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Abstract

We introduce a framework for learning robust visual

representations that generalize to new viewpoints, back-

grounds, and scene contexts. Discriminative models of-

ten learn naturally occurring spurious correlations, which

cause them to fail on images outside of the training distri-

bution. In this paper, we show that we can steer generative

models to manufacture interventions on features caused by

confounding factors. Experiments, visualizations, and the-

oretical results show this method learns robust representa-

tions more consistent with the underlying causal relation-

ships. Our approach improves performance on multiple

datasets demanding out-of-distribution generalization, and

we demonstrate state-of-the-art performance generalizing

from ImageNet to ObjectNet dataset.

1. Introduction

Visual recognition today is governed by empirical risk

minimization (ERM), which bounds the generalization er-

ror when the training and testing distributions match [47].

When training sets cover all factors of variation, such as

background context or camera viewpoints, discriminative

models learn invariances and predict object category labels

with the right cause [33]. However, the visual world is vast

and naturally open. Collecting a representative, balanced

dataset is difficult and, in some cases, impossible because

the world can unpredictably change after learning.

Directly optimizing the empirical risk is prone to learn-

ing unstable spurious correlations that do not respect the

underlying causal structure [11, 8, 24, 44, 4, 35]. Figure 1

illustrates the issue succinctly. In natural images, the ob-

ject of interest and the scene context have confounding fac-

tors, creating spurious correlations. For example, ladle (the

object of interest) often has a hand holding it (the scene

context), but there is no causal relation between them. Sev-

eral studies have exposed this challenge by demonstrating

substantial performance degradation when the confounding

bias no longer holds at testing time [41, 19]. For example,

*Equal Contribution. Order by coin flip.

Ladle Television Shovel

Figure 1. Top predictions from a state-of-the-art ImageNet classi-

fier [21]. The model uses spurious correlations (scene contexts,

viewpoints, and backgrounds), leading to incorrect predictions.1

In this paper, we introduce a method to learn causal visual fea-

tures that improve robustness of visual recognition models. The

predictions of our model are in Figure 7.

the ObjectNet [6] dataset removes several common spuri-

ous correlations from the test set, causing the performance

of state-of-the-art models to deteriorate by 40% compared

to the ImageNet validation set.

A promising direction for fortifying visual recognition

is to learn causal representations (see [43] for an excellent

overview). If representations are able to identify the causal

mechanism between the image features and the category la-

bels, then robust generalization is possible. While the tradi-

tional approach to establish causality is through randomized

control trials or interventions, natural images are passively

collected, preventing the use of such procedures.

This paper introduces a framework for learning causal

visual representations with natural images. Our approach

is based on the observation that generative models quan-

tify nuisance variables [23, 26], such as viewpoint or back-

ground. We present a causal graph that models both ro-

bust features and spurious features during image recogni-

tion. Crucially, our formulation shows how to learn causal

features by steering generative models to perform interven-

tions on realistic images, simulating manipulations to the

camera and scene that remove spurious correlations. As our

approach is model-agnostic, we are able to learn robust rep-

resentations for any state-of-the-art computer vision model.

Our empirical and theoretical results show that our ap-

1The correct categories are clearly a broom, a tray, and a shoe.
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Figure 2. Generative adversarial networks are steerable [23, 26], allowing us to manipulate images and construct interventions on nuisances.

The transformations transfer across categories. Each column in the figure presents images with one consistent intervention direction.

proach learns representations that regard causal structures.

While just sampling from generative models will replicate

the same training set biases, steering the generative mod-

els allows us to reduce the bias, which we show is critical

for performance. On ImageNet-C [22] benchmark, we sur-

pass established methods by up to 12%, which shows that

our method helps discriminate based on the causal features.

Our approach also demonstrates the state-of-the-art perfor-

mance on the new ObjectNet dataset [6]. We obtain 39.3%
top-1 accuracy with ResNet152 [21], which is over 9% gain

over the published ObjectNet benchmark [6] while increas-

ing accuracy on ImageNet and ImageNet-V2 [41]. We will

release code, data, and models.

2. Related Work

Data augmentation: Data augmentation often helps

learn robust image classifiers. Most existing data augmen-

tations use lower-level transformations [29, 46], such as ro-

tate, contrast, brightness, and shear. Auto-data augmenta-

tion [13, 52] uses reinforcement learning to optimize the

combination of those lower-level transformations. Other

work, such as cutout [15] and mixup [51], develops new

augmentation strategies towards improved generalization.

