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Abstract

Machine learning classifiers are critically prone to eva-

sion attacks. Adversarial examples are slightly modified

inputs that are then misclassified, while remaining percep-

tively close to their originals. Last couple of years have

witnessed a striking decrease in the amount of queries a

black box attack submits to the target classifier, in order

to forge adversarials. This particularly concerns the black

box score-based setup, where the attacker has access to top

predicted probabilites: the amount of queries went from to

millions of to less than a thousand.

This paper presents SurFree, a geometrical approach

that achieves a drastic reduction in the amount of queries

in the hardest setup: black box decision-based attacks (only

the top-1 label is available). We first highlight that the

most recent attacks in that setup, HSJA [3], QEBA [14]

and GeoDA [23] all perform costly gradient surrogate es-

timations. SurFree proposes to bypass these, by instead

focusing on careful trials along diverse directions, guided

by precise indications of geometrical properties of the clas-

sifier decision boundaries. We motivate this geometric ap-

proach before performing a head-to-head comparison with

previous attacks with the amount of queries as a first class

citizen. We exhibit a faster distortion decay under low query

amounts (few hundreds to a thousand), while remaining

competitive at higher query budgets.1

1. Introduction

The literature on adversarial examples is divided into two

shares, depending on the threat model: either the attacker

has full knowledge of the target classifier [2, 26, 17] (white-

box setting) or she/he has an unrestricted query access to the

unknown classifier [18, 1, 14, 23, 3, 28, 13, 27, 11, 5, 12, 4]

(black-box setting). The latter scenario is deemed as more

relevant to gauge the intrinsic robustness of classifiers in

1Work supported by ANR / AID under Chaire IA SAIDA. Code avail-

able at https://github.com/t-maho/SurFree
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Figure 1. The perturbation distortion (ℓ2 norm) vs. the number

of queries for image ‘lizard’. Competitor attacks waste queries to

estimate a gradient surrogate resulting in plateaus of distortion.

real-world applications (typically queried through an API).

Black box attacks are iterative procedures that keep on

refining the quality of an adversarial example based on the

pairs of submitted input / observed output. They are coined

score-based when the attacker observes the top-k predicted

probabilities or decision-based (a.k.a. hard label) when

she/he only learns the top-k labels (k ≥ 1). Indeed, the

latter case where the output is solely the top-1 label is the

most challenging because the attacker cannot rely on any

rich information for crafting these adversarial examples.

It is striking that black-box attacks always use substitu-

tion to replace information they are missing. Early black-

box attacks used a surrogate model (trained from a huge

number of input / output pairs) mimicking the targeted

model [20, 21]. The attack then boils down to a white-box

setting on the surrogate with the hope that the adversarial

example transfers to the target classifier. Almost all recent

score-based attacks resort to gradient estimation to compen-

sate for the lack of back-propagation, which is the key in-

strument of any white-box attack [4, 27, 13, 28]. The Hop-

SkipJump attack (HSJA [3]) estimates the decision bound-

ary by an hyperplane. As a last example, authors in [12] turn

a decision-based setup into a score-based by probing noisy

versions of an image to derive a score-like function from the

top-k labels. The trend is thus to substitute missing infor-
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mation by estimates in order to fall back to an easier setup.

The need for faster attacks consuming fewer queries is

already present in the literature. Most notably, research

works on score-based attacks managed to reduce query

amount from millions of requests [12] to less than a thou-

sand with most recent approaches [28]. Surprisingly, this

impressive decrease has not reached comparable levels in

the hard-label setup. In particular, paper [12] questions the

model surrogate approach: while a considerable amount of

queries is spent for training the surrogate, not a single ad-

versarial example is forged. Moreover, access to the target

model in practice is usually not free and not unlimited2.

This argument should challenge any substitution mecha-

nisms. They all consume a fair amount of queries and it is

not clear whether they are worth the gain in term of distor-

tion. Especially, many techniques trade some query amount

for an accurate gradient estimate giving birth to good per-

turbation directions [23, 3]. During this step, the adversarial

is not updated and the distortion stalls as Fig. 1 shows.

This paper considers the query amount as a central cri-

terion. It presents a fast black-box decision-based attack,

named SurFree, motivated by practical applications in

which a low amount of queries is key. Fast means that it out-

performs the state of the art when it comes to the distortion

of adversarials under a low query budget (as examplified in

Fig. 1 with the purple curve).

