, the number of initial hypotheses. Both

algorithms are implemented in MATLAB, and the code of

MCT is from [50]. As expected, on-the-fly fitting makes

MultiLink more efficient than the cascaded approach of

MCT. In fact, the clustering step of T-linkage, which we

show on star5 experiment to be slower than that in Multi-

Link, is repeated several times in MCT, resulting in longer

executions. MultiLink spends most of the time in gener-

ating the hypotheses (light blue bars), whereas the actual

clustering step takes far less (dark blue bars). However, we

experienced that this is due to the optional pre-processing

step [30] used to remove irrelevant models, whose compu-

tational burden can be drastically reduced in an optimized

and parallel implementation.

4.2. Two­views relations

We test MultiLink on two-views segmentation over the

popular Adelaide RMF dataset [40], which consists of 36

sequences of stereo images with correspondences corrupted

Figure 7: Sample results attained by MultiLink on plane

(left) two-view (middle) and motion segmentation (right).

by noise and outliers, and annotated ground-truth matches.

Specifically, we first detect planar structures by fitting ho-

mographies, and then we perform motion segmentation.

This latter was cast as a multi-class recovery problem as we

fit both fundamental matrices, affine fundamental matrices,

and homographies.

Plane segmentation (single-class) Results in Tab. 2a

demonstrates that Prog-X and MultiLink achieve compa-

rable best mean performance, albeit the latter yields more

stable result. For fair comparison against MCT, which was

used to fit a fundamental matrix and then to recover nested-

compatible homographies using per-sequence tuned inlier

threshold, we execute MultiLink by optimizing ε in the

same way. Tab. 2b indicates that MultiLink is still the best

performing algorithm. Furthermore, the difference in terms

of ME between fixed and sequence-wised tuned ε for Mul-

tiLink is much smaller than for T-linkage, confirming that

MultiLink is rather robust w.r.t. the choice of ε.

Two-views segmentation (multi-class) We carry out a

two-view motion segmentation experiment on the 19 stereo

images depicting moving objects. This dataset has been ex-

tensively used to estimate ego motions by fitting fundamen-

tal matrices, thus has become a benchmark for single-class

multi-structure fitting [3, 4, 18, 40]. However, our prelimi-

nary tests suggested that some movements can also be reli-

ably described by affine fundamental matrices, or even by

homographies. Probably, these ground-truth motions can be

deemed as quasi-degenerate. Therefore, we run MultiLink

with three different classes of models: (1) Fundamentals:

Θf the manifold of fundamental matrices; (2) Affine funda-

mentals: Θa the manifold of affine fundamental matrices;

(3) Mixed models: where we consider Θf , Θa and Θh, the

space of homographies.

Tab. 2c reports the mean ME averaged over the whole

dataset, together with its standard deviation. We tested both

MultiLink and T-linkage in the above three configurations

using fixed parameters. Prog-X, Multi-X and PEARL were

also tested on this dataset to fit fundamental matrices, and

we report results from [4] accordingly. To test these meth-

ods on the affine fundamental and mixed models configura-

tions, we modified the codes provided by authors of Multi-

X and PEARL in [51] and [52]. This operation was not pos-

sible for Prog-X code which was not flexible enough to be

used in other settings. Two relevant comments arise: first,
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PEARL Multi-X Prog-X RPA T-link MLink

Mean 15.14 8.71 6.86 23.54 22.38 6.46

Std. 6.75 8.13 5.91 13.42 7.27 1.75

(a) Plane seg. fixed parameters

T-link MCT MLink

Mean 6.60 6.13 4.10

Median 4.68 4.93 2.70

(b) Methods with ε tuned per-sequence

Fundamental Affine fund. Mixed

Mean Std. Mean Std. Mean Std.

MLink 8.59 4.67 9.84 4.09 7.75 4.54
T-link 32.20 50.33 41.90 7.95 38.78 8.21
Prog-X 10.73 8.73 - - - -

Multi-X 17.13 12.23 10.5 2.90 9.53 1.43
PEARL 29.54 14.80 41.81 15.25 48.89 8.16

(c) Two-view seg. fixed parameters

Mean Std.

