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Figure 1 – Qualitative results of FCPose. The results are obtained using the ResNet-101 based FCPose, achieving 65.6% APkp on

the MS-COCO test-dev split.

Abstract

We propose a fully convolutional multi-person pose es-

timation framework using dynamic instance-aware convo-

lutions, termed FCPose. Different from existing methods,

which often require ROI (Region of Interest) operations

and/or grouping post-processing, FCPose eliminates the

ROIs and grouping post-processing with dynamic instance-

aware keypoint estimation heads. The dynamic keypoint

heads are conditioned on each instance (person), and can

encode the instance concept in the dynamically-generated

weights of their filters. Moreover, with the strong represen-

tation capacity of dynamic convolutions, the keypoint heads

in FCPose are designed to be very compact, resulting in

fast inference and making FCPose have almost constant in-

ference time regardless of the number of persons in the im-

age. For example, on the COCO dataset, a real-time version

of FCPose using the DLA-34 backbone infers about 4.5×

*Corresponding author (email: chunhua@icloud.com).

faster than Mask R-CNN (ResNet-101) (41.67 FPS vs. 9.26

FPS) while achieving improved performance (64.8% APkp

vs. 64.3% APkp). FCPose also offers better speed/accuracy

trade-off than other state-of-the-art methods. Our exper-

iment results show that FCPose is a simple yet effective

multi-person pose estimation framework. Code is available

at: https://git.io/AdelaiDet

1. Introduction

Multi-person pose estimation (a.k.a., keypoint detection)

aims to obtain the keypoint locations of the persons in an

image, which is one of the fundamental computer vision

tasks with many downstream applications.

The key challenge in multi-person keypoint detection is

how to obtain the instance-level keypoints. In other words,

the detected keypoints need to be grouped according to the

instance that they belong to. Currently, the mainstream

methods tackle this challenge with bottom-up or top-down
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Figure 2 – The trade-off between speed and accuracy. In-

ference time is measured on a single 1080Ti GPU. We report

the APkp on the COCO val2017 dataset. FCPose (DLA-34

backbone [33]) is up to 13× faster than previous state-of-the-

art methods and achieves real-time speed with competitive ac-

curacy. It is worth noting that in the fast/real-time keypoint

detection realm, which is previously dominated by bottom-up

methods, FCPose surpasses them both in speed and accuracy.

This suggests that FCPose serve as a new strong baseline for

real-time keypoint detection.

approaches. Top-down methods [8, 27] first detect each in-

dividual instance with a person detector. These detected

boxes form the ROIs and an ROI operation is used to crop

the person from either the feature maps or the original im-

age. Next, single person keypoint detection is performed

within a ROI for each person, individually. The ROI-based

pipeline may come with some drawbacks. First, the ROIs

are forwarded separately and thus the convolutional compu-

tation cannot be shared. As a result, the inference time of

these methods heavily depends on the number of instances

in the image, which impedes these methods from being

real-time, as shown in our experiments. Second, top-down

methods usually are not end-to-end trainable since the ROIs

are often obtained from an isolated person detector such as

Faster R-CNN [25]. Moreover, the use of the isolated detec-

tor also results in significantly longer end-to-end inference

time (i.e., from the raw image to the final keypoint results).

Third, these ROI-based methods also rely on the localiza-

tion quality of the ROIs. This may harm the keypoint de-

tection performance if the detector yields inaccurate boxes.

On the other hand, bottom-up methods [2,20] do not rely on

ROIs. They first detect instance-agnostic keypoints and then

employ grouping post-processing to obtain the full-body re-

sults for each instance. The processing of assembling the

keypoints is usually heuristic and can involves many hyper-

parameters, making these methods complicated.

In this work, we propose a new solution to keypoint de-

tection. Our solution is simple yet effective, and is able

to avoid the shortcomings of the previous ROI-based or

grouping-based methods. The key idea of our solution is

to use the keypoint heads whose convolution filters/weights

are dynamically generated. More specifically, for each in-

stance, we dynamically generate a keypoint head. The

generated keypoint head is applied to convolutional fea-

ture maps in the fashion of fully convolutional networks.