The main contributions of this paper are:

• SurFree, a black box decision-based attack not us-

ing any substitution mechanism: no surrogate of the

target model, no score reconstruction, no estimation of

gradient. It is inspired by the early works [8, 1].

• a geometrical mechanism to get the biggest distortion

decrease for a given direction to be explored under the

assumption of a hyperplane boundary [10].

• a head to head comparison of the recent approaches

with distortion as a function of query number.

Experimental results show that SurFree overcomes state

of the art on the query amount factor (a thousand of queries),

while still remaining competitive with unlimited queries

(normal scenario for competitors).

2. Related Works

2.1. Watermarking

Digital watermarking embeds a secret and invisible mark

into images. A watermark detector is a two-class classifier

checking for the presence or absence of the mark in a query

image. This community called oracle attack what we now

2see e.g., https://azure.microsoft.com/en- us/pricing/

details/cognitive-services/face-api/ for conditions.

call a black-box attack: the attacker has the secret-keyed

detector in hand as a black sealed box, and calls it iteratively

to either estimate the secret key or to remove the watermark

from protected images. This latter problem is equivalent to

forging adversarial images in the decision based setting.

All the ingredients used nowadays were already present

in this literature dating back to 1997 [7, 15]: surjection onto

the boundary with binary search, estimation of the gradient

at a ‘sensitive’ point lying on the boundary, dimension re-

duction. The new HopSkipJumpAttack [3] is indeed very

similar to the old Blind Newton Sensitivity Attack [6]. The

last work on this subject by this community [8] surprisingly

does not use any gradient estimate but random directions;

like the very first decision-based attack [1].

2.2. Black box adversarial examples

This paper operates in a black box setup; white box at-

tacks [2, 26, 17] are considered out of its scope.

There has been a huge improvement on the amount of

queries of score-based black box attacks. On ImageNet, the

order of magnitudes of the first attacks were of some hun-

dreds of thousands queries for one image with a reported

runtime of 20 minutes in [4]. Nowadays state-of-the-art

attacks make less than one thousand calls to the classifier,

thanks to advanced gradient estimators [13] and Zero Order

Optimization techniques [27, 28, 16].

The decision-based attacks followed the same trend but

with a factor of ten. Brendel et al. report in the order of one

million of queries for one image in one of the first black-box

decision based paper [1, Fig. 6]. Then, the order of magni-

tude went down to tens of thousands [3, Fig. 4] [14, Fig. 5]

and even some thousands in [23, Fig. 2]. No decision-based

paper reports results with less than one thousand of calls on

ImageNet. This paper explores this range of query budget.

The main engine of the decision-based attacks iterates

the three following steps: i) the surjection (find a point on

the boundary), ii) the estimation of the gradient (i.e. the nor-

mal vector of the tangent hyperplane), iii) the update of the

adversarial example. Step ii) proceeds by bombarding the

model with small perturbations around the boundary point.

The main problems are the trade-off between the number

of queries devoted to this task and the accuracy of the gra-

dient estimate (see [3, Th. 2], [23, Lemma 2], [14, Th. 1])

and the impact of this accuracy on the convergence of the

attack (see [23, Th. 2]). In the end, [23] recommends that

step ii) consumes a number of queries following a geomet-

ric sequence w.r.t. the iteration number, whereas [3] makes

it proportional to the square root of the iteration number.

This paper follows the opposite strategy: no query is spent

for a gradient estimate.

A second track of improvement is dimension reduction

restricting the perturbation to a low dimension subspace.

This a priori increases of distortion at convergence since
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the attacker has fewer degrees of freedom, but it indeed fa-

cilitates the estimation of the projected gradient. The latter

is more important for low query budget. The choice of the

subspace incorporates prior information: it usually corre-

sponds to a low-frequency band (of the full DCT transform

[23, 14]) containing most critical information about the vi-

sual content of the image. This paper shows that the block

DCT yields better results.

3. Problem statement

We introduce the following notations. The pre-trained

classifier is represented as the function f : [0, 1]D → R
C .

For a given input image x, the final decision is the top-1

label cl(x) := argmaxk fk(x), fk(x) being the predicted

probability of class k, 1 ≤ k ≤ C.

The attacker does not know the function f and can only

observe the decision cl(x) for any image x. From an orig-

inal well classified image xo, the attack is untargeted as it

looks for an image xa close to xo and s.t. cl(xa) 6= cl(xo).
This defines the outside region O := {x ∈ R

D : cl(x) 6=
cl(xo)} and the optimal adversarial image:

x⋆
a = argmin

x∈O
‖x− xo‖. (1)

This is a hard problem and the attack is indeed an efficient

algorithm finding an approximate solution.

