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Abstract

We present Magic Layouts; a method for parsing screen-

shots or hand-drawn sketches of user interface (UI) layouts.

Our core contribution is to extend existing detectors to ex-

ploit a learned structural prior for UI designs, enabling ro-

bust detection of UI components; buttons, text boxes and

similar. Specifically we learn a prior over mobile UI lay-

outs, encoding common spatial co-occurrence relationships

between different UI components. Conditioning region pro-

posals using this prior leads to performance gains on UI

layout parsing for both hand-drawn UIs and app screen-

shots, which we demonstrate within the context an interac-

tive application for rapidly acquiring digital prototypes of

user experience (UX) designs.

1. Introduction

User interface (UI) layout is a critical component in user

experience (UX) design. UI Layouts are commonly ideated

and developed through sketched (‘wireframe’) designs, or

by mocking up screenshots. Digital prototypes are then

built using sequences of such layouts, to evaluate the UX

and rapidly iterate on layout design. The ability to quickly

move from such prototypes ( sketches or screenshots) to

digital prototypes in which components may be modified

or rearranged, is valuable in expediting the design process.

This paper presents Magic Layouts; a technique for pars-

ing existing UI layouts (for example wireframe sketches,

or UI screenshots) into their UI components. Our techni-

cal contribution is a deep learning method for detecting UI

components within UI layouts that exploits common spatial

relationships of components as a learned prior knowledge

to improve detection accuracy.

For example, UI elements often occur together and have

a meaning underpinning that co-occurrence relationship. A

‘text input field’ and a ‘button’ occuring side-by-side in a

UI is often a query-text and a response-button. We propose

to explore the use of such co-occurrence information as an

external knowledge graph to learn these component rela-

Figure 1. Magic Layouts parses UI layouts from sketched designs

or app screenshots, exploiting learned prior knowledge of common

component arrangements to improve recognition accuracy. In this

parsed example, colour indicates different component classes.

tionships, and incorporate this learning knowledge to boost

the performance of state of the art detection algorithms.

We conduct experiments on two publicly available

datasets of UI layouts; the RICO dataset of mobile app

UX designs, and the DrawnUI dataset comprising hand-

sketched UX wireframes. Our proposed approach yields

improvements in detection for modalities, demonstrating

that co-occurrences of UI components is a useful prior

upon which to condition component detection and recog-

nition when parsing UI layouts. We incorporate our de-

tection model into an interactive tool dubbed ‘Magic Lay-

outs’ capable of parsing UI layouts from mobile camera

photographs of sketches (Fig. 1), or screenshots from mo-

bile app stores. Additionally, Magic Layouts incorporates

sketch based image search to replace sketched graphics with

higher fidelity artwork.

2. Related Work

Detection and recognition of objects within images is a

long-standing computer vision problem. Classical detectors

include sliding-window approaches [39], super-pixel group-

ing [2, 32] and object proposal methods [1] often combined

with sparse gradient features and dictionary learning for the

recognition step. With the advent of deep learning, simul-
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taneous object localization and detection was initially ex-

plored via semantic segmentation [23], and region-based

convolutional neural networks (R-CNN [12, 30]) that clas-

sify a short-list of bounding boxes generated via selective

search [32]. Region proposal networks (RPNs) were later

fused with classifiers and trained end-to-end, to recognise

candidates bounding boxes proposed with associated ob-

jectness scores in Faster-RCNN [30]. Improvements upon

Faster-RCNN included RetinaNet mitigating foreground-

background class imbalance [20], and Mask-RCNN to de-

tect and classify arbitrary shaped object regions [15] (un-

like UI components). All these approaches make decisions

locally, without consideration of neighbouring regions or

image structure. Recently, SGRN [36] aims to improve ob-

ject proposal features by encoding spatially-related regions

using Graph Neural Network (GNN). The SGRN graph

encourages visual similarity and so spatially coherent la-

belling (i.e. biased towards connecting similar objects of

the same class). This differs from our goal of modelling

frequently co-occurring arrangements of objects from dif-

ferent classes; common in UX designs.

Layout has been studied from the perspective of syn-

thesis, including automated reflow of banner adverts and

graphic design [17], steered by gaze-tracking [35] or

learned common design patterns [27, 28]. Aesthetic score

prediction for document layout has been modelled [14]

and used to drive automated layout decisions [9, 13]. UI

Layouts specifically have been addressed through re-use

of layouts via similarity search [22, 24] leveraging Rico;

a crowd-annotated dataset [7] of mobile app screenshots.