As a result, we are able to obtain the keypoint detection

results only for that specific target instance, as shown in

Fig. 3. This is made possible as the keypoint head can

encode the instance’s characteristics in the filters’ weights.

Thus, this keypoint head can distinguish the instance’s key-

points from that of other instances, hence instance-specific

convolution filters. If we consider that the ROI operations

in top-down methods are the operations making the model

attend to an instance, then in our method, so do the dynamic

instance-aware keypoint heads. This idea eliminates the

need for ROIs and the grouping post-processing, thus by-

passing the drawbacks mentioned before. Additionally, the

dynamically-generated keypoint head is very compact and

only has several thousand coefficients. Thus, it can infer

very fast, making the overall inference time almost remain

the same regardless of the number of persons in a test im-

age. This is particularly valuable for real-time applications.

Moreover, it is easy to see that the localization preci-

sion of keypoint detection is tightly related to the output

resolution of the FCN. Typically, the output resolution of

the fully convolutional keypoint heads is designed to that of

the input feature maps (e.g., 1/8 of the input image), which

is not sufficient for keypoint detection. Simply using de-

convolutions, as in Mask R-CNN [8], to upsample the out-

puts would inevitably result in significantly increased com-

putation overhead. Here, we tackle this dilemma of accu-

racy vs. computation complexity by proffering a new key-

point refinement module. As shown in Table 4, compared

with the baseline, our proposed keypoint refinement can

dramatically improve the accuracy (56.2% vs. 63.0% APkp)

with negligible computation overhead (69 ms vs. 71 ms).

We summarize our contributions as follows.

• We propose an efficient and accurate human pose es-

timation framework, termed FCPose, built upon dy-

namic filters [13]. For the first time, we demonstrate

that an ROI-free and grouping-free end-to-end train-

able human pose estimator can achieve even better ac-

curacy and speed, comparing favourably with recent

top-down and bottom-up methods.

• The elimination of ROIs enables FCPose to be imple-

mented by only convolution operations, resulting in

much easier deployment in cases such as on mobile

devices. Moreover, not using ROIs also avoids that

the keypoint prediction is truncated by the inaccurate
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detected boxes as in ROI-based frameworks such as

Mask R-CNN [8] (e.g., see Fig. 5).

• The core of FCPose is the use of the dynamic fil-

ters in our keypoint heads. Dynamically generated fil-

ters have demonstrated strong representation capaci-

ties. Thus, we only need a small number of such con-

volutions for achieving top results. As a result, the

keypoint heads are very compact and thus the over-

all inference time is fast and almost constant regard-

less of the number of the instances in the image. We

also present a real-time end-to-end keypoint detection

models with competitive performance. The trade-off

between speed and accuracy is shown in Fig. 2. We

believe that FCPose can be a new strong baseline for

keypoint detection, particularly in the real-time realm.

2. Related Work

Multi-person pose estimation. Multi-person pose esti-

mation is often solved using either top-down or bottom-

up approaches. Almost all top-down methods first obtain

the boxes of the person instances with an object detec-

tor [7,8,11,12,23,27,31]. Then, the boxes are used to crop

the image patches (i.e., ROIs) from the input image. It is

expected that the cropped image patch should include only

one person instance. A single-person estimation method is

applied to the cropped image patch to attain keypoint loca-

tions. These methods can work well. The main drawback

is the slow inference speed because they do not share the

computation and features with the person detector. Thus

the second-stage pose estimation can be very slow when the

number of person instances in the image is large. Instead

of cropping the ROIs from the original image and recom-

puting the features for them, Mask R-CNN [8] proposes the

ROIAlign operation, which can directly obtain the features

of the ROIs from the feature maps of the detector. Thus, it

can share the features between the ROIs and the detector,

significantly speeding up the inference.

Bottom-up methods [3,5,6,24] usually detect all the key-

points in an instance-agnostic fashion, and then a group-

ing post-processing is used to obtain the instance-level key-

points. For example, CMU-Pose [2] proposes Part Affinity

Fields (PAFs) to group the keypoints,. The authors of [20]

employ the associative embedding (AE) to assemble them.

Compared to top-down methods, bottom-up methods are of-

ten faster because it computes all the convolutional features

once, being fully convolutional models.