We assume that when knowing a point y ∈ O, it is pos-

sible to find a point xb ∈ xoy that lies on the boundary

denoted by ∂O. This is usually done by a line search in the

literature [3, 14, 23]. There has been experimental evidence

that the boundary is a rather smooth low curvature surface

for deep neural networks [9]. This justifies that the bound-

ary is often approximated by an hyperplane locally around

a boundary point: in other words, locally around xb ∈ ∂O,

there exists n ∈ R
D, ‖n‖ = 1 s.t. y ∈ O if y⊤n ≥ x⊤

b n.

4. Our Approach

The study of the recent attacks [3, 23, 14] under the

query budget viewpoint, reveals the presence of plateaus

(see Fig. 1). These are due to the construction of a sur-

rogate for gradients, and appear to be particularly costly.

Moreover, the budget allocated to gradient estimate in [3]

does not impact the speed of convergence: fewer queries

give less accurate gradient estimates yielding a smaller dis-

tortion decrease but at a higher rate. Our rationale is to set

this query budget to its extreme value, i.e. zero. We thus

trade this budget for more directions investigated with the

hope that their multiplication allows for a faster distorsion

decrease. We now develop this idea.

4.1. Basic idea

Let us assume that we know a point on the boundary:

xb ∈ ∂O. We define d := ‖xb − xo‖ and u := (xb −

xo)/d so that ‖u‖ = 1. We restrict the search for a closer

adversarial point in a random affine planeP of dimension 2.

This plane P contains the point xo and is spanned by vector

u and a random orthogonal direction v ∈ R
D, ‖v‖ = 1,

v⊤u = 0. Note that xb ∈ P .

In polar coordinates, we consider a point in P that is at a

distance d(1− α) from xo and makes an angle θ with u:

z(α, θ) = d(1− α) (cos(θ)u+ sin(θ)v) + xo, (2)

with α ∈ [0, 1] and θ ∈ [−π, π]. Note that z(0, 0) = xb

and z(1, θ) = xo, ∀θ. If z(α, θ) is adversarial, then the

distortion decreases by 100× α%.

This section shows how to choose (α, θ) to raise the

probability of z(α, θ) being adversarial. This study makes a

clear cut with [8, 1] which also consider random directions.

This section assumes that the intersection ∂O ∩ P is a

line passing by xb and with normal vector n ∈ P , ‖n‖ = 1.

Without loss of generality, n is pointing outside s.t. a point

z ∈ P is adversarial if (z − xb)
⊤n ≥ 0. In polar coordi-

nates, n := cos(ψ)u+ sin(ψ)v with ψ ∈ (−π/2, π/2).
The point z(α, θ) ∈ ∂O ∩ P minimizing the distance

from xo is the projection of xo onto this line, obtained for

θ = ψ and α = 1− cos(ψ). The attacker can not create this

optimal point because angle ψ is unknown. Note that

• If ψ = 0, then n = u, v⊤n = 0, (z(α, θ)− xb)
⊤n =

d((1 − α) cos(θ) − 1) < 0, and z(α, θ) is not adver-

sarial. This corresponds to the case where ∂O ∩ P is

a tangent line of the circle of center xo and radius d.

This implies that xb is already optimum because it is

the projection of xo onto ∂O ∩ P .

• If θ = 0 and α > 0, then (z(α, 0)− xb)
⊤n = α(xo −

xb)
⊤n < 0 because xo is not adversarial. Therefore,

z(α, 0) is not adversarial.

For θ 6= 0, calculation shows that z(α, θ) is adversarial if

gα(θ) :=

∣

∣

∣

∣

1− (1− α) cos(θ)
(1− α) sin(θ)

∣

∣

∣

∣

≤ tan(ψ)sign(θ). (3)

Point z(α, θ) might be adversarial only if ψ and θ share the

same sign s.t. the rhs (3) is positive. In this case, the sur-

prise is that (3) separates parameters (α, θ) that the attacker

controls from the unknown angle ψ.

Minimizing gα(θ) raises the chances that (3) holds. Its

derivative cancels for θ = θ⋆(α) := ± arccos(1 − α) (ac-

cording to the sign of ψ) so that

gα(θ
⋆(α)) =

√

1− (1− α)2
1− α = | tan(θ⋆(α))|. (4)

This quantity is an increasing function of α ranging from

0 (α = 0) to +∞ (α → 1). From now on, we denote by

z⋆(θ) := z(1−cos(θ), θ) a point created with this coupling.
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Figure 2. The geometrical configuration of the problem in P .