Most closely related are works that learn design heuris-

tics to parse screenshots for layout re-use [38, 31] or for

code generation [3]. All these techniques are bottom-up;

driven by initial detection of individual UI components (e.g.

via Faster-RCNN or edge-grouping heuristics [26]) which

are post-processed and associated via learned (or designed)

rules. Whilst we also parse UI layouts, our technical con-

tribution is to enhance accuracy of that detection step by

integrating a prior for component co-occurence at the initial

step i.e. enhancing Faster-RCNN.

3. Methodology

We introduce Magic Layouts that exploits a learned

structural prior for user interface (UI) layout parsing. Fig. 2

shows the architecture of the proposed framework. We pro-

pose to condition region proposals using a structural prior

which essentially encodes common spatial co-occurrence

among UI components distributed over various UX regions

as knowledge graphs. To this end, we learn co-occurrence

graphs from various UX regions and use high-level se-

mantic representations that are readily available in the net-

work to propagate them through the graphs. Representa-

tions from different regions are aggregated based on the

proposal-graph associations. We show that such representa-

tions when integrated with original features offer more ac-

curate UI parsing for both app screenshots as well as hand-

drawn UI layouts (subsec. 4.4). The following sections de-

scribe our approach to learning the prior and how this infor-

mation is embeded into the network.

3.1. Object Co­occurrence as Knowledge Graph

UX components usually co-exist together to form lay-

out designs and have semantics underpinning the co-

occurrence. We propose to explore such information and

integrate this into detection frameworks to enhance UI de-

tection. Formally, let {ci}Ci=1 be set of UI components C
being the total number of component classes. We aim to

obtain knowledge graphs G = {V ,E} where the vertices

V represent UI classes and edges E encode common spa-

tial occurrence information from a training set, and use that

prior for both training and inference.

The co-occurrence statistics among UI components vary

across different regions of UX especially along the ver-

tical direction - for example, the distribution statistics of

components in the top of UX (often consisting of Toolbar,

Multi-tabs etc.) may differ from that in the bottom which

may consists of emphAdvertisementor Exit controls. More-

over, UXs are usually scrolled vertically and component re-

lations are often within local regions. In view of this, we

propose to estimate co-occurrence information in local re-

gions of layouts. To achieve this, we divide the UI into

several horizontal bands and observe frequency statistics

of co-occurring classes. Note that the bands can be de-

signed to be disjoint or overlapping in a sliding-window

fashion. Let Nb be the number of bands that divide UX

layout. We initialise C × C graph for each band with edge

values emn ∈ E = 0, ∀m,n ∈ {1, · · · , C}. A component

is associated to a band if its center lies inside the upper and

lower bounds of the band. We count a hit and increment

the value of edge emn by 1 if two components from class

m and class n both lie in the corresponding band. Algo-

rithm 1 summarises co-occurrence graph computation. This

process yields graphs corresponding to the various bands in

the UX. The obtained graphs are row-column normalised

emn := emn√
∑

n emn

∑

m emn

. Finally, we obtain Ng(= Nb)

graphs that carry component co-occurrence information dis-

tributed across various regions in UX layout. We leverage

these knowledge graphs to condition the proposal features

for better UI detection as described in following sections.

3.2. Semantic node representation

Our aim is to enrich the proposal representation with the

learned co-occurrence knowledge graphs. We first need to

define node features that would be propagated through the

edges of the graphs. Regions and proposals are often rep-

resented using appearance features within an individual im-

age [6, 4, 25]. However, such representations may not be

robust when there are overlapping and nested objects that

lead to heavy occlusions which is often observed in UI lay-

outs. Moreover, visual ambiguities among various compo-
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Figure 2. Magic Layout Architecture. Our framework exploits co-occurrence knowledge graphs (computed offline) as a prior to condition

the proposal features. The semantic node representations obtained from the classifier are used to propagate features along the edges of

knowledge graphs which are further soft-mapped to region features. Conditioned proposal features are then obtained by pooling the features

based on proposal-graph associations eventually producing better UI detections.

Algorithm 1 Co-occurrence graph computation

Input: N Bounding boxes bb = {bbi}
N
i=1

and their labels L =

{li}
N
i=1

for all training UXs; Width Wb, number of bands Nb = Ng

Output: Co-occurrence graphs {Gj = (Vj , Ej)}; j = {1, · · · , Ng}
1: for all UX in training set do

2: Get UX height H

3: Compute Bands S = {Sj}
Nb
j=1

with upper and lower bounds:

(a) Upper = range(0, H,H/Nb)
(b) Lower = Upper +Wb

4: Compute matrix M s.t. M [i, j] = 1 if bbi in band Sj else 0
5: M := M [:,sum(M, 0) > 1] ⊲ Bands with co-occurrences
6: for all bbi in bb do

7: S(bbi) = {Sj} ∈ S s.t. M [i, j] 6= 0 ⊲ Band where bbi lies
8: coind = {i} s.t. M [i, S(bbi)] 6= 0 ⊲ Co-occurrence index
9: coind = Unique(coind) ⊲ Remove duplicates

10: Get class labels for bbi and coind: Li and Lcoind

11: Ej [Li, Lcoind]+ = 1 ⊲ Update edges
12: end for

13: end for

14: ejmn :=
ejmn

√

∑

n e
j
mn

∑

m e
j
mn

; ∀j ⊲ Normalisation

15: ejmm := 1 ∀m, j

nents can lead to ineffective or even wrong propagation.