[34, 54, 19] explored style transfer to augment the training

data, however, the transformations for training are limited

to texture and color change. Adversarial training, where

images are augmented by adding adversarial noise, can also

train robust models [50]. However, both adversarial train-

ing [50] and auto augmentation [13, 52] introduce orders of

magnitude of computational overhead. In addition, none

of the above methods can do high-level transformations

such as changing the viewpoint or background [6], while

our generative interventions can. Our method fundamen-

tally differs from prior data augmentation methods because

it learns a robust model by estimating the causal effects

via generative interventions. Our method not only elimi-

nates spurious correlations more than data augmentations,

but also theoretically produces a tighter causal effect bound.

Causal Models: Causal image classifiers generalize

well despite environmental changes because they are in-

variant to the nuisances caused by the confounding factors

[8]. A large body of work studies how to acquire causal

effects from a combination of association levels and inter-

vention levels [31, 11, 32]. Ideally, we can learn an invari-

ant representation across different environments and nui-

sances [8, 35] while maintaining the causal information [5].

While structural risk minimization, such as regularization

[27], can also promote a model’s causality, this paper fo-

cuses on training models under ERM [47].

Generative Models: Our work leverages recent ad-

vances in deep generative models [20, 28, 25, 10, 40]. Deep

generative models capture the joint distribution of the data,

which complements discriminative models [25, 37, 38].

Prior work has explored adding data sampled from a deep

generator to the original training data to improve classifi-

cation accuracy on ImageNet [39]. We denote it as GAN

Augmentation in this paper. Other works improved clas-

sification accuracy under imbalanced and insufficient data

by oversampling through a deep generator [16, 17, 49, 7].

However, sampling without intervention, the augmented

data still follows the same training joint distribution, where

unobserved confounding bias will continue to contaminate

the generated data. Thus, the resulting models still fail to

generalize once the spurious correlations changed. Ideally,

we want to generate data independent of the spurious corre-

lations while holding the object’s causal features fixed.

Recent works analyzing deep generative models show

that different variations, such as viewpoints and back-

ground, are automatically learned [26, 23]. We leverage

deep generative models for constructing interventions in re-

alistic visual data. Our work randomizes a large class of

steerable variations, which shifts the observed data distri-

bution to be independent of the confounding bias further.

Our approach tends to manipulate high-level transforma-

tions orthogonal to traditional data augmentation strategies

[12, 46, 29], and we obtain additional performance gains by

combining them.

Domain Adaptation: Our goal is to train robust mod-

els that generalize to unforeseen data. Accessing the test

data distribution, even unlabeled, could lead to overfitting
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Figure 3. Do unwanted correlations exist between the nuisance

factors (e.g. backgrounds, viewpoint) and labels on ImageNet?

We measure correlation (y-axis) via how many times the classifi-

cation accuracy is better than chance on the ImageNet validation

set. The x-axis denotes the number of categories we select for pre-

diction. To train causal models, nuisance factors should not be pre-

dictable for labels (chance). Our generative interventions (GenInt)

reduce the unwanted correlations from the data better than existing

data augmentation strategies [51, 13, 19, 39].

and fail to measure the true generalization. Our work thus

is trained with no access to the test data. Our setting is

consistent with ObjectNet’s policy prohibiting any form of

learning on its test set [6], and ImageNet-C’s policy dis-

couraging training on the tested corruptions. On the other

hand, domain adaptation [3, 42, 48] needs access to the dis-

tributions of both the source domain and the target domain,

which conflicts with our setting.

3. Causal Analysis

We quantify nuisances via generative models and pro-

pose the corresponding causal graph. We show how to

train causal models via intervention on the nuisance factors.

We theoretically show sufficient conditions for intervention

strategy selection that promote causal learning.

3.1. Correlation Analysis

Nuisance factors do not cause the object label. If there

is a correlation between the nuisance factors and the label

in data, we cannot learn causal classifiers. While identify-

ing such correlations is crucial, they are hard to quantify

on large, real-world vision datasets, because nuisance fac-

tors such as viewpoint and backgrounds, are difficult and

expensive to measure in natural images.

We propose to measure such nuisance factors via inter-

vening on the conditional generative models. Prior work

[23, 26] shows that nuisance transformations automatically

emerge in generative models (Figure 2), which enables con-

structing desired nuisances via intervention. Given a cate-

gory y and random noise vector h0, we first generate an ex-

emplar image x = G(h0,y). We then conduct intervention

z to get the intervened noise vector h⇤

0
, and the intervened

image x⇤ = G(h⇤

0
,y), which corresponds to changing the

viewpoints, backgrounds, and scene context of the exem-

plar. We thus get data with both image x⇤ and the corre-

sponding nuisance manipulation z. Implementation details

are in the supplementary.
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Figure 4. Causal graph for image classification. Gray variables are

observed. (a) F is the variable that generates the object features.