Property 1 Consider the mid-point c = (xo + xb)/2. The

locus of the points z⋆(θ) ∈ P is the circle of center c and

radius d/2. Indeed, z⋆(0) = xb and z⋆(±π/2) = xo.

Little algebra shows that ‖z⋆(θ) − c‖ = d/2, ∀θ ∈
[−π/2, π/2]. This circle is depicted in red in Fig. 2.

Property 2 If z⋆(θ) is adversarial, then so is z⋆(φ) for φ ∈
[0, θ]. Conversely, if z⋆(θ) is not adversarial, then so is

z⋆(φ) for φ ∈ [θ, sign(θ).π/2].

This is due to the monotonicity of function α→ gα(θ
⋆(α)).

Property 3 θ⋆ = ψ is the angle yielding a maximum dis-

tortion decrease of α = 1 − cos(ψ). The point z⋆(θ⋆) is

indeed the projection of xo on the boundary line ∂O ∩ P:

z⋆(θ⋆) = d cos(ψ)n+ xo.

This is shown by injecting (4) in (3).

4.2. Iterations over orthonormal directions

This section assumes that the boundary ∂O is an affine

hyperplane passing through xb,1 in R
D, with normal vec-

tor N. We consider a random basis of span(xb,1 − xo)
⊥

composed of D− 1 vectors {vi}D−1
i=1 . The normal vector is

decomposed in spherical coordinates:

N = sin(ψD−1)vD−1 + cos(ψD−1) sin(ψD−2)vD−2 +

. . . +cos(ψD−1) . . . cos(ψ2)n1, (5)

where n1 := sin(ψ1)v1 + cos(ψ1)u1 is the ℓ2 nor-

malized projection of N onto hyperplane P1 spanned by

v1 and u1 := (xb,1 − xo)/d. Note that N⊤u1 =
cos(ψD−1) . . . cos(ψ1). Then Prop. 3 finds xb,2 :=
z⋆(θ⋆) ∈ O ∩ P1 and defines u2 := (xb,2 −
xo)/d cos(ψ1) = n1. We iterate on P2 spanned by (v2,u2)
to get N⊤u2 = cos(ψD−1) . . . cos(ψ2) ≥ N⊤u1.

Property 4 Iterating this process converges to the adver-

sarial point with minimal distortion.

Iterations increase the scalar product between N and (xb,k−
xo) ∝ uk given by:

N⊤uk =

D−k
∏

i=1

cos(ψD−i). (6)

At the end, xb,D ∈ O and xb,D−xo is colinear with N, thus

pointing to the projection of xo to the hyperplane boundary.

A clever strategy browses the directions according to the

decreasing order of their angles (|ψk|)k (biggest distortion

decreases first). This is out of reach for the attacker oblivi-

ous to N and not willing to spend queries for its estimate.

4.3. Convex boundary

Our procedure can be seen as a coordinate descent on

a random basis. If the boundary ∂O is not a hyperplane

but a smooth and convex surface, then cycling over the vec-

tors {vi}D−1
i=1 multiple times ensures convergence to a local

minimum [19]. On one hand, this reference shows that the

rate of convergence of the random coordinate descent (on

expectation) is essentially the same as the worst-case rate of

the standard gradient descent (when it is available). On the

other hand, estimating the gradient in the black-box setting

costs more queries than the coordinate descent of Sect. 4.1.

These conflicting arguments deserve investigation.

5. The SurFree attack

This section presents the attack based on the ideas ex-

plained in Sect. 4. One iteration of SurFree is summa-

rized in pseudo-code Alg. 1.

5.1. The algorithm

Initialisation. The algorithm needs an initial point

xb,1 ∈ ∂O. It first generates a point y0 ∈ O. As done

in [23, 14], y0 is one image from the targeted class (targeted

attack) or a noisy version of xo (untargeted attack). Defin-

ing yλ = λxo + (1− λ)y0, a binary search over λ ∈ (0, 1)
results in xb,1 adversarial and close to the boundary.

New direction. At iteration k, the point xb,k ∈ O and

close to ∂O defines uk ∝ xb,k−xo, ‖uk‖ = 1. Line 3 gen-

erates pseudo-randomly tk ∼ T (see Sect. 5.2). A Gram-

Schmidt procedure makes it orthogonal to uk and to the L
(at most) last directions Vk−1 := {vj}k−1

j=max(k−L,1), pro-

ducing the new direction vk in line 4.