Recently, few/zero-shot methods [33, 10] and object recog-

nition [36, 37] have used the classifier weights as a visual

embedding for unseen classes and the proposal’s latent rep-

resentation to guide recognition. Motivated by this, we use

classifier weights as semantic node feature of the graphs. In

particular, to obtain this representation, we copy the weights

of the previous classifier head of the base network including

the bias i.e. W ∈ R
C×(D+1) where D is input dimension to

the classifier head and C is the total number of UI classes.

The use of this representation comes with three main advan-

tages: (i) the representation captures high-level semantics

which acts as class embedding for each category, (ii) they

are readily available without requiring computationally ex-

pensive feature averaging or clustering over large samples

[18], and (iii) the representations are dynamically updated

during training thus they improve over time.

3.3. Knowledge graph­based proposal conditioning

The co-occurrence knowledge graphs contain compo-

nent relationship information across different regions of UX

layouts. We associate each proposal to the learned knowl-

edge graphs in order to propagate their representations

through their respective edges. A natural rule of proposal-

to-graph assignment can be associating each proposal to its

nearest band (and hence the corresponding graph) or to the

band that encloses the proposal. However, this single hard-

assignment may be too strict and can be noisy as proposal

boxes are only initial estimates of objects which are essen-

tially regressed for the final predictions. Thus, we propose

to assign proposals to multiple graphs in a weighted man-

ner; as a Gaussian function of their spatial proximities.

Formally let {Pi}Nr

i=1 be Nr region proposals with fea-

tures f and bounding boxes {xi1, yi1, xi2, yi2}Nr

i=1. Simi-

larly, we have {Gj}Ng

j=1 knowledge graphs related to Nb(=

Ng) bands from different regions of UX (sec. 3.1). We com-

pute the association α(i, j) between proposal Pi to graph

Gj using the following equations

α(i, j) =
1√
2πσ2

exp
−

1

2

(

δ
j
i
−µ

σ

)2

, (1)

δji =
yci − ybj

H
; (2)

where δji is the vertical displacement between the proposal

Pi and band j; and σ and µ are the parameters of Gaussian
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Figure 3. Average precision (AP) for RICO UI categories for baselines and the proposed method using various architectures: Faster-RCNN

(FRCNN) [30], DC5 [19] and FPN [19]. For each network, the AP obtained using our proposed method are shown as stacked bars over

their corresponding baselines where the figures on tops show the absolute improvements for each category (zoom-in for best view).

Table 1. Performance comparison on RICO dataset
Method AP AP50 AP75 APs APm APl AR AR AR ARs ARm ARl
@IoU 0.5:95 0.5 0.75 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95
maxDets 100 100 100 100 100 100 1 10 100 100 100 100

Faster-RCNN [30] 43.0 52.8 46.0 2.3 16.5 43.2 40.5 58.1 60.1 5.7 29.2 60.0
RetinaNet [20] 41.7 52.8 45.8 3.6 20.5 42.0 38.8 57.0 59.1 7.2 34.7 58.8
FRCNN+SGRN [36] 45.2 54.2 47.8 2.4 19.0 45.8 41.4 60.0 62.1 6.4 32.3 62.0
FRCNN+Magic 47.8 57.4 51.0 3.1 21.7 48.4 42.6 61.9 63.9 6.9 34.9 63.9

DC5 [19] 46.7 56.2 49.8 2.9 20.5 47.2 41.9 60.7 62.7 6.7 33.0 62.7
DC5+SGRN [36] 49.0 58.0 51.8 4.9 27.5 49.6 43.0 61.8 63.9 8.4 40.5 63.9
DC5+Magic 51.8 61.1 54.9 4.4 29.9 52.2 44.8 64.8 66.7 8.1 41.6 66.9

FPN [19] 47.6 57.1 50.4 4.6 30.6 47.7 41.6 61.0 63.1 9.5 44.6 62.6
FPN+SGRN [36] 49.9 59.6 52.7 7.6 33.5 50.0 42.6 62.4 64.5 13.5 45.8 64.0
FPN+Magic 50.3 60.1 53.4 8.4 34.7 50.2 43.0 63.0 65.0 13.2 46.4 64.5

distribution. Similarly, yci and ybj are y-components of

centriods of the proposal and the band given by yci = (yi1+
yi2)/2 and ybj = (yj,uppper+yj,lower)/2 respectively; and

H is the height of the UX which normalises the displace-

ment taking care of varying UX dimensions. We further

normalise the association values α(i, j) := α(i,j)
∑

j α(i,j) .

