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Abstract

One of the most challenging question types in VQA is

when answering the question requires outside knowledge

not present in the image. In this work we study open-domain

knowledge, the setting when the knowledge required to an-

swer a question is not given/annotated, neither at training

nor test time. We tap into two types of knowledge represen-

tations and reasoning. First, implicit knowledge which can

be learned effectively from unsupervised language pretrain-

ing and supervised training data with transformer-based

models. Second, explicit, symbolic knowledge encoded in

knowledge bases. Our approach combines both—exploiting

the powerful implicit reasoning of transformer models for

answer prediction, and integrating symbolic representa-

tions from a knowledge graph, while never losing their ex-

plicit semantics to an implicit embedding. We combine di-

verse sources of knowledge to cover the wide variety of

knowledge needed to solve knowledge-based questions. We

show our approach, KRISP (Knowledge Reasoning with

Implicit and Symbolic rePresentations), significantly out-

performs state-of-the-art on OK-VQA, the largest available

dataset for open-domain knowledge-based VQA. We show

with extensive ablations that while our model successfully

exploits implicit knowledge reasoning, the symbolic answer

module which explicitly connects the knowledge graph to

the answer vocabulary is critical to the performance of our

method and generalizes to rare answers. 1

1. Introduction

Consider the example shown in Fig. 1. To answer

this question, we not only need to parse the question and

understand the image but also use external knowledge.

Early work in VQA focused on image and question pars-

ing [2, 6, 23, 49, 50] assuming all required knowledge can

be learned from the VQA training set. However, learn-

*Work done during internship at Facebook
1Code and more are available at https://github.com/

facebookresearch/krisp
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Figure 1. An OK-VQA [51] example that requires external knowl-

edge. Our KRISP model uses a symbolic knowledge graph as well

as the implicit knowledge learned from large-scale BERT training

to answer the question.

ing knowledge from image-question-answer triplets in the

training data is not scalable and is liable to biases in the

training data. We should exploit other external knowledge

sources such as Wikipedia or knowledge graphs. The recent

OK-VQA dataset [51] consists of these types of questions

and allows us to study open-domain knowledge in VQA.

We can define two types of knowledge representation

that can be useful for these types of questions: First we

have implicit knowledge, knowledge which is embedded

into some non-symbolic form such as the weights of a neu-

ral network derived from annotated data or large-scale un-

supervised language training. Recently, transformer- and

specifically BERT- [16] based multi-modal VQA models

have been proposed [40, 46, 47], which incorporate large

scale language pretraining, implicitly capturing language

based, as well as multimodal knowledge. This type of

knowledge can be quite useful, but we find this form of im-

plicitly learned knowledge is not sufficient to answer many

knowledge-based questions as we will show. Perhaps this

is not surprising if one considers that many facts are rare

such as “Thomas Newcomen invented the steam engine”

and learning them with implicit representations might be

less efficient while there are external sources and knowl-

edge bases that state it explicitly.

The other type of knowledge typically studied is ex-

plicit or symbolic knowledge, often in the form of knowl-
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edge graphs. Approaches that use this form of knowledge

either take the symbolic knowledge and then embed-and-

fuse them into a larger VQA model before answer pre-

diction which no longer maintains the well-defined knowl-

edge structures [51, 39], or by relying on a closed set of

knowledge facts with strong annotation of source knowl-

edge [54, 74, 77]. In the second case, the VQA dataset it-

self has ground truth “facts” associated with the question, so

solving these questions often ends up being the problem of

retrieving a fact from the closed set. In our method, we pre-

serve the symbolic meaning of our knowledge from input

until answer prediction. This allows us to use knowledge

that is rare or is about rare entities as learning the reason-

ing logic with symbols is shared across all symbols. And

unlike other work, we do not have a closed set or ground

truth knowledge, so we must build a large diverse knowl-

edge base for use by our model.