Sign Search. The algorithm considers points z(α, θ) as

defined in (2) with u = uk, v = vk, dk := ‖xb,k − xo‖,
and the coupling cos(θ) = 1 − α. The sign of θ de-

pends on the sign of unknown ψ (see Sect. 4.1). Hence,

we test some angles starting with the biggest amplitudes,
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alternating + and - sign, as stored in the vector θmax.τ with

τ := (1,−1, (T − 1)/T,−(T − 1)/T, . . . , 1/T,−1/T ).
The search stops as soon as an adversarial image is

found. If this fails, line 17 decreases θmax, direction v is

given up (line 18), and another direction is generated.

Binary Search. When the sign search finds an adversar-

ial image at θ = θmaxt/T , the binary search (line 12) refines

the angle θ over the interval θmax[t, t+ sign(t)]/T within ℓ
steps. The result is θ⋆ and z⋆(θ⋆) is the new boundary point

xb,k+1 provoking a distortion decrease α⋆ = 1− cos(θ⋆).

5.2. Distribution of the directions

The algorithm is a random process as it draws directions

from distribution T according to Alg. 2. This has two roles:

dimension reduction and adaptivity to the content of xo.

Dimension reduction is implemented with the help of a

reversible image transformation (DCT 8 × 8, or full frame

DCT in Table 1). Line 3 selects a fraction ρ of the trans-

form coefficients, typically in the low frequency subband.

We draw ρD samples uniformly distributed over {−1, 0, 1},
the other transform coefficients being set to 0. The inverse

transform yields the direction t in the pixel domain.

Adaptivity to the visual content makes the perturbation

less perceptible thanks to the masking effect well know in

watermarking [8]. It shapes the adversarial perturbation like

the visual content of xo. The following is a simple imple-

mentation of this principle: denote the i-th transform coeffi-

cient of image xo by Xo,i. Line 5 modulates the amplitude

of a random variables by A(|Xo,i|), where A : R+ → R
+

is a non decreasing function. The goal is to shape the power

distribution of the perturbation as the one of the image.

5.3. Interpolation

Section 4 motivated our design assuming the boundary

is an hyperplane. This extra interpolation is an option of

SurFree inspired by the watermarking attack [8], which

tackles convex surfaces with small curvature as in Fig. 3.

A given iteration starts with xb,k ∈ ∂O at angle θ = 0
and distance d. The binary search in line 12 gives the angle

θ⋆ of a boundary point at distance d cos(θ⋆). This option

finds a third point on the boundary at angle θ⋆/2 thanks

to a binary search between xo and z⋆(θ⋆/2). This point,

depicted in blue in Fig. 3, is at distance δ ≤ d cos(θ⋆/2).
Thanks to these three boundary points resp. at angle 0,

θ⋆/2, and θ⋆, we interpolate the mapping from angle to dis-

tance (of the surjection of z(α, θ) onto the boundary) by a

second order polynomial and find its minimum at:

θ̂ =
θ⋆

4

4δ − d(cos(θ⋆) + 3)

2δ − d(cos(θ⋆) + 1)
. (7)

This option concludes by a binary search finding the point

on the boundary between xo and z⋆(θ̂). The new point

xb,k+1 is the closest point we found on the boundary.

O ∩ P∂O ∩ P

xo

xb

z⋆(θ⋆)

θ⋆/2

θ⋆ d

δ

d
co
s(
θ
⋆ )

z⋆(θ⋆/2)

Figure 3. Interpolation mechanism to refine the boundary point.

Algorithm 1 One iteration of SurFree

Require: Original image xo, boundary point xb,k ∈ ∂O,

previous directions Vk−1 := {vj}k−1
j=max(k−L,1)

Ensure: Output xb,k+1 ∈ ∂O, Vk
1: New direction

2: uk = η(xb,k − xo) ⊲ η(x) := x/‖x‖
3: tk ∼ T ⊲ Algorithm 2

4: vk = η
(

projspan(Vk−1∪uk)⊥
(tk)

)

⊲ Gram-Schmidt

5: Vk = Vk−1 ∪ {vk}
6: Sign Search

7: j = 1, τ = (T,−T, (T − 1),−(T − 1), . . . , 1,−1) /T
8: while z⋆(θmax.τj) /∈ O ∧ j ≤ 2T do

9: j ← j + 1

10: if j < 2T then

11: Binary Search

12: θ⋆ = BS(θmax.τj ; θmax(τj + sign(τj)/T ))
13: θmax ← θmax/(1− κ)
14: Return xb,k+1 = z⋆(θ⋆)
15: or Interpolation Sect. 5.3

16: else ⊲ Sign Search failed

17: θmax ← θmax × (1− κ) ⊲ Geometric decay

18: Go to line 3 ⊲ Give up

6. Experimental Work

We first specify the experimental setup and the param-

eters of our approach. We then perform an ablation study

on SurFree (subsection 6.2), for it allows to precise gains

on the two considered metrics. Subsection 6.3 performs a

head-to-head comparison of all the competing approaches.