We enhance proposal features using priors from different

layout regions taking their associations into account. We

propagate the node representations W ∈ R
C×(D+1) via

the graphs Gj using prior knowledge in edges Ej given by

EjW. This allows to share high-level semantics between

related UI categories according to the graph knowledge.

Next we map this semantic level information into individ-

ual proposal by a category-to-region mapping to condition

them. A direct mapping for each region to a class can be ob-

tained based on prediction of the previous classifier. How-

ever, such one-to-one mapping can be harsh as it is prone

to noise due to false predictions. In this paper, we instead

propose to use a soft-mapping strategy which operates on

probability distributions of proposals over all classes. Con-

cretely we compute a mapping matrix S ∈ R
Nr×C given by

sij =
exp pij

∑

j exp pij
where sij is the probability that proposal

Pi belong to class cj . Using these definitions, we obtain

conditioned features as follows.

f ′

i =

Nb∑

j

α(i, j)⊙ SEjWZe, (3)

where ⊙ is scalar element-wise multiplication, and Ze ∈

R
(D+1)×D′

is weight of the final embedding layer that D′−
dimension proposal features conditioned on the structural

priors. Note these proposal features are computed by aggre-

gating all common spatial co-occurrence information from

various regions from UX layout. We concatenate this condi-

tioned representation with original feature f = [f, f ′] and

pass them through a final classifier head and a bounding-

box regression head to obtain better detection results based

on the conditioned proposal features.

4. Experiments and Discussion

We evaluate the performance of Magic Layouts and con-

trast state-of-the-art baselines such as (Faster-RCNN [30]

and popular variants [19], and RetinaNet [20]) as well as

the recent spatial-aware graph network (SGRN) [36].

4.1. Datasets

We evaluate on images from two input modalities: (i)

mobile app screenshots and (ii) hand-sketched UI designs.

RICO dataset [7] is the largest publicly available dataset

of UX designs containing 66K screenshots of mobile apps

curated by crowd-sourcing and mining 9.3K free Android

apps. The screenshots are annotated using bounding boxes

to create semantic view hierarchies which are each assigned

to one of C = 25 classes of user interface (UI) component.

We partition the dataset into 53K training/validation sam-

ples T and a test set of 13K layouts for inference.

DrawnUI dataset [8] contains 2,363 images of hand-drawn

sketches released as development set of ImageCLEF 2020

415812



(a)

(b)

Figure 4. UX parsing on RICO mobile screenshots [7]. (a) Examples of UX parsing using MagicLayouts (Magic+FPN) (b) Comparison:

Standard FPN (shown in red boxes) vs. MagicLayouts (green boxes). Our method is able to recognise components with higher confidence

with lower false detections. Zoom-in for better view.

drawnUI recognition task. The main motivation of this

dataset is to enable designers to build UX layout by drawing

them on whiteboard or on paper. The idea is to develop au-

tomatic UI parsing algorithm that can be further leveraged

to convert them into UX codes. Each image is annotated for

UI components with their bounding boxes and class labels

from a set of C = 21 predefined UI classes. We partition

the dataset into a training set of 2000 images and perform

evaluation on the remaining 263 images.

4.2. Evaluation Metrics

For both datasets, we report performance metrics used

in COCO detection evaluation criterion [21] and provide

mean Average Precision (AP) across various IoU thresh-

olds i.e. IoU = {0.50 : 0.95, 0.5, 0.75} and various scales:

{small, medium and large}. We also report Average Recall

(AR) with different number of detection - {1, 10, 100} and

scales: {small, medium and large}. Unless specified, we

refer mAP@[0.50:0.95] to as mAP (primary metric) and

AR@[0.50:0.95] as AR for conciseness.