The unobserved confounder C causes both the background fea-

tures Z and label Y , which creates a spurious correlation between

the image X and label Y . (b) An ideal intervention blocks the

backdoor path from Z to C, which produces causal models. (c) In

practice, we cannot guarantee to intervene on all the Z variables.

However, by properly intervening on even a small set of nuisance

factors Zi, the confounding bias of the observed distribution is

mitigated, which is theoretically proven by Theorem 1.

We train a model that predicts the nuisances z from in-

put image x⇤. This model can then predict nuisances z from

natural images x. We read out the correlation between the

nuisance z and label y by training a fully-connected classi-

fier with input z and output y. We measure the correlations

via the times the classifier outperforms random. Generative

models may capture only a subset of the nuisances, thus our

estimated correlations are lower bounds. The true correla-

tions maybe even more significant.

In Figure 3, the training data of five established methods

[21, 51, 13, 19, 39] contains strong correlations that are un-

desirable. On the original ImageNet data, the undesirable

correlation in the data is up to 8 times larger than chance.

Our generative interventions reduce the unwanted correla-

tions from the data significantly, naturally leading to robust

classifiers that use the right cause.

3.2. Causal Graph

We build our causal graph based on the correlation anal-

ysis. We know that nuisances do not cause the label (context

‘hand’ does not cause the category ‘ladle’), and there is no

additional common outcome variable (collider) in our cor-

relation prediction. If the correlation between the nuisances

and the label is not chance, then there exists a confounder

C that causes both Z and Y .

Figure 4(a) shows our causal graph for image recogni-

tion. We denote the unobserved confounder as C, which

produces nuisance factors Z, and the corresponding anno-

tated categorical label Y . Z produces the nuisance features

XZ in images. There is another variable F that generates

the core object features XF , which together with XZ con-

structs the pixels of a natural image X . There is no direct

arrow from F to Y since Y ⊥⊥ F |X , i.e., image X con-

tains all the features for predicting Y . We can observe only

X but not XZ or ZF separately. We draw a causal arrow

from X to Y . Since nuisances Z are spuriously correlated

to the label but not causing the label Y , classifiers are not

causal if they predict Y from the nuisances Z better than
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chance. Note that “while a directed path is necessary for a

total causal effect, it is not sufficient [36].” Thus, though

there is a path Z → X → Y , Z does not cause Y .

3.3. Causal Discriminative Model

Generative interventions help in eliminating spurious

correlations (Figure 3 and Section 3.1), leading to better

generalization. We denote the causality from X to Y to

be P (y|do(x)), which is the treatment effect of an input

image X on label Y . To capture the right cause via corre-

lations learned by empirical risk minimization, we need to

construct data such that P (Y |do(X)) = P (Y |X).
Natural images are often biased by unobserved con-

founding factors that are common causes to both the image

X and the label Y . A passively collected vision dataset only

enables us to observe the variables X and Y . Theoretically,

we cannot identify the causal effect P (Y |do(X)) in Figure

4(a) with only the observed joint distribution P (X,Y ) be-

cause there is an unobserved common cause.

We thus want to collect faithful data independent of the

confounding bias, so that we can identify the causal ef-

fect with only the observed data. We need to intervene on

the data-generation process for the nuisances Z to be in-

dependent to the confounders, while keeping the core ob-

ject features F unchanged. In the physical world, such

interventions correspond to actively manipulating the cam-

era or objects in the scene. In our paper, we perform such

interventions via steering the generative models. The out-

come of this intervention on Z is visualized in Figure 4(b),

which manipulates the causal graph such that dependencies

arriving at Z are removed. Removing the backdoor, the

correlation is now equal to the causality, i.e., P (Y |X) =
P (Y |do(X)). While this result is intuitive, performing per-

fect intervention in practice is challenging due to the com-

plexity of the natural image distribution.

3.4. Causal Effect Bound

Imperfect interventions can eliminate only some spuri-

ous correlations. Though it is theoretically impossible to

calculate the exact causal effect P (y|do(x)) when spurious

correlations are not totally removed, we can still estimate

the lower and upper bound for P (y|do(x)).
Given the observed joint distribution P (x,y), Pearl [33]

identified that P (y|do(x)) can be bounded by P (x,y) ≤

P (y|do(x)) ≤ P (x,y)+1−P (x), which can be estimated

by existing discriminative models without interventions.

Prior work augments the data by sampling from the

GANs without explicit intervention [49, 7, 16, 17], which

will yield the same causal bound as the original data. Since

GANs capture the same distribution as the observational

training set, the spurious correlations remain the same. The

sampled transformations Z in Figure 4 (a) are still depen-

dent on the confounders C. Thus, augmenting training data

with GANs [39], without intervention is not an effective al-

gorithm for causal identification.