6.1. Datasets and Experimental Setup

Datasets For MNIST, we use a pre-trained CNN network

that is composed of 2 convolutional layers and 2 fully con-

nected Layers. Its accuracy is 99.14%. A subset of 100

correctly classified images have been randomly chosen to

perform the ablation study. Our attack generates directions
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Algorithm 2 Draw direction t ∼ T
Require: Original image xo, frequency subband F s.t.

|F| = ρD, A(·) shaping function

Ensure: A random direction t perceptually shaped as xo

1: Xo = DCT(xo)
2: for j = 1 : n do

3: if j ∈ F then

4: r ∼ U{−1,0,1} ⊲ r ∈ {−1, 0,+1}
5: Tj = A(|Xo,j |)× r
6: else

7: Tj = 0

8: Return t = η
(

DCT
−1(T)

)

⊲ η(x) := x/‖x‖

on the pixel domain without any dimension reduction.

The ImageNet dataset is tackled by a pre-trained

ResNet18, made available for the PyTorch environment

[22]. Its top-1 accuracy is 0.6976. We randomly selected

350 correctly classified images from the ILSVRC2012’s

validation set with size D = 3× 224× 224.

Setup and Code We now detail the specific parameters

of SurFree, for both MNIST and ImageNet. We set em-

pirically the following values in Alg. 1: T = 3, L = 100,

θmax = 30, κ = 0.02, at most ℓ = 10 steps for the binary

search (with an early stop if the range is lower than 1% of

d). We develop SurFree on top of the FoolBox library.

Evaluation Metrics The two core evaluation metrics are

the amount of queries, and the resulting distortion on the

attacked image. The distortion is measured with the ℓ2 norm

over the space [0, 1]D (with D the number of pixels times

the number of colour channel). For a given xo, it is the

smallest distortion obtained over the sequence of queries

(qj)
k
j=1 that happen to be adversarial:

d(k,xo) := min
1≤j≤k :cl(qj) 6=cl(xo)

‖qj − xo‖2 (8)

The mean over N original images gives a characteristic of

the attack efficiency revealing its capacity to find an adver-

sary close to the original image and especially its speed.

d(k) :=
1

N

N
∑

i=1

d(k,xo,i) (9)

We define the success rate as the probability of getting a

distortion lower than a target dt within a query budget K:

S(dt,K) :=
|{i : d(K,xo,i) ≤ dt}|

N
(10)

6.2. Ablation Studies

Impact of the components - MNIST This first ablation

evaluates how the hyperplane hypothesis [10] meets a prac-

tical experimentation, and how the interpolation mechanism
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Figure 4. Ablation study on SurFree. Mean distortion d(k) (9)

vs. number k of queries on MNIST.

of Sect. 5.3 is able to compensate this hypothesis. To this

end, four variants of our attack are tested in Fig. 4 and 5:

SignSearch stops at line 10 of Alg. 1 whereas SurFree

is the regular attack, ‘+Interpolation’ uses the option 5.3.

Our attack is highly random due to the generation of di-

rections. This may yield unstable results with adversarial

images of scattered distortion. Fig. 4 shows the distortion

decrease averaged over 100 images and Fig. 5 the standard

deviation for one image attacked 20 times.

This outlines the trade-off between the complexity of one

iteration in terms of query number and the gain in the dis-

tortion decrease. The Interpolation option may yield sub-

stantial decrease depending on the direction. This explains

its large standard deviation. Yet, its costs (2 more binary

searches) slows down the speed. SignSearch is less

costly and offers competitive distortions only at the begin-

ning. SurFree strikes the right trade-off both in term of

averaged distortion and standard deviation. Compared to

SignSearch, it always exhausts the explored direction

giving the best gain under the hyperplane boundary assump-

tion. The first important insight is that this hypothesis seems

to be good enough to ensure a rapid decay.