4.3. Experimental Settings

4.3.1 Architectures

We conduct experiments with widely adopted backbone

network (ResNet [16]) and best-performing detectors to

demonstrate the effectiveness and generality of the pro-

posed method. In particular, we build our method using

three popular variants of the Faster-RCNN architecture: (i)

Faster-RCNN [30], (ii) Dilated Convolutional Network

(DC5) [19], and (iii) Feature Pyramid Network (FPN)

[19]. For Faster-RCNN [30], following the standard prac-

tise [16], we compute region proposals on top of conv4, and

all layers of conv5 are adopted as predictor head with two

sibling layers for classification and regression. The DC5 ar-

chitecture uses dilated convolution in conv5 layers and com-

pute region proposals and perform RoI pooling over conv5

features. As the prediction head, DC5 uses 2-fc MLP fol-

lowed by the two siblings layers which is lighter weight and

faster than the conv5 head [19]. FPN [19] has an alternate

backbone where top-down and lateral connections are used

to build a pyramid of features. Proposals are computed from

all the pyramid scales and RoI pooling is performed on the

most appropriate scale based on size of each proposal. FPN

achieves the best speed and accuracy trade-off when com-

pared to Faster-RCNN and DC5 [19]. We use regional pro-

posal network (RPN) to generate proposals and RoIAlign

[15] is used for pooling the region features from feature

maps. We show that all three architectures benefit from our

spatial prior for object co-occurrence (subsec. 4.4).
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Figure 5. Average precision (AP) for DrawnUI categories for baselines and the proposed method using Faster-RCNN (FRCNN) [30], DC5

[19] and FPN [19]. See Fig. 3 for details. Zoom-in for best view

Table 2. Performance comparison on DrawnUI dataset.
Method AP AP50 AP75 APs APm APl AR AR AR ARs ARm ARl
@IoU 0.5:95 0.5 0.75 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95 0.5:95
maxDets 100 100 100 100 100 100 1 10 100 100 100 100

Faster-RCNN [30] 58.6 86.3 65.7 21.7 51.5 60.8 27.7 61.7 65.5 35.2 58.3 67.0
RetinaNet [20] 58.6 85.5 66.1 19.0 52.9 60.6 29.9 63.9 68.1 23.6 60.1 69.0
FRCNN+SGRN [36] 61.4 87.9 71.5 27.0 56.9 63.5 29.0 64.7 68.4 34.7 63.6 69.6
FRCNN+Magic 62.2 88.5 72.8 27.2 55.5 64.9 30.4 66.4 70.1 33.6 62.2 71.5

DC5 [19] 59.1 85.4 69.3 23.6 51.3 61.2 28.1 62.6 66.3 29.9 58.9 67.1
DC5+SGRN [36] 62.5 90.2 70.7 26.4 55.1 65.0 30.0 65.8 69.5 31.6 61.4 70.5
DC5+Magic 63.4 89.9 72.9 26.9 56.9 65.9 30.7 66.8 70.6 31.1 63.1 71.6

FPN [19] 61.6 87.3 70.6 32.1 57.3 63.5 28.9 64.5 68.6 36.9 64.3 69.3
FPN+SGRN [36] 63.3 88.6 73.7 34.6 58.1 65.8 30.1 66.3 70.5 39.1 64.6 71.4
FPN+Magic 64.3 89.5 74.4 32.2 54.4 66.5 30.3 66.7 71.0 37.1 64.0 71.7

4.3.2 Implementation Details

We implement our framework using Pytorch [29] with de-

tectron2 [34] codebase. We use ResNet50 [16] pretrained

on ImageNet as our backbone network. Images are resized

such that shorter side has maximum of 800 pixels and larger

side has 1333 pixels. For all settings, we sample Nr = 256
proposals from each image after non-maximal suppression

(NMS) which are assigned as positive if the proposal and

a ground-truth box has IoU > 0.7 or as negative if the

IoU < 0.3. We follow other standard settings as in [19].

We use SGD optimizer with a momentum update of 0.9

and a weight decay of 0.0001; and set the initial learning of

0.02 and decay it by a factor of 0.1 twice during training.

We use 3 images per GPU and a mini-batch of 9 for train-

ing. We train all three network architectures for 21 epochs

and 45 epochs for RICO and DrawnUI dataset respectively.

We use more epochs for DrawnUI as it has fewer UXs com-

pared to RICO. We observe that the performances saturates

on validation data after 16 and 31 epoch for RICO and

DrawnUI respectively; further training does not improve the

performance. To obtain the conditioned proposal features

in our framework, we initialise our model using pre-trained

networks from their respective architectures.

We conducted experiments using both non-overlapping

as well as overlapping bands and observed that structural

priors estimated from both achieve similar performances.

Hence we opt for simplicity and divide UXs into Nb(=
Ng) = 10 non-overlapping bands for all experiment un-

less stated. We also study impact of Ng on performance

(subsec. 4.4.3). We used a zero-mean Gaussian distribution

with a standard deviation empirically set to σ = 0.3 in order

to compute the associations of proposals to the bands. The

dimension of conditioned feature D′ is set to 512.