Furthermore, built upon the anchor-free detector

FCOS [29], DirectPose [28] proposes to directly regress

the instance-level keypoints by considering the keypoints

as a special bounding-box with more than two corners. Di-

rectPose can also eliminate the ROIs and grouping post-

processing. Compared to DirectPose, FCPose takes advan-

tage of the dynamic keypoint head and achieves significantly

fθ1

… …

fθN

…

…

Figure 3 – The core idea of the dynamic keypoint head in

FCPose. F denotes a level of feature maps. “Rel. Coord.”

means the relative coordinates, denoting the relative offsets

from the locations of F to the location where the filters are

generated. Refer to the text for details. fθi is the dynamically-

generated keypoint head for the i-th person instance. Note that

each person instance has its own keypoint head.

better performance.

Dynamic filters and conditional convolutions. The core

idea of dynamic filter networks [13] and CondConv [32]

is to dynamically generate the weights of the convolu-

tions. This is different from the traditional convolutional

networks, whose weights are fixed once trained. Since the

weights are dynamically-generated and only used once, the

model can have strong representation capacity, even with

fewer parameters. Moreover, the dynamic filters can be

conditioned on each instance in the image, which can make

the filters only fire for the target instance. Thus, it can be

viewed as a new operation that makes a model attend to the

instance, thus replacing the previous ROI operations.

3. Our Approach

3.1. Overall Architecture

In previous works, multi-person keypoint detection is of-

ten solved as per-pixel heatmap prediction with FCNs [19].

Since the vanilla FCNs cannot produce instance-aware key-

points, which poses the key challenge in multi-person key-

point detection. As mentioned before, some of methods use

an ROI to crop the person of interest and then reduce the

multi-person keypoint detection to the single-person one.

Formally, let G ∈ R
h×w×c be the features of an ROI, and

fθ be the keypoint head, where θ is the learnable network

weights. The predicted heatmaps H ∈ R
h×w×K are

H = fθ(G). (1)
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Figure 4 – The overall framework of FCPose. FCPose is built on the one-stage object detector FCOS. The controller that generates

the weights of the keypoint heads is attached to the FCOS heads. The weights θi generated by the controller is used to fulfill the

keypoint head f for the instance i. Moreover, a keypoint refinement module is introduced to predict the offsets from each location

of the heatmaps to the ground-truth keypoints. Finally, the coordinates derived from the predicted heatmaps are refined by the offsets

predicted by the keypoint refinement module, resulting in the final keypoint results. “Rel. coord.” is a map of the relative coordinates

from all the locations of the feature maps F to the location where the weights are generated. The relative coordinate map is concatenated

to F as the input to the keypoint head.

Note that K being 17 on COCO is the number of keypoints

for an instance. Then, the final keypoint coordinates can

be obtained by finding the peak on each channel of the

heatmaps. The ROI operation is the core operation making

the model attend to an instance. In this work, we propose

to employ the instance-aware keypoint heads to make the

model attend to an instance. For each instance, i, a new set

of weights θi of the keypoint head will be generated. The

keypoint head with weights θi is applied to full-image fea-

ture maps.

Formally, let F ∈ R
H×W×32 be a level of feature maps,

which are generated by applying a few conv. layers to the

FPN output feature maps [16] and have the same resolution

of P3 in the FPN, as shown in Fig. 4. For the instance i, the

predicted heatmaps H ∈ R
H×W×K are

H = fθi(F ). (2)

Note that F is the full-image feature maps without any crop-

ping operations. The filters’ weights θi are conditioned on

the features of the instance i, and thus it can encode the

characteristics of the target instance. This makes it possi-

ble that the keypoint head only fires at the keypoints of the

instance, as shown in Fig. 3.