The ablation study also tested different values for some

parameters of SurFree. The value of κ has no significant

impact provided that κ > 0. Parameter T doesn’t benefit

from higher value because of the finer seach in line 12.

Impact of the direction generation domain - ImageNet

The literature reports that black-box attacks have difficulty

in handling large images like ImageNet. Attack become

slow because the space is too large to be explored effi-

ciently. All competing attacks resort to a dimension reduc-

tion, typically by leveraging a full DCT transform [14, 23].

Yet, dimension reduction lowers the degrees of freedom for

the attacker: the closest adversarial as defined in (1) has a

bigger distortion under this constraint. The distortion sup-

posedly converge faster but to a bigger limit.

SurFree is no exception. Table 1 shows that the dis-

tortion in the full pixel domain is bigger within the first
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Figure 5. Ablation study on SurFree. The deviation of the dis-

tortion over 20 runs of SurFree on one MNIST image.

Space Shaping A(x) Dim. Reduc. ρ K = 100 K = 1000

Pixel 100% 27.23 17.20

DCTfull cst 50% 26.50 15.35

DCTfull cst 25% 32.08 21.23

DCT8×8 cst 50% 19.49 10.69

DCT8×8 cst 25% 18.26 9.93

DCT8×8 x 50% 20.11 11.96

DCT8×8 x 25% 20.29 12.22

DCT8×8 tanh(x) 50% 17.38 10.22

DCT8×8 tanh(x) 25% 18.20 10.61

Table 1. Mean distortion d(K) when random directions are gener-

ated with different subspaces and shaping (ImageNet).

thousand queries. For the same query budget, constraining

the perturbation to lie in a smaller low-frequency subspace

defined with the full DCT as in [14, 23] is beneficial. Yet,

this frequency reduction have to be controlled, at the risk

of suppressing too many frequencies and obtaining a more

important distortion: distortion reported for a reduction of

ρ = 25% are always larger than those for 50%.

We now question the type of DCT transform. Indeed,

while the DCT full frame is widely acclaimed, we prefer the

block-based DCT as used in JPEG. It gives a better space-

frequency localization trade-off. Table 1 shows that it does

change the distortions a lot. The 4 last rows of Table 1 fo-

cus on the adaptivity to the visual content of the original

image (see Sect. 5.2). Amplitude function A(x) = x con-

centrates the perturbation power too much on some high

amplitude coefficients when the original image has sharp

edges. tanh(x) is a good compromise between the constant

and the identity functions. It offers early distortion drop and

reaches similar levels than A(x) = cst in the long run. Our

design is driven by the small query budget requirement so

we choose tanh and ρ = 50% on DCT8×8.

6.3. Benchmarking

We compare to recent algorithms considered as state-

of-the-art decision-based black-box attacks: HSJA [3],

GeoDA [23] and QEBA [14]. These 3 algorithms leverage

gradient surrogates. The benchmark does not include older

attacks like OPT [5] and BA [1] because they have proven

less efficient than the three above-mentioned references.

We use the authors code for these algorithms: HSJA [3]

is integrated in the FoolBox library [24, 25]. For

GeoDA [23] and QEBA [14], we pull implementations from

their respective GitHub repositories34 with default parame-

ters. For GeoDA [23], the number of queries devoted to the

gradient estimates follow a geometric progression of com-

mon ratio λ−2/3 with λ = 0.6, and the dimension reduc-

tion focuses on 5,625 coefficients of the full DCT transform.

Concerning QEBA [14], ρ = 25% dimension reduction on

low frequency full DCT coefficients. HSJA [3] works on the

pixel domain, the number of queries devoted to gradient es-

timates scales as N0

√
j with j the iteration number. We

tested two versions with N0 ∈ {10, 100}, which is directly

observable with the larger plateaus on Fig. 6.

A very important point is that all attacks are initialized

with the same first adversarial example in order to avoid

favoring a competitor by giving it an easier initialization.