In this paper, we aim to identify a tighter causal effect

bound for P (y|do(x)) using generative interventions. This

is desirable for robustness because it removes or reduces the

overlap between the causal intervals, promoting causal pre-

dictions. Section 3.3 establishes that perfect interventions

eliminate all spurious correlation and leads to better gener-

alization. In practice, our generative interventions may only

eliminate a subset of spurious correlations Zi, while other

nuisances ZU remain unobserved and untouched. The next

question is then: what generative intervention strategy is

optimal for tightening the causal effect bound? We derive

the following theory:

Theorem 1 (Effective Intervention Strategy). We denote

the images as x. The causal bound under intervention zi is

thus P (y,x|zi) ≤ P (y|do(x)) ≤ P (y,x|zi)+1−P (x|zi).
For two intervention strategies z1 and z2, z1 ⊂ z, z2 ⊂ z,

if P (x|z1) > P (x|z2), then z1 is more effective for causal

identification.

Proof. Figure 4(c) shows the causal graph after intervention

Zi, where Zi ⊥⊥ Y |X . We add and remove the same termP
c P (y,x, c|zi):

P (y|do(x)) =
X

c

P (y|x, zi, c)P (c) (Backdoor Criteria)

=
X

c

P (y,x, c|zi) +
X

c

P (y|x, zi, c)(P (c)− P (x, c|zi))

Since 0 ≤ P (y|x, zi, c) ≤ 1, we have the lower and

upper bounds. We denote δ1 = P (x|z1) − P (x|z2),
thus δ1 > 0. In the causal graph (Figure 4(c)), since

we intervene on zi, all incoming edges to zi are re-

moved; we then have zi ⊥⊥ y|x and P (x,y|zi) =
P (y|x, zi)P (x|zi) = P (y|x)P (x|zi). Therefore δ2 =
P (x,y|z1) − P (x,y|z2) = δ1 · P (y|x). Since appar-

ently 0 < P (y|x) < 1, we have that 0 < δ2 < δ1.

Thus we obtain [P (y,x|z1), P (y,x|z1) + 1− P (x|z1)] ⊂
[P (y,x|z2), P (y,x|z2) + 1 − P (x|z2)], which means the

intervention z1 results in a tighter causal effect bound.

Our theorem shows that: the optimal intervention strat-

egy should maximize P (x|z), which will tighten the causal

effect bound P (y|do(x)). Also, the intervention strategy

should be identically selected across all categories, so that

they are independent of the confounding bias. While there

are different choices of intervening on the generative model

to create independence, we empirically select our genera-

tive intervention strategy that increases P (x|z), which we

will discuss in Section 5.4.

4. Method

We show how deep generative models can be used to

construct interventions on the spuriously correlated features
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in the causal graph. We combine these results to develop a

practical framework for robust learning.

4.1. Learning Objective

We minimize the following training loss on our inter-

vened data:

L =Le(φ(X),Y) + λ1Le(φ(Xint),Y
0)

+ λ2Le(φ(Xitr),Y
00)

(1)

where Le denotes the standard cross entropy loss and λi ∈

R are hyper-parameters controlling training data choice. We

denote the original data matrix as X with target labels Y;

the generated data matrix as Xint (Section 4.2) with target

labels Y0; the transfered data as Xitr (Section 4.3) with

target labels Y00; and the discriminative classifier as φ.

The last two terms of this objective are the interventions.

In the remainder of this section, we present two different

ways of constructing these interventions.

4.2. Generative Interventions

We construct interventions using conditional generative

adversarial networks (CGAN). We denote the i-th layer’s

hidden representation as hi. CGAN learns the mapping

x = G(h0,y), where h0 ∼ N (0, I) is the input noise,

y is the label, and x is a generated image of class y that

lies in the natural image distribution. CGANs are trained

on the joint data distribution P (x,y). While we can use

any type of CGANs, we select BigGAN [10] in this paper

since it produces highly realistic images. In addition, gener-

ative models learn a latent representation hi equivariant to

a large class of visual transformations and independent of

the object category [23, 26], allowing for controlled visual

manipulation. For example, GANSpace [23] showed that

the principal components of hi correspond to visual trans-

formations over camera extrinsics and scene properties. The

same perturbations in the latent space will produce the same

visual transformations across different categories. Figure 2

visualizes this steerability for a few samples and different

transformations. This property enables us to construct a

new training distribution, where the nuisance features Z are

not affected by the confounders.