In this work, we use FCOS [29] to generate the dynamic

weights θ for each instance. To this end, we add a new

output branch to the box regression branch of FCOS (i.e.,

the controller shown in Fig. 4). Recall that in FCOS, each

location (if considered positive) on the feature maps is as-

sociated to an instance. Thus, if a location is associated to

the instance i, the controller can generate the weights θi that

are used to detect the keypoints of the instance i. In this pa-

per, the controller is a single convolutional layer with kernel

size 1×1. The number of outputs of the layer is equal to the

number of the weights in the keypoint head (i.e., the cardi-

nality of θi). In this paper, the keypoint head has 3× conv.

layer with channel 32 and kernel size 1 × 1, followed by

ReLU, as well as a K-channel final prediction layer (one

channel for one keypoint), which has 2, 737 weights in to-

tal. Therefore, the final prediction layer of the controller has

2, 737 output channels. It is worth noting that our keypoint

head is much more compact than other top-down methods,

for example, Mask R-CNN has 8× conv. layers with chan-

nel 512 and kernel size 3 × 3 as well as deconv. layers in

the keypoint head. The very compact keypoint head makes

our method take negligible inference time on the keypoint

head and thus the overall inference time is almost constant

regardless of the number of the instances in the image, as

shown in Fig. 6.

Moreover, provided that the model is predicting the in-

stance with the filters generated at the location (x, y), it is

obvious that the locations on F that are far from (x, y) are

less likely to be the keypoints for the instance. Thus, in-

spired by CoordConv [18], we append the relative offsets to

the feature maps F , as shown in Fig. 3 and Fig. 4, which

denote the distances from each location of F to the loca-

tion (x, y). The keypoint head takes as input the augmented

feature maps. This improves the performance remarkably.

9037



3.2. Keypoint Refinement with Regression

As mentioned before, the FPN feature maps P3 is used

to generate the heatmaps, and thus the resolution of the

heatmaps is 1/8 resolution of the input image. Since key-

point detection requires high localization precision, the 1/8
resolution is not sufficient for keypoint detection. In most of

previous methods, an upsampling operation such as decon-

volution is often used to upsample the heatmaps. However,

upsampling the heatmaps comes with high computational

overheads in FCPose. Specifically, in FCPose, for an im-

age, we output N heatmaps with channel K, height H , and

width W , where K is the number of keypoints of an in-

stance and N is the number of the instances in the image.

These heatmaps will occupy N×K×H×W memory foot-

print. If we upsample the heatmaps by 8 times, the memory

footprint will be increased by 64 times. Also, this will result

in much longer computational time.

Here, we address this issue by introducing a regression-

based keypoint refinement module. As shown in Fig. 4, the

keypoint refinement module is also applied to the FPN level

P3, which is a single conv. layer with output channel 2K
(i.e., 34 on COCO). Let O ∈ R

H×W×2K be the output

feature maps of this module. Oi,j = (∆x,∆y) predicts

the offsets from the location (i, j) to the nearest ground-

truth keypoint. As a result, for a keypoint, if its heatmap’s

peak is at (i, j), the final coordinates of the keypoint will be

(i + ∆x, j + ∆y). Experiments show that the refinement

module can greatly improve the keypoint detection perfor-

mance with negligible computational overheads. Note that

in our experiments, all instances share the same keypoint

refinement module. Although it is possible to dynamically

generate the module and make each instance have its own

one, we empirically find that using one shared keypoint re-

finement module is sufficient.

3.3. Training Targets and Loss Functions

Training targets. FCPose is built on the detector FCOS.

First, we use the same processing to associate each loca-

tion on the feature maps with an instance or label the loca-

tion negative. The classification and box regression train-

ing targets of each location are computed as in FCOS. As

mentioned before, a location is also required to generate the

keypoint head’s filters for the associated instance. The gen-

erated filters are not explicitly supervised. Instead, we su-

pervise the heatmaps predicted by the keypoint head with

the filters, which implicitly supervise the generated filters.

Except for the classification outputs, all the other outputs

are only supervised at the positive locations. In FCOS, for

each batch of images (on the same GPU), we might have up

to ∼ 500 positive locations. If all these locations are used

to generate the filters, it will come with high computational

overheads. Therefore, for each batch, we only sample at

most M = 50 positive locations to generate filters. The M

locations are averaged over all the ground-truth instances.

For each instance, the positive locations with high confi-

dence will be chosen, and the rest of positive locations will

be discarded in the keypoint loss computation.