Performance evaluation: distortion vs. queries Fig-

ure 6 displays the distortion of the perturbation (ℓ2 norm)

3QEBA: https://github.com/AI-secure/QEBA
4GeoDA: https://github.com/thisisalirah/GeoDA
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Figure 6. Benchmark on ImageNet. The amount of queries k (x-

axis) w.r.t. mean distortion d(k) (y-axis).
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Figure 7. Success rate S(dt,K) (10) vs. target distortion dt with

K = 500 queries over ImageNet.
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target K = 500 queries K = 1, 000 queries K = 2, 000 queries

dt HSJA [3] GeoDA [23] QEBA [14] SurFree HSJA [3] GeoDA [23] QEBA [14] SurFree HSJA [3] GeoDA [23] QEBA [14] SurFree

30 0.56 0.79 0.71 0.90 0.88 0.93 0.88 0.96 0.98 0.96 0.97 0.99

10 0.13 0.25 0.32 0.44 0.23 0.52 0.46 0.57 0.40 0.70 0.69 0.73

5 0.07 0.14 0.17 0.23 0.09 0.21 0.30 0.31 0.13 0.39 0.47 0.50

Table 2. Success rate S(dt,K) for achieving a targeted distortion dt under a limited query budget K (ImageNet).

attack K = 100 K = 500 K = 1000 K = 100 K = 500 K = 1000 K = 100 K = 500 K = 1000

SurFree
amer. dipper- 2.6 amer. dipper- 1.3 amer. dipper- 0.9 stone wall- 14.9 stone wall- 8.7 stone wall- 5.4 cliff dwelling- 21.9 cliff dwelling- 18.4 triceratops- 13.5

QEBA [14]
stingray- 60.6 stingray- 33.7 stingray- 20.8 stone wall- 25.2 stone wall- 4.8 stone wall- 2.6 wombat- 58.3 wombat- 24.3 wombat- 13.6

GeoDA [23]
brambling- 18.9 brambling- 9.7 brambling- 5.8 stone wall- 15.8 megalith- 4.5 megalith- 2.6 armadillo- 49.4 tusker- 31.3 tusker- 18.9

Table 3. Visual trajectories for an easy (chickadee), a medium (king penguin), and a difficult image (warthog) - predicted label and distortion

versus the amount of queries. SurFree presents a smooth

curve, resulting from the averaging over 350 images. Even

with this averaging, the other attacks still show large

plateaus (as highlighted in Fig. 1 for one image) because

gradient estimates are scheduled at the same instants for

any image. Note that these plateaus are not shown in the

papers because the distortion is seen as a function of the it-

eration number, not the query number. The two most recent

attacks, QEBA [14] and GeoDA [23] indeed beat HSJA [3]

as reported in the corresponding papers. SurFree dives

significantly faster than all attacks to lower distortions (no-

tably from 1 to 750 queries), while QEBA [14] prevails at

around 3, 750 queries. Note that SurFree is also first

with DCT full but for a shorter period (≈ 800 queries).

For completeness, here are the scores at 10,000 queries:

2.09 (QEBA [14]) < 2.72 (SurFree) < 3.48 (HSJA 10) <
4.63 (GeoDA [23]). Although a small query budget drives

its design, SurFree is not off in the long run. Simi-

lar results are observed for MNIST (pixel domain, with-

out dimension reduction) where SurFree is ahead up

to ≈ 5, 000 queries. For runtimes, here are the times

to attack 1 image on ResNet18 at 1,000 queries: 4.1s

(HSJA [3]) < 7.8s (SurFree) < 9.6s (GeoDA [23]) <
9.8s (QEBA [14]). With a comparable domain, SurFree

is faster than GeoDA [23] and QEBA [14] by 20%.

Performance evaluation: Success rate We now consider

three query budgets, K ∈ {500, 1, 000, 2, 000}, which are

rather low with regards to the state-of-the-art (see Sect. 2.2).

Table 2 details how the success rate S(dt,K) varies for

some setup (dt,K) (10). Fig. 7 shows the success rate

S(dt, 500) increase with dt. GeoDA [23] is superior to

QEBA [14] for large target distortions only. Both schemes

outperform HSJA [3]. SurFree remains the best attack

for any target distortion up to this 2, 000 query budget.

Finally, Table 3 displays the visual trajectories of three

attacked images witnessed as easy, medium, and difficult to

attack for SurFree. While all three attacks affect differ-

ently the images, SurFree gives relatively less annoying

artefacts. We also note a drawback of QEBA [14]: the adver-

sarials often keep the label of the random starting point (e.g.

stingray), hence sometimes converging to a local minimum

which is far from the optimal solution (1).

7. Conclusion

The performance of black box decision-based attacks re-

veals important gaps when it comes to the required amount

of queries. Core to the three state-of-the-art approaches this

papers considers is the estimation of gradients. This step

is particularly costly, with regards to our novel geometri-

cal attack SurFree. The trial of multiple directions to-

gether with a simple mechanism getting the best distortion

decrease along a given direction allow a fast convergence

to qualitative adversarials, within an order of hundreds of

queries solely. This sets a new stage for future works.
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