Our generative intervention strategy follows the

GANSpace [23] method, which empirically steers the GAN

with transformations independent of the categories. It con-

tains three factors: the truncation value, the transformation

type, and the transformation scale. The input noise h0 is

sampled from Gaussian noise truncated by value t [10]. We

define the transformations to be along the j-th principal

directions rj in the feature space [23], which are orthogonal

and captures the major variations of the data. We select the

top-k significant ones {r1, r2, ..., rk} as the intervention

directions. We then intervene along the selected directions

with a uniformly sampled step size s0 from a range [−s, s].

We intervene on the generator’s intermediate layers with

h⇤

i = hi + σs0rj − µ, where h⇤

i are the features at

layer i after interventions, σ is the standard deviation of

noise on direction r, and µ is the offset term. After the

intervention, we follow the method in GANSpace [23] to

recover h⇤

0
with regression and generate the new image

x⇤ = G(h⇤

0
,y). Using conditional generative models, we

produce the causal features XF by specifying the category.

Our intervention removes the incoming edge from C to Zi

(Figure 4 (c)). We denote the intervention procedure as

function I , and rewrite the generative interventions as:

Xint = I(t, s, k,Y0)

Based on our Theorem 1, we choose the hyper-parameters

t, k, s for intervention Z that maximizes P (x|z). We show

ablation studies in Section 5.4.

4.3. Transfer to Natural Data

Maintaining the original training data X will add con-

founding bias to models. While our theory shows that our

method still tightens the causal effect bound under the pres-

ence of spurious correlations, it is desirable to eliminate as

many spurious correlations as possible. We will therefore

also intervene on the original dataset.

One straightforward approach is to estimate the latent

codes in the generator corresponding to the natural images,

and apply our above intervention method. We originally

tried projecting the images back to the latent space in the

generative models [53, 2], but this did not obtain strong re-

sults, because the projected latent code cannot fully recover

the query images [9].

Instead, we propose to transfer the desirable generative

interventions from Xint to the original data X with neural

style transfer [18]. The category information is maintained

by the matching loss while the intervened nuisance factors

are transferred via minimizing the maximum mean discrep-

ancy [30]. Without projecting the images to the latent code,

the transfer enables us to intervene on some of the nuisance

factors z in the original data, such as the background. The

transfer of the generative interventions I(t, k, s,Y0) to nat-

ural data X is formulated as:

Xitr = T (I(t, k, s,Y0),X)

where T denote the style transfer mapping. The correspond-

ing label Y00 is the same label as for X. Please see supple-

mental material for visualizations of these interventions.

5. Experiments

We present image classification experiments on four

datasets — ImageNet, ImageNet-V2, Imagenet-C, and Ob-

jectNet — to analyze the generalization capabilities of this
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ResNet 18 ResNet 152

Std. Augmentation Add. Augmentation Std. Augmentation Add. Augmentation

Training Distribution top1 top5 top1 top5 top1 top5 top1 top5

ImageNet Only [21, 6] 20.48% 40.64% 24.42% 44.39% 30.00% 48.00% 37.43% 59.10%

Stylized ImageNet [19] 18.39% 37.29% 22.81% 42.27% 31.64% 52.56% 36.17% 57.95%

Mixup [51] 19.12% 37.78% 24.05% 44.17% 34.27% 55.68% 38.61% 60.36%

AutoAug [13] 21.20% 41.26% 21.20% 41.26% 33.96% 55.81% 33.96% 55.81%

GAN Augmentation [39] 20.63% 39.77% 23.72% 43.67% 33.17% 54.59% 36.37% 58.88%

GenInt (ours) 22.07% 41.94% 25.71% 46.39% 34.47% 55.63% 39.21% 61.06%

GenInt with Transfer (ours) 22.34% 41.65% 27.03% 48.02% 34.69% 55.82% 39.38% 61.43%

Table 1. Accuracy on the ObjectNet test set versus training distributions. By intervening on the training distribution with generative models,

we obtain the state-of-the-art performance on the ObjectNet test set, even though the model was never trained on ObjectNet.

Model mCE
?

y Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

AlexNet 100.00 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

R
es

N
et

1
8

[2
1
] ImgNet Only [21] 87.16 89.5 90.4 93.0 86.01 93.3 87.7 90.0 87.5 86.4 80.0 73.7 80.5 91.5 85.5 92.4

Stylized ImgNet [19] 80.83 79.1 80.9 81.7 81.7 87.6 80.0 90.0 78.3 80.2 76.2 72.5 77.2 84.1 76.2 86.7

Mixup [51] 86.06 86.8 88.1 90.8 88.7 95.6 89.1 89.3 82.5 72.8 71.9 75.9 76.5 96.2 89.5 97.2

AutoAug [13] 84.00 84.3 83.7 84.5 87.9 93.6 87.7 93.5 85.7 83.4 71.0 67.4 63.5 97.8 85.3 90.5