Multi-X 12.96 19.60

Prog-X 8.41 10.29

T-link +S (dim 3) 8.68 12.23

MCT +S 10.87 12.68

MLink +S (dim. 3) 8.34 11.93

MLink +S (mixed) 9.83 13.05

(d) Video seg. S= Silhouette index.

Table 2: Mean ME (in %) on real datasets. Averages over 5 runs on each sequence.

MultiLink outperforms all the competing methods in all the

three configurations. Second, MultiLink can successfully

perform multi-class fitting, achieving the lowest ME when

the three models are mixedly used. This result is in agree-

ment with findings in [42], and represents an interesting ap-

plication where multi-class can be successfully employed

to account for nearly degenerate data. When using only

affine fundamental matrices, both MultiLink and T-linkage

achieve higher ME than when using fundamental matrices,

suggesting that affine fundamental matrices are not flexible

enough to capture the motion diversity in the whole dataset.

4.3. Video motion segmentation (multi class)

Finally we test MultiLink on the video motion segmenta-

tion tasks of the Hopkins 155 benchmark [37]. This dataset

consists of 155 video sequences with 2 or 3 moving ob-

jects whose trajectories can be approximated, under the as-

sumption of affine projection, as a union of low dimensional

subspaces. The dimension of the subspaces might vary

depending on the type of motions in the dynamic scenes

[28]. Therefore, we run MultiLink in two configurations:

i) single-class, where we fit affine subspaces of dimension

3, and ii) multi-class, where we fit both affine subspaces of

dimension 2 and 3 as mixed models. Tab. 2d compares per-

formance of MultiLink against Multi-X and Prog-X, which

were reported in [4]. Both Multi-X and Prog-X were ex-

ecuted with fixed parameters over the whole dataset. We

thus configure MultiLink with all the parameters fixed, but

automatically estimate the inlier threshold ε ∈ [0.01, 0.3]
in each sequence by means of a variant of the Silhouette

index as described in [33]. Estimating ε in this way repre-

sents a very practical solution that is widely applicable in

real-world scenarios. We also run T-linkage and MCT cou-

pled with Silhouette index. The results by MultiLink with

subspaces of dimension 3 are in line with the ones of Prog-

X. In addition, this experiment confirms that our solution

is stable, as it can successfully compensate for inaccurate

estimates of ε. The advantages of adopting mixed models

are not apparent on the average ME over the whole dataset,

but we experienced that MultiLink with mixed classes con-

sistently improves the results as long as natural video se-

quences with some degenerate motions are concerned (Mul-

tiLink with mixed classes achieves a ME of 1.37% on Traf-

fic 3 and 3.14% on Traffic 2, in contrast to the configuration

with subspaces of dimension 3 that scores 7.51% and 4.18%
respectively). We suspect that, in a reasonably large number

of sequences, 3-d subspaces are the right model to fit, and

the mixed configuration actually degrades performance.

5. Conclusions

We presented MultiLink, a simple and effective algo-

rithm to recover structures from different classes in data af-

fected by noise and outliers. In particular, MultiLink can fit

models from different classes during clustering steps, and

includes a novel cluster-merging scheme that is based on

on-the-fly model fitting and model selection through GRIC.

Experiments on both simulated and real data demonstrates

that MultiLink is faster, more stable and less sensitive to

sampling and to the inlier threshold than greedy alternatives

based on preference analysis and agglomerative clustering

such as T-linkage and MCT. In addition MultiLink favor-

ably compares with optimization-based methods. All in all,

MultiLink represents a very flexible framework that can be

further extended by modifying cluster-merging conditions

to accommodate for specific constraints coming from an

application at hand. Finally, MultiLink offers an easy-to-

manage tool to practitioners, for addressing the difficult and

ubiquitous problem of multi-class structure recovery.
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