4.4. Results

4.4.1 Parsing UX screenshots on RICO

Fig. 3 shows average precision (AP) using the proposed

method and compares with baselines with various net-

work architectures illustrating the improvements brought by

Magic Layouts over various RICO UI categories. From the

figure it can be observed that for all the architectures, our

proposed method is able to boost the performance (num-

bers on top of each stacked bar, Fig. 3) of nearly all UI

categories. For example, our method is able to deliver im-

provements of +7.7%, +8.0% and +4.5% AP for Page In-

dicator class over FasterRCNN, DC5 and FPN method re-

spectively. This clearly demonstrates the advantage of in-

corporating structural priors of layout in UI recognition.

Table 1 summarizes recognition performance in terms

of mean Average Precision (mAP) at different IoU thresh-

olds and scales and Average Recall (AR) at different num-

ber of detections and scales. Faster-RCNN [30] achieves

an mAP of 43.0% whilst our proposed framework achieves

an mAP of 47.8% - an absolute increase of +4.8% indicat-

ing the effectiveness of the proposed method and the use of

structural prior. Our method also outperforms competing

methods such as RetinaNet [20] and SGRN-FRCNN [36]

by mAPs of 6.1% and 2.6% respectively. The recent SGRN

method aims to enhance proposal representation, however,

it assumes homogeneous object relations across various re-

gions of image and creates edges based on visual similar-

ity of proposals which can potentially limit the exploration
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(a)

(b)

Figure 6. UX parsing on hand-sketched DrawnUI layouts [8]. (a) Examples of UX parsing with MagicLayouts (Magic+FPN). (b) Compar-

ison: Standard FPN (shown in red boxes) vs. MagicLayouts (green boxes). See caption of Fig 4

of inter-class occurrences. Compared to this, our method

aggregates structural priors from various regions explicitly

considering the variability in UI distributions and condi-

tions the proposals at a semantic level, improving accuracy.

Magic Layouts with DC5 architecture achieves an mAP

of 51.8% outperforming its counterpart by a margin of 5.1%

and SGRN-DC5 by 2.7%. Similarly, Magic-Layout with

FPN architecture achieves 50.3% AP /ie +2.7% over the

standard FPN [19] and +0.4% over SGRN [36]. From Ta-

ble 1, we can observe similar improvements for Average

Recall and related metrics; for example MagiLayouts with

Faster-RCNN achieves 63.9% AR@100 outperforming its

counterpart by +3.8% and SGRN by +1.8%. In a nutshell,

the proposed method offers benefits for various detector ar-

chitectures and outperforms existing approaches that also

incorporate relations among components.

Fig. 4 shows sample qualitative UX parsed on RICO us-

ing our Magic-Layout (with FPN arch). In Fig. 4(a) we

observe that Magic-Layout is able to detect and recognize

various UI components at different scales; in (b) we com-

pare MagicLayouts with baseline and show our method is

more effective when compared to baselines.

4.4.2 Parsing hand-sketched UXs

We present evaluations on the DrawnUI dataset [8] and

show that Magic-Layouts can effectively detect components

on hand-drawn wire-frames while outperforming all base-

lines. Fig. 5 shows improvements in average precision (AP)

obtained by the proposed method for DrawnUI components

using the three architectures. Our method provides consis-

tent improvements for almost all component classes pro-

viding an average boost of 3.5% AP over the three archi-

tectures which clearly shows the advantage of incorporat-

ing co-occurrence prior into the framework. We also ob-

served that categories which are comparatively rarer are

largely benefited by the structural prior; e.g. table compo-

nent has less than 50 instances in DrawnUI dataset; and

hence detectors may perform poorly for such rare classes.

Faster-RCNN, DC5 and FPN achieve APs of 18.5%, 15.1%

and 13.5% respectively for this class. Magic-Layouts boost

these performance to 51.6%, 53.4% and 34.8% respectively

for the three detectors demonstrating its effectiveness.

Table 2 presents mAPs and Average Recall for DrawnUI

dataset obtained using the proposed method and compares

with different architectures and existing methods. Magic-

Layout with Faster-RCNN network achieves an mAP of

62.2% which outperforms its counterpart [30] by 3.6%.

It also outperforms RetinaNet and spatially-aware SGRN

by 3.6% and 0.8% respectively. MagicLayouts with FPN

achieves the best mAP of 64.3% on this dataset.

In terms of recall, our method achieves the best AR@100

of 63.9%, 66.7% and 65% for FRCNN, DC5 and FPN

respectively. Overall, the proposed Magic Layouts pro-

vides improvements over all baseline Faster-RCNN variants

[30, 19] and also outperforms other baseline methods using

spatial relations [36, 20]. Fig. 6 shows sample example of

parsed UXs from DrawnUI dataset.Our method is able to

better detect and recognize UIs at different scales despite

potential variations in hand-sketches and illuminations.
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(a) RICO (b) DrawnUI

Figure 7. Performance of FPN+Magic on (a) RICO [7] and (b)

DrawnUI [8] at various values of Ng = {1, 5, 10, 20}.