GAN Augmentation [39] 86.48 86.4 87.5 90.5 87.0 92.4 87.2 90.3 88.0 86.3 82.8 73.3 82.8 90.7 84.5 87.5

GenInt with Transfer (ours) 74.68 67.0 68.4 67.3 75.0 80.5 76.0 84.2 77.4 75.9 77.5 68.8 76.6 87.5 59.8 77.5

R
es

N
et

1
5
2

[2
1
] ImgNet Only [21] 69.27 72.5 73.4 76.3 66.9 81.4 65.7 74.5 70.7 67.8 62.1 51.0 67.1 75.6 68.9 65.1

Stylized ImgNet [19] 64.19 63.3 63.1 64.6 66.1 77.0 63.5 71.6 62.4 65.4 59.4 52.0 62.0 73.2 55.3 62.9

Mixup [51] 66.43 69.0 71.1 73.8 67.3 83.4 65.5 74.6 63.5 56.9 55.2 49.4 62.4 75.4 65.0 63.7

AutoAug [13] 69.20 71.7 72.8 75.6 67.2 82.1 67.7 76.7 70.3 67.7 61.8 50.5 65.0 76.0 68.3 64.6

GAN Augmentation [39] 69.01 71.8 73.1 75.9 67.3 82.3 67.5 76.2 69.9 68.1 59.2 51.3 62.5 76.6 67.7 65.7

GenInt with Transfer (ours) 61.70 59.2 60.2 62.4 60.7 70.8 59.5 69.9 64.4 63.8 58.3 48.7 61.5 70.9 55.2 60.0

Table 2. The mCE ↓ rate (the smaller the better) on ImageNet-C validation [22] set with 15 different corruptions. Our GenInt model, without

training on any of the corruptions, reduces the mCE by up to 12.48%. From column ‘Gauss.’ to column ‘JPEG,’ we show individual Error

Rate on each corruption method. Without adding similar corruptions in the training set, our generative causal learning approach learns

models that naturally generalize to unseen corruptions.

method and validate our theoretical results. We call our ap-

proach GenInt for generative interventions, and compare

the different intervention strategies.

5.1. Datasets

In our experiments, all the models are first trained on

ImageNet [14] (in addition to various intervention strate-

gies). We train only on ImageNet without any additional

data from other target domains. We directly evaluate the

models on the following out-of-distribution testing sets:

ObjectNet [6] is a test set of natural images that removes

background, context, and camera viewpoints confounding

bias. Improving performance on ObjectNet—without fine-

tuning on it—indicates that a model is learning causal fea-

tures. ObjectNet’s policy prohibits any form of training on

the ObjectNet data. We measure performance on the 113

overlapping categories between ImageNet and ObjectNet.

ImageNet-C [22] is a benchmark for model general-

ization under 15 common corruptions, such as ’motion,’

’snow,’ and ’defocus.’ Each corruption has 5 different in-

tensities. We use mean Corruption Error (mCE) normalized

by AlexNet as the evaluation metric [22]. Note that we do

not train our model with any of these corruptions, thus the

performance gain measures our model’s generalization to

unseen corruptions.

ImageNet-V2 [41] is a new test set for ImageNet, aiming

to quantify the generalization ability of ImageNet models.

It contains three sampling strategies: MatchedFrequency,

Threshold0.7, and TopImages. While current models are

overfitting to the ImageNet test set, this dataset measures

the ability to generalize to a new test set.

5.2. Baselines

We compare against several established data augmenta-

tion baselines:

Stylized ImageNet refers to training the model using

style transferred dataset [19], which trains classifiers that

are not biased towards texture.

Mixup [51] does linear interpolation to augment the

dataset. We use their best hyperparameters setup (α = 0.4).

AutoAug [13] systematically optimizes the strategy for

data augmentation using reinforcement learning.

GAN Augmentation refers to the method that augments

the ImageNet data by directly sampling from the BigGAN

[39]. They provide an extensive study for hyper-parameter

selection. We use their best setup as our baseline: 50% of

synthetic data sampled from BigGAN with truncation 0.2.

ImageNet only refers to training the standard model on

ImageNet dataset only [21].