In this work, we develop an architecture, KRISP (Knowl-

edge Reasoning with Implicit and Symbolic rePresenta-

tions), to successfully combine the implicit and symbolic

knowledge. Specifically, KRISP uses (i) a multi-modal

BERT-pretrained transformer to process the question and

image, and take advantage of the implicit knowledge in

BERT, and (ii) a graph network to make use of symbolic

knowledge bases. To cover the wide variety of knowl-

edge required in OK-VQA, we draw on four very different

knowledge sources to construct our knowledge graph: DB-

Pedia [7], ConceptNet [44], VisualGenome [36] and hasPart

KB [10]. This covers crowdsourced data, visual data, ency-

clopedic data, knowledge about everyday objects, knowl-

edge about science and knowledge about specific people,

places and events. Finally, our method preserves the sym-

bolic meaning of the knowledge by making predictions

based on the hidden state of individual nodes in the knowl-

edge graph and using a late-fusion strategy to combine the

implicit and symbolic parts of the model.

2. Related Work
Multimodal Vision and Language Modeling. Approaches

for multimodal vision and language tasks have explored di-

verse set of fusion strategies such as bilinear models (e.g.

[24, 33]) or self-attention (e.g. [25]). Many recent works

have been inspired by the success of transformer [71] and

BERT [16] models for natural language tasks and pro-

posed transformer-based fusion between image and text

[3, 15, 38, 40, 46, 69, 70, 84]. Similar to these works as

part of our method we train a multimodal transformer with

BERT-pretraining to import the implicit knowledge learned

by BERT and learn any knowledge encoded in the training

data and study it on knowledge VQA.

Another line of work has been extracting programs from

the question for explicit reasoning with modules [5] or ex-

tracting symbols from the image to reason over them [82].

These works focus on reasoning about things explicitly in

the image but do not integrate external knowledge.

Knowledge in Computer Vision. Knowledge has a long

history in computer vision problems. Some of the earli-

est versions of this work was relating to attributes [19, 67]

or knowledge mined from the web [63], often for zero- or

few-shot learning problems [20, 37, 62], as well as for fine-

grained classification [18]. The use of word embeddings

from language has been extensive including in [22, 35, 45].

Class hierarchies such as WordNet [53] have often been

used to aid in image recognition [85, 60]. Knowledge

graphs have also found extensive use in visual classification

and detection [52, 13], zero-shot classification [76] and im-

age retrieval [31]. In our work we also rely on a knowledge

graph to represent symbolic knowledge.

Knowledge-based VQA datasets. While open-ended

VQA datasets (e.g. [6]) might require outside knowledge to

answer some of its questions which cannot be learned from

the dataset, there are a few datasets which focus specifi-

cally on knowledge based multi-modal reasoning. One is

FVQA [74], where image-questions-answer triples are an-

notated with a fact-triple (e.g. “chair is furniture”) from a

fixed outside knowledge base, which allows deriving the

answer. Specifically one of the two nodes (i.e. chair or fur-

niture in this example) is the answer. A more recent and

more challenging dataset is OK-VQA [51] which stands for

Open Knowledge VQA, as the name suggests, focusing on

knowledge which is not tied to a specific knowledge base.

In this work we focus our evaluation on OK-VQA due to

its relatively large number of knowledge-based questions,

as well as its challenging and open-ended nature.

Symbolic Knowledge for VQA. Symbolic knowledge

from knowledge bases is commonly represented as

graphs/knowledge bases [39, 54, 55, 73, 74] or textual

knowledge sources such as Wikipedia [51, 77]. We can sep-

arate these into two directions: where symbols are retained

until prediction and where they are not. [54, 73, 74] retain

the symbols until the answers, allowing good generalization

capabilities but require annotations of the “correct” knowl-

edge fact and are difficult to generalize to open knowledge

VQA. For improved generalization to open-domain VQA,

[26, 51, 39, 77] embed the symbolic knowledge to an im-

plicit embedding loosing the semantics of the symbols, but

therefore are able to easily integrate the embedding with

standard VQA approaches. Similar to our work, the recent

work [26] relies on a multimodal transformer model (pre-

trained VilBERT [46], however, similar to the other works

it looses the semantics of the knowledge symbols when it

integrates over them with an attention model. In contrast,

our work shows how to take advantage of both the implicit

and symbolic knowledge directions: We retain symbols un-

til the end without the need of knowledge-fact annotations

and integrate it with implicit knowledge and powerful rea-

soning abilities of multi-modal transformers.
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Knowledge Bases & Knowledge in NLP. There have been

many knowledge bases proposed for knowledge-based rea-

soning, both language-only and multi-modal [85, 14, 17,

65, 88, 87, 10, 53, 36]. In the NLP literature, there

has been much work in question answering from knowl-

edge sources [9, 81, 11] including for open-domain ques-

tion answering [12, 75, 80, 79], and including mixed sym-

bolic/implicit methods for question answering [48, 32].