Figure 8. The Magic Layouts web app parsing a UI wireframe

sketch from the DrawnUI dataset [8]; coloured regions indicate

different classes of recognised UI component. UX sketches are

rapidly converted into higher digital prototypes. The tool also in-

corporates a sketch based visual search to replace sketched artwork

with higher fidelity graphics.

4.4.3 Ablation Studies

Impact of Ng: We conduct experiments using different

number of graphs (Ng) during co-occurrence computations.

Fig 7 shows the performance of the proposed method in

term of AR@100 and AP[0.5:0.95] for different values of

Ng . Our method achieves similar performances for different

Ng values with deviations about 0.5% and 1% for RICO and

DrawnUI respectively indicating that our method is fairly

insensitive to the parameter. Ng = 10 provides good trade-

off between AP and AR for both datasets.

Design choice study: We conduct experiments with vari-

ous strategies for graph-proposal association and category-

to-region mapping. In particular, we run experiment with

following setups: A. Baseline, B. graph-proposal associa-

tion: Single-Assignment vs. Equal vs. Gaussian Weight-

ing, C. Category-to-region mapping: Soft vs. Hard/1-to-1,

D. Graph node: classifier’s weight vs. proposals features).

Tables 3 and 4 summarise the performances for DrawnUI

and RICO respectively; both datasets follow the same trend.

For graph-proposal association, multiple assignment using

Gaussian weighting performs the best outperforming single

graph as well equal weighting scheme. Assigning proposals

appropriately to their corresponding bands also provides on-

par performance for some metrics. For category-to-region

mapping, the proposed soft-mapping outperforms one-to-

one hard mapping for both single and Gaussian-weighted

assignments. We further conduct an extra study, substitut-

ing W with representations computed from proposal fea-

tures (P = FS ∈ R
C×D); we achieve on-par performances

(Table 3, 4-D & E) indicating that our method works well

with alternative choices of node features.

4.5. Practical Use Case: Magic Layouts

We deployed our proposed detection model into an inter-

active ‘Magic Layouts’ web app capable of parsing UI lay-

outs from mobile camera photographs of sketches (Fig. 8),

or screenshots from mobile app stores. Magic Layouts

incorporates sketch based image search ([5]) to replace

sketched graphics and icons with higher fidelity artwork.

Please see supplementary video demo.

Table 3. Ablation studies DrawnUI
Config/ Nb Assig- Map- Node AP AP50 AR AR
Method nment ping Feat @1 @10

A FPN - - - - 61.6 87.3 28.9 64.5

B Magic 1 Single Soft W 63.2 88.8 29.0 65.6
Magic 10 Equal Soft W 62.7 87.6 28.2 66.0
Magic 10 Single Soft W 64.2 89.4 30.5 67.2

C Magic 10 Single Hard W 63.5 89.8 29.4 66.6
Magic 10 Gauss Hard W 63.9 88.7 30.0 66.6

D Magic 10 Gauss Soft P 63.6 90.4 30.5 66.9

E Magic 10 Gauss Soft W 64.3 89.5 30.3 66.7

Table 4. Ablation studies on RICO
Config/ Nb Assig- Map- Node AP AP50 AR AR
Method nment ping Feat @1 @10

A FPN - - - - 47.6 57.1 41.6 61.0

B Magic 1 Single Soft W 50.1 60.1 42.8 62.8
Magic 10 Equal Soft W 50.1 59.8 42.6 62.5
Magic 10 Single Soft W 50.2 60.0 42.7 62.5

C Magic 10 Single Hard W 50.3 60.1 43.0 63.0
Magic 10 Gauss Hard W 49.9 59.9 42.8 62.6

D Magic 10 Gauss Soft P 50.4 60.1 42.9 62.9

E Magic 10 Gauss Soft W 50.3 60.1 43.0 63.0

5. Conclusion

We reported Magic Layouts; a technique for incor-

porating structural layout (common spatial object co-

occurrences) as a prior to guide object detection and lo-

calization, investigating this in the context of UI layout

parsing. We extended the Faster-RCNN backbone to in-

corporate a learned prior based on spatial distribution of

UI components, showing performance improvements over

several Faster-RCNN variants [30, 11], RetinaNet [20] and

including an existing graph based approach to learning spa-

tial prior for detection [36]. We demonstrated the utility of

our model within ‘Magic Layouts’ – a UX parsing tool ca-

pable of automatically parsing UI layouts in two domains:

app screenshots and free-hand sketched prototypes. Future

work could explore not only object co-proximities but also

hierarchical relationships which particularly for UI layouts

could offer further structural cues.
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Liviu Daniel Ştefan, Mihai Gabriel Constantin, and Bog-

dan Ionescu. Overview of ImageCLEFdrawnUI 2020: The

detection and recognition of hand drawn website uis task.