5.3. Empirical Results

Our GenInt method demonstrates significant gains on

four datasets over five established baselines. We report
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ImageNet-V2 Grouped by Sampling Strategy [41] Original

“TopImages” “Threshold0.7” “MatchedFrequency” ImageNet Val

Training Distribution top1 top5 top1 top5 top1 top5 top1 top5

R
es

N
et

1
8

[2
1
]

ImageNet Only [21] 71.77% 91.11% 65.41% 87.39% 56.18% 79.35% 68.82% 88.96%

Stylized ImageNet [19] 69.55% 89.97% 62.92% 85.38% 54.13% 77.30% 66.95% 87.42%

Mixup [51] 69.90% 90.16% 63.42% 86.40% 54.42% 77.94% 66.00% 86.93%

AutoAug [13] 72.05% 91.49% 65.32% 87.32% 56.25% 79.16% 69.24% 88.91%

GAN Augmentation [39] 72.01% 91.24% 65.72% 87.58% 56.43% 79.42% 69.19% 88.85%

GenInt (ours) 72.80% 91.89% 66.26% 88.30% 57.86% 80.11% 70.41% 89.59%

GenInt with Transfer (ours) 72.84% 91.85% 66.49% 88.11% 57.35% 79.61% 70.25% 89.33%

R
es

N
et

1
5
2

[2
1
] ImageNet Only [21] 81.01% 96.21% 76.17% 94.12% 67.76% 87.57% 78.57% 94.29%

Stylized ImageNet [19] 79.40% 95.72% 74.02% 92.88% 65.12% 86.22% 77.27% 93.76%

Mixup [51] 80.68% 96.28% 75.91% 94.00% 67.11% 87.66% 78.78% 94.45%

AutoAug [13] 80.61% 96.30% 75.90% 94.06% 67.35% 87.61% 78.95% 94.56%

GAN Augmentation [39] 80.10% 96.00% 75.60% 93.74% 66.89% 87.04% 78.53% 94.21%

GenInt (ours) 80.77% 96.38% 76.20% 94.24% 67.74% 87.83% 79.46% 94.71%

GenInt with Transfer (ours) 81.24% 96.28% 76.60% 93.95% 68.08% 87.70% 79.59% 94.79%

Table 3. Accuracy on ImageNet V2 validation set [41] and original ImageNet validation set. Our method improves the performance upon

the baselines, which suggests our causal learning approach does not hurt the performance on original test set while becoming robust.

results for two different network architectures (ResNet18,

ResNet152). All ResNet18 models are trained with SGD

for 90 epochs, we follow the standard learning rate sched-

ule where we start from 0.1, and reduce it by 10 times ev-

ery 30 epochs. For ResNet152 models, we train “ImageNet

only” models using the above mentioned method, and fine-

tune all the other methods from the baseline for 40 epochs

given that it is computationally expensive to train ResNet-

152 models from scratch. For GenInt, we all use λ1 = 0.05
and λ2 = 0 for ResNet18 and λ1 = 0.2 and λ2 = 0 for

ResNet152. For GenInt with Transfer, we use λ1 = 0.02
and λ2 = 1 for our experiments on Resnet18, and λ1 = 0.2
and λ2 = 0.2 for our finetuning on ResNet152. We select

hyperparameters of our intervention strategy in Section 5.4.

Implementation details are in the supplementary.

ObjectNet: Table 1 shows that our model can learn more

robust features, and consequently generalizes better to Ob-

jectNet without any additional training. Our results consis-

tently outperform the naive sampling from generative mod-

els [39] and other data augmentation strategies [51, 19, 13]

for multiple metrics and network architectures, highlighting

the difference between traditional data augmentation and

our generative intervention. Our approach enjoys benefits

by combining with additional data augmentations, demon-

strated by the differences between the “Std. Augmentation”

columns and the “Add. Augmentation” columns.2 This

improvement suggests that our generative intervention can

manipulate additional nuisances (viewpoints, backgrounds,

and scene contexts) orthogonal to traditional augmentation,

which complements existing data augmentation methods.

Moreover, our results suggest that intervening on the gener-

ative model is more important than just sampling from it.

ImageNet-C: To further validate that our approach

learns causality, and not just overfits, we measure the same

models’ generalization to unseen corruptions on ImageNet-

C. We evaluate performance with mean corruption error

2Standard augmentation only uses random crop and horizontal flips [1].

Additional augmentation method uses rotation and color jittering [46].
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Figure 5. As the strength of the intervention increases, the value

of logP (x|z) increases (value calculated on sampled set), which

improves the performance of ResNet-18 model.
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Figure 6. logP (x|z) for causal effect bound under different in-

tervention strategies. The x-axis of each subfigure changes one

hyper-parameter for intervention strategy: truncation value t (left),

PCA number k (middle), and the intervention scale s (right).

Based on theorem 1, we choose the hyper-parameters t, k, s that

produces the highest value for logP (x|z) from individual figure.