Loss functions. The loss functions of FCPose consist of

three parts. The first part is the original losses of FCOS,

which are kept as they are. We refer readers to the paper

of FCOS [29] for the details. The second part is the loss

function for the heatmap learning. As mentioned before,

one heatmap only predicts one keypoint. Therefore, we can

use one-hot training target for the heatmap, and the cross en-

tropy (CE) loss with softmax is used as the loss function. To

be specific, assume a ground-truth keypoint’s coordinates

are (x∗, y∗), and the heatmap’s resolution is 1/8 resolution

of the input image. Then, for this keypoint, the location

(⌊x−4

8
⌋, ⌊y−4

8
⌋) on its ground-truth heatmap will be set 1

and other locations will be zeros. Let H∗

i ∈ R
H×W be the

ground-truth heatmap for the keypoint. The loss function

can be formulated as

Lheatmap = CE(softmax(Hi), H
∗), (3)

where Hi ∈ R
H×W is the heatmap predicted by the dy-

namic keypoint head for this keypoint. Here, both Hi and

H∗

i are flatten to a vector, and the cross entropy and softmax

are applied to each vector. Finally, for the keypoint offset

regression, the mean square error (MSE) is used to compute

the difference between the predicted offsets and the ground-

truth ones. The overall loss function is the summation of

these loss functions. Formally, we have

Loverall = Lfcos + αLheatmap + βLreg, (4)

where α and β are the loss weights, respectively.

3.4. Inference

Given an input image I , FCPose first forwards the im-

age through the network and obtain the network outputs.

Following FCOS, the locations with the classification score

greater than 0.05 are chosen as positive locations. One pos-

itive location corresponds to one predicted instance. Next,

for each location, we compute the generated filters and ap-

ply the filters to the feature maps F (as shown in Fig. 4)

to obtain the keypoint heatmaps of the instance associated

with the location. For each heatmap, we find the coordinates

of its peak. Then, we refine the coordinates of the peak by

the offsets of the keypoint regression module, and obtain

the resulting keypoint coordinates. Finally, non-maximum

suppression (NMS) is used to remove the duplicates.

4. Experiments

We train and evaluate FCPose on the COCO 2017 Key-

point Detection benchmark [17], which has 57K images
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# channels time APkp AP
kp
50

AP
kp
75

AP
kp

M AP
kp

L

16 71 62.8 85.7 68.6 59.0 69.9

32 71 63.0 85.9 68.9 59.1 70.3

64 71 62.6 85.9 68.3 58.8 69.9

Table 1 – The effect of the number of channels of the input

feature maps to the keypoint head (i.e., the feature maps F in

the text). “time”: the total inference time per image in millisec-

onds.

depth time APkp AP
kp
50

AP
kp
75

AP
kp

M AP
kp

L

2 69 62.8 86.0 68.7 59.0 70.0

3 71 63.0 85.9 68.9 59.1 70.3

4 72 62.6 85.4 68.5 58.9 69.8

Table 2 – Varying the number of the layers in the dynamic

keypoint head (i.e., depth). “time”: the total inference time per

image in milliseconds.

for training, 5K images for validation, and 20K images

for testing. The dataset includes more than 250K person

instances with 17 annotated keypoints per person. The Av-

erage Precision (AP) based on Object Keypoint Similarity

(OKS) is used as the evaluation metric. The ablation stud-

ies are evaluated on the val2017 split. Our main results are

reported on the test-dev split.

Implementation details. We implement FCPose using

Detecton2 [30]. The models are trained with stochastic

gradient descent (SGD) over 8 GPUs. Unless specified, all

the experiments use the following training details. Follow-

ing FCOS [29], ResNet-50 [10] with FPNs [16] is used as

the feature extractor. The weights pre-trained on ImageNet

are used to initialize the backbone ResNet-50. The newly

added layers are initialized with the method in [9]. The

learning rate is initially set to 0.01, and it is reduced by a

factor of 10 at iteration 60K and 80K in the 1× training

schedule (i.e., 90K iterations), or at 180K and 240K in the

3× training schedule (i.e., 270K iterations). The weight

decay, batch size, and momentum are set as 0.0001, 16,

and 0.9, respectively. For data augmentation, we apply ran-

dom crop [0.4, 1.0] (relative range), random flip, and ran-

dom resizing (the short size of the image is sampled from

[320, 800]). For inference, we only use single scale of the

image. The shorter side of the image is resized to 800 and

the longer side is resized to less than or equal to 1333. All

the inference time is measured on a single 1080 Ti GPU.