In CLEF2020 Working Notes, CEUR Workshop Proceed-

ings, Thessaloniki, Greece, September 22-25 2020. CEUR-

WS.org <http://ceur-ws.org>. 4, 7, 8

[9] J. Geigel and A. Loui. Automatic page layout using ge-

netic algorithms for electronic albuming. In Proc. Electronic

Imaging, 2001. 2

[10] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot

visual learning without forgetting. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 4367–4375, 2018. 3

[11] R. Girshick. Fast r-cnn. In Proceedings of the IEEE interna-

tional conference on computer vision, 2015. 8

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proc. CVPR, 2014. 2

[13] E. Goldenbert. Automatic layout of variable-content print

data. Master’s thesis, School of Cognitive & Computing Sci-

ences, University of Sussex, UK, 2000. 2

[14] S. Harrington, J. Naveda, R. Jones, P. Roetling, and N.

Thakkar. Aesthetic measures for automated document lay-

out. In Proc. ACM Document Eng., 2004. 2

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 2,

5

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 5, 6

[17] N. Hurst, W. Li, and K. Marriott. Review of automatic doc-

ument formatting. In Proc. ACM Document Eng., 2009. 2

[18] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun

Yang. Cleannet: Transfer learning for scalable image classi-

fier training with label noise. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 5447–5456, 2018. 3

[19] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017. 4, 5, 6, 7

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2980–2988, 2017. 2, 4, 6, 7, 8

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 5

[22] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer,

Radomir Mech, and Ranjitha Kumar. Learning design se-

mantics for mobile apps. In The 31st Annual ACM Sympo-

sium on User Interface Software and Technology, UIST ’18,

pages 569–579, New York, NY, USA, 2018. ACM. 2

[23] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Proc.

CVPR, 2015. 2

[24] D. Manandhar, D. Ruta, and J. Collomosse. Learning struc-

tural similarity of user interface layouts using graph net-

works. In Proc. ECCV, 2020. 2

[25] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta.

The more you know: Using knowledge graphs for im-

age classification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2673–

2681, 2017. 2

[26] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D.

Poshyvanyk. Machine learning-based prototyping of graph-

ical user interfaces for mobile apps. IEEE Trans. Soft. Eng.,

2018. 2

[27] P. O’Donovan, A. Agarwala, and A. Hertzmann. Learning

layouts for single-page graphic designs. IEEE Transactions

on Visualization and Computer Graphics, 2014. 2

[28] P. O’Donovan, A. Agarwala, and A. Hertzmann. Design-

scape: Design with interactive layout suggestions. In Proc.

ACM Conf. Human Factors in Comp. Sys., pages 1221–1224,

2015. 2

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 6

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 2, 4, 5, 6, 7, 8

[31] A. Swearngin, M. Dontcheva, W. Li, J. Brandt, M. Dixon,

and A. Ko. Rewire: Interface design assistance from exam-

ples. In Proc. ACM CHI, 2018. 2

915817



[32] J. R. Uijlings, K. E. Sande, T. Gevers, and A. W. Smeulders.

Selective search for object recognition. Intl. Journal Com-

puter Vision (IJCV), 2013. 1, 2

[33] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot

recognition via semantic embeddings and knowledge graphs.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 6857–6866, 2018. 3

[34] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019. 6

[35] R. Lau X. Pang, Y. Cao and A. Chan. Directing user attention

via visual flow on web designs. In Proc. ACM SIGGRAPH,

2016. 2

[36] Hang Xu, Chenhan Jiang, Xiaodan Liang, and Zhenguo Li.

Spatial-aware graph relation network for large-scale object

detection. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 9298–9307,

2019. 2, 3, 4, 6, 7, 8

[37] Hang Xu, ChenHan Jiang, Xiaodan Liang, Liang Lin, and

Zhenguo Li. Reasoning-rcnn: Unifying adaptive global rea-

soning into large-scale object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6419–6428, 2019. 3

[38] X. Yang, E. Yumer, P. Asente, M. Kraley, D. Kifer, and C.

Giles. Learning to extract semantic structure from docu-

ments using multimodal fully convolutional neural networks.

In Proc. CVPR, pages 5315–5324, 2017. 2

[39] C. L. Zitnick and P. Dollar. Edge boxes: Locating object

proposals from edges. In Proc. ECCV, 2014. 1

1015818

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