(mCE) [22] normalized by CE of AlexNet. Table 2 shows

that directly sampling from GAN as augmentation (GAN

Augmentation) slightly improves performance (less than

1%). Stylized ImageNet achieves the best performance

among all the baselines, but it is still worse than our ap-

proach in mCE. In addition, Stylized ImageNet hurts the

performance on ObjectNet, which suggests its high perfor-

mance on corruptions is overfitting to the correlations in-

stead of learning the causality. Our approach outperforms

baseline by up to 12.48% and 7.57% on ResNet18 and

ResNet152 respectively, which validates that our generative

interventions promote causal learning.

ImageNet and ImageNet-V2: Table 3 shows the accu-

racy on both validation sets. Some baselines, such as Styl-

ized ImageNet, hurt the performances on the ImageNet val-

idation set, while our approach improves the performance.

Overall, without trading-off the performance between
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Truncation ImageNet

Training Dist. top1 top5

Obervational GAN [39] 1.0 39.07% 62.97%

Obervational GAN [39] 1.5 42.65% 65.92%

Obervational GAN [39] 2.0 40.98% 64.37%

Interventional GAN (ours) 1.0 45.06% 68.48%

Table 4. We show performance for ResNet50 trained only on Big-

GAN. Our intervention model surpasses performance of the best

established benchmark [39]

different datasets, our approach achieves improved perfor-

mance for all test sets, which highlights the advantage of

our causal learning approach.

5.4. Analysis

Causal Bound and Performance: Does tighter causal

bound lead to a better classifier? Following Theorem

1, we measure the tightness of causal bound after inter-

vention, where we use the log likelihood logP (x|z) =P
i

P
x0

j
log(P (xi|x

0

j)P (x0

j |z)), where xi is the query im-

age from the held out ImageNet validation set, and x0

j is the

data generated by intervention z. We train ResNet18 on our

generated data.3 By varying the intervention strength, we

increase the value of P (x|z), which corresponds to a tighter

causal bound. Figure 5 shows that, as the causal bound get-

ting tighter (left), performance steadily increases (right).

Optimal Intervention Strategy: Since tighter causal

bound produces better models, we investigate the optimal

intervention strategy for tightening causal bounds. We

study the effect of changing t, k, s for our intervention on

the causal bound (Section 4.2). We conduct ablation studies

and show the trend in Figure 6. We choose t = 1, k = 60,

and s = 100% as our intervention strategy for tightest

causal bound, which produces logP (x|z) = −5.162 and

yields the optimal accuracy of 45.06% (Table 4) in practice.

Importance of Intervention: Our results show that cre-

ating interventions with a GAN is different from simply

augmenting datasets with samples from a GAN. To exam-

ine this, Table 4 shows performance on ImageNet when the

training sets only consist of images from the GAN. We use

the best practices from [39], which comprehensively stud-

ies GAN image generation as training data. Our results

show that creating interventions, not just augmentations,

improves classification performance by 2.4%-6.0%.

5.5. Model Visualization

By removing the confounding factors in the dataset, we

expect the model to learn to attend tightly to the spatial re-

gions corresponding to the object, and not spuriously cor-

related contextual regions. To analyze this, Figure 7 uses

GradCAM [45] to visualize what regions the models use for

making prediction. While the baseline often attends to the

3We sample an observational and intervention data from BigGAN with

truncation 0.5 [10]. Please see supplementary material for full details.

Image Baseline Our Model Image Baseline Our Model

Plunger Tie

Television Tray

BroomLadle
Table 

Lamp
Plunger

Doormat Knife

Paper 

Towel
PrinterShovel Shoe

Mouse
Table 

Lamp

Figure 7. We visualize the input regions that the model uses to

make predictions. Blue implies the model ignores the region for

discrimination, while red implies the region is very discriminative.

The white text shows the model’s top prediction. The baseline

frequently latches onto spurious background context (e.g., hand

spuriously correlated with ladle, chair spuriously correlated with

tablelamp), and consequently makes the wrong prediction. Mean-

while, our model often predicts correctly for the right reasons.

background or other nuisances for prediction, our method

focuses on the spatial features of the object. For example,

for the first ‘Broom’ image, the baseline uses spurious con-

text ‘hand,’ leading to a misprediction ‘Ladle,’ while our

model predicts the right ‘Broom’ by looking at its shape.

This suggests that, in addition to performance gains, our

model predicts correctly for the right reasons.

6. Conclusion

Fortifying visual recognition for an unconstrained envi-

ronment remains an open challenge in the field. We in-

troduce a method for learning discriminative visual models

that are consistent with causal structures, which enables ro-

bust generalization. By steering generative models to con-

struct interventions, we are able to randomize many features

without being affected by confounding factors. We show

a theoretical guarantee for learning causal classifiers under

imperfect interventions, and demonstrate improved perfor-

mance on ImageNet, ImageNet-C, ImageNet-V2, and the

systematically controlled ObjectNet.
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