4.1. Ablation Experiments

4.1.1 Architecture of the Dynamic Keypoint Head

Here, we study the effect of the architecture of the dynamic

keypoint head on the final keypoint detection. Specifically,

we conduct experiments by varying the number of channels

of the input feature maps, the number of channels of the

keypoint head, and the number of conv. layers in the key-

point head.

width time APkp AP
kp
50

AP
kp
75

AP
kp

M AP
kp

L

16 70 62.5 85.5 68.0 58.3 70.1

32 71 63.0 85.9 68.9 59.1 70.3

64 72 62.6 85.5 68.4 59.1 69.5

Table 3 – The effect of the number of channels in the dynamic

keypoint head (i.e., width). “time”: the total inference time per

image in milliseconds.

time APkp AP
kp
50

AP
kp
75

AP
kp

M AP
kp

L

none 69 56.2 83.6 60.8 49.8 66.3

deconv. 135 60.1 84.8 65.7 56.4 67.3

proposed 71 63.0 85.9 68.9 59.1 70.3

Table 4 – Comparison of various upsampling methods on the

COCO val2017 split. “none”: no upsamling methods used.

“deconv.”: using deconvolutions to upsample the heatmaps.

“proposed”: using the proposed keypoint refinement module.

As shown here, the proposed module achieves much better per-

formance while keeping almost the same inference time as the

baseline model without using any upsampling methods.

shared time APkp AP
kp
50

AP
kp
75

AP
kp

M AP
kp

L

71 62.7 85.2 68.9 58.8 70.3

X 71 63.0 85.9 68.9 59.1 70.3

Table 5 – Share the keypoint refinement module between in-

stances or not. As shown in the table, both can have the similar

performance. We use the shared one in other experiments due

to the slightly better performance.

First, we attempt to change the number of channels of

the input feature maps (i.e., F mentioned before) of the

keypoint head. As shown in Table 1, 16-, 32- and 64-

channel input feature maps have roughly the same perfor-

mance. Among, using 32 channels achieves the best perfor-

mance. Moreover, we change the number of conv. layers in

the keypoint head. As shown in Table 2, the number of conv.

layers does not significantly affect the final performance but

using 3 convl̇ayers is the best. Finally, Table 3 shows the

performance is also insensitive to the number of channels

of the keypoint head. We use 32 channels in the keypoint

head in other experiments since it has the best performance.

4.1.2 Keypoint Refinement Module

As mentioned before, the proposed keypoint refinement

module can largely improve the localization precision while

without introducing large computational overheads. We

confirm this in this section.

First, if none of the upsampling methods is used, FC-

Pose can only localize the keypoints with the heatmaps that

are 1/8 resolution of the input image. Unsurprisingly, this

has low keypoint detection performance (56.22% APkp),

as shown in Table 4. Most of previous methods such

as Mask R-CNN employ deconvolutions to improve the

resolution of the heatmaps. However, as mentioned be-

fore, deconvolutions will significantly increase the com-
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Mask R-CNN FCPose (ours)

Figure 5 – Comparison of FCPose and the ROI-based Mask

R-CNN. As shown in the figure, Mask R-CNN misses some

keypoints if the box predicted by the detector is not accurate.

In contrast, FCPose can still detect these keypoints since it does

not rely on the box.

putational overheads. As shown in Table 4, using decon-

volutions in FCPose increases the inference time from 69

ms to 135 ms per image with only 4 points better perfor-

mance. In contrast, the proposed keypoint refinement mod-

ule can achieve even better performance than deconvolu-

tions (63.03% APkp) while keeping almost the same com-

putational time as the model without any upsampling.

Additionally, as mentioned before, we share the keypoint

refinement module between all the instances. In principle, it

is more reasonable that each instance has its own keypoint

refinement module. This is possible by using the dynamic

filter technique to generate the keypoint refinement module.

However, in Table 5, we empirically show that the shared

keypoint refinement module can achieve slightly better per-

formance (62.7% vs. 63.0% APkp), and thus the shared one

is used in all the other experiments. We conjecture that this

is because that the situation where multiple persons crowd

together is relatively rare, and thus the unshared one does

not show remarkable superiority.

4.2. Comparisons with State­of­the­art Methods

In this section, we compare FCPose with other state-of-

the-art multi-person pose estimation methods. Unless spec-

ified, all the experiments of FCPose in this section use the

3× training schedule, and the performance is reported on

the COCO test-dev split.

Comparisons with top-down methods. As shown in Ta-

ble 6, compared with the previous top-down method Mask

R-CNN, with ResNet-50, FCPose has better performance

(64.3% APkp vs. 63.9% APkp). FCPose also has lower

computational cost (191.7 GFLOPs vs. 212.7 GFLOPs )

and can infer faster (68ms vs. 89ms per image). If ResNet-

101 is used as the backbone, the performance of Mask R-

CNN can be only improved from 63.9% APkp to 64.3%

APkp while the performance of FCPose can be boosted

from 64.3% to 65.6%. We conjecture that the low reso-

lution of ROIs in Mask R-CNN hampers the performance.

On the contrary, FCPose eliminates the ROIs and thus can
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Figure 6 – End-to-end inference time w.r.t. the number of

the persons in an input image. As shown here, the inference

time of previous ROI-based methods significantly increases in

the number of instances in the image. In sharp contrast, the

inference time needed for FCPose remains almost constant,

which is desirable for real-time applications.

bypass the issue.

There are some other top-down methods such as HR-

Net [27] which first employ an isolated object detector to

detect the person box and then crop the ROIs on the original

image. The features of these ROIs are computed separately

by another network. These methods often have high perfor-

mance but very slow if we measure the end-to-end inference

time (i.e., from the input image to the keypoint results). As

shown in Table 6, compared the top-down method HRNet,

FCPose can significantly reduce the end-to-end inference

time from from 337ms to 68ms (ResNet-50) or 488ms to

93ms (ResNet-101) per image, making the keypoint detec-

tion nearly real-time. Additionally, since these ROI-based

methods use a relatively cumbersome network to obtain the

heatmaps for each ROI separately, their total inference time

heavily depends on the number of the instances. For exam-

ple, as shown in Fig. 6, the inference time of the model

HRNet-W48 significantly increases with the number of the

instances. In a sharp contrast, FCPose keeps almost con-

stant inference time. This advantage of FCPose is of great

importance to real-time applications.

It is also important to note that FCPose does not rely the

boxes predicted by the underlying detector. As a result, the

keypoint detection results will not be affected by the inaccu-

rate boxes of the detector. In contrast, the ROI-based meth-

ods can only predict the keypoints inside the ROIs. If the

detector does not yield an accurate box, some keypoints will

be missing. As shown in Fig. 5(left), in Mask R-CNN, the

keypoints outside the box are missing. However, as shown

in the right figure, FCPose can still correctly detect all the

keypoints even if the box is not accurate.

Comparisons with bottom-up methods. Moreover, we

also compare FCPose to bottom-up methods [2, 15, 20, 22].
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method backbone input size infer. time (ms) APkp (%) AP
kp
50

AP
kp
75

AP
kp

M AP
kp

L

Top-down methods

DirectPose [28] ResNet-50 800 74 62.2 86.4 68.2 56.7 69.8

Mask R-CNN [8] ResNet-50 800 - 62.7 87.0 68.4 57.4 71.1

Mask R-CNN∗ ResNet-50 800 89 63.9 87.7 69.9 59.7 71.5

Mask R-CNN∗ ResNet-101 800 108 64.3 88.2 70.6 60.1 71.9

G-RMI [23] ResNet-101 800 - 64.9 85.5 71.3 62.3 70.0

CPN [4] ResNet-Inc. 384×288 282 72.1 91.4 80.0 68.7 77.2

RSN† [1] RSN-50 256×192 - 72.5 93.0 81.3 69.9 76.5

SimpleBaseline† [31] ResNet-152 384×288 430 73.7 91.9 81.1 70.3 80.0

HRNet† [27] HRNet-W32 384×288 337 74.9 92.5 82.8 71.3 80.9

HRNet† HRNet-W48 384×288 488 75.5 92.5 83.3 71.9 81.5

Bottom-up methods

CMU-Pose [2] VGG-19 [26] - 74 64.2 86.2 70.1 61.0 68.8

AE [20] HourGlass [21] 512 - 56.6 81.8 61.8 49.8 67.0

MultiPoseNet‡ [14] ResNet 800 43 69.6 86.3 76.6 65.0 76.3

HigherHRNet†‡ [6] HRNet-W48 640 1153 70.5 89.3 77.2 66.6 75.8

HigherHRNet† HRNet-W48 640 579 68.4 88.2 75.1 64.4 74.2

HigherHRNet† HRNet-W32 512 400 66.4 87.5 72.8 61.2 74.2

HigherHRNet HRNet-W32 640 128 64.7 86.9 71.0 60.2 71.2

Our methods

FCPose ResNet-50 800 68 64.3 87.3 71.0 61.6 70.5

FCPose ResNet-101 800 93 65.6 87.9 72.6 62.1 72.3

Table 6 – Comparisons with recent state-of-the-art methods. † and ‡ denote flipping and multi-sacle testing, respectively. We measure

the inference time of other methods on the same hardware if possible. Mask R-CNN∗ are the results from Detectron2 [30], which are

better than the original results reported in the Mask R-CNN paper [8].

method time (ms) APkp AP
kp
50

AP
kp
75

AP
kp

M AP
kp

L

CMU-Pose [2] 74 64.2 86.2 70.1 61.0 68.8

FCPose (DLA-34) 24 64.8 88.4 71.4 59.6 73.3

FCPose (DLA-60) 30 65.9 89.1 72.6 60.9 74.1

Table 7 – Comparison of the real-time models on the COCO

test-dev split. Ours (DLA-34 backbone [33] with 736× 512

input resize) is more than 3× faster than the previous strong

real-time baseline CMU-Pose while obtaining better perfor-

mance. With DLA-60, our performance can be boosted by

1.1% APkp while the inference speed is increased by 6ms.

As shown in Table 6, CMU-Pose [2] takes 74ms per im-

age to infer and achieves 64.2% APkp, while FCPose takes

67ms per image and has even better performance (64.2%

APkp). FCPose also achieves better or competitive perfor-

mance with other bottom-up methods but it can infer much

faster.

Finally, some qualitative results are shown in Fig. 1,

demonstrating that FCPose can work reliably in many chal-

lenging cases. These results are based on the ResNet-101

based model.

4.3. Real­time Keypoint Detection with FCPose

We also present a real-time FCPose using DLA-34 [33]

as the backbone. For the real-time model, following

FCOS [29], the model is trained with 4× training schedule

(i.e., 360K iterations). The initial learning is set to 0.01 and

it is decayed by a factor of 10 at 300K and 340K, respec-

tively. The shorter side’s size of the input images is reduced

from 800 to 512. Moreover, the FPN feature levels P6 and

P7 are removed. We also make use of more aggressive data

augmentation during training, i.e., the shorter side’ size of

the input images is sampled from [128, 736].

The performance of the real-time model is shown in

Table 7. Compared to previous strong real-time baseline

CMU-Pose [2], our real-time model can run at ∼42 FPS

on a single 1080Ti GPU and it is 3 times faster (24ms vs.

74ms) while having better performance (64.8% vs. 64.2%

APkp).

5. Conclusions

We have proposed a novel keypoint detection frame-

work, termed FCPose. It can eliminate the ROI operations

in top-down methods and the grouping post-processing in

bottom-up methods, solving keypoint detection in the fully

convolutional fashion. The core idea of FCPose is to use

the dynamic keypoint head instead of ROIs to make the

model attend to instances. Extensive experiments demon-

strate that FCPose offers a simple, fast and effective key-

point detection framework. Additionally, we have pre-

sented a real-time FCPose that can execute at ∼42 FPS

on a single 1080Ti GPU with 64.8% APkp on the COCO

dataset, outperforming previous strong real-time baseline

CMU-Pose [2] by a large margin.
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