3. The KRISP Model

In this section we introduce our model: Knowledge

Reasoning with Implicit and Symbolic rePresentations

(KRISP). An overview of our model can be seen in Fig. 3.

We first introduce our transformer-based multi-modal im-

plicit knowledge reasoning (Sec. 3.1), then discuss the

symbolic knowledge sources and reasoning with symbols

(Sec. 3.2), and then describe their integration in Sec. 3.3.

3.1. Reasoning with Implicit Knowledge

We want to incorporate implicit external knowledge as

well as multi-modal knowledge which can be learned from

training set in our model. Language models, and especially

transformer-based language models, have shown to contain

common sense and factual knowledge [58, 30]. Most recent

multi-modal models have also relied on the transformer ar-

chitecture to learn vision-and-language alignment [40, 46].

We adopt this direction in our work and build a multi-modal

transformer model, pretrained with BERT [16], which has

been pretrained on the following language corpora to cap-

ture implicit knowledge: BooksCorpus [86] (800M words)

and English Wikipedia [1] (2.5B words). To learn multi-

modal knowledge from the training set, our model is most

closely related to the architecture used in [40]. We also ex-

plore multi-modal pretraining in Section 4.2.

Question Encoding. We tokenize a question Q using

WordPiece [78] as in BERT [16], giving us a sequence

of |Q| tokens and embed them with the pretrained BERT

embeddings and append BERT’s positional encoding, giv-

ing us a sequence of d-dimensional token representation

xQ
1 , ..., x

Q

|Q|. We feed these into the transformer, finetuning

the representation during training.

Visual Features. As with most VQA systems, we use vi-

sual features extracted on the dataset by a visual recogni-

tion system trained on other tasks. We use bottom-up fea-

tures [4] collected from the classification head of a detec-

tion model, specifically Faster R-CNN [61]. Because of the

overlap in OK-VQA test and VisualGenome/COCO [42]

trainval, we trained our detection model from scratch on

VisualGenome, using a new split of VisualGenome not

containing OK-VQA test images. The detector uses fea-

ture pyramid networks [43], and is trained using the hyper-

parameters used for the baselines in [29].

We input bounding box features extracted from the im-

age as well as the question words to the transformer. We

mean-pool the output of all transformer steps to get our

combined implicit knowledge representation zimplicit.

3.2. Reasoning with Symbolic Knowledge

Visual Symbols. In addition to using a pretrained visual

recognition system to get image features, we also extract vi-

sual concepts (i.e. the predictions). This not only allows us

to get a set of concepts to use to prune our knowledge graph

(see Sec. 3.2), it also gives us an entry point to get from the

raw image to a set of symbols. This is significant—in order

for our graph network to be able to reason about the ques-

tion, it not only needs to reason about the question itself, but

the entities in the image. For instance, if a question were to

ask “what is a female one of these called?” in order use our

knowledge that a female sheep is called an “ewe,” the graph

network needs to actually know that the thing in the picture

is a sheep. As we will see, using these symbols is critical

for our graph network to reason about the question.

There are a number of visual concepts we want to cover:

places, objects, parts of objects and attributes. Therefore

we run four classifiers and detectors trained on images

from the following datasets: ImageNet [64] for objects,

Places365 [83] for places, LVIS [28] for objects and ob-

ject parts and Visual Genome [36] for objects, parts and at-

tributes. This gives us a total of about 4000 visual concepts.

(Additional details in supplementary).

Knowledge Graph Construction. Unlike previous work

such as [54], or in NLP work on datasets such as SQuAD

[59] which study the problem of closed-system knowledge

retrieval, we do not have a ground truth set of facts or

knowledge which can be used to answer the question. We

must make an additional choice of what knowledge sources

to use and how to clean or filter them.

There are a few different kinds of knowledge that might

help us on this task. One is what one might call trivia knowl-

edge: facts about famous people, places or events. Another

is commonsense knowledge: what are houses made of, what

is a wheel part of. Another is scientific knowledge: what

genus are dogs, what are different kinds of nutrients. Fi-

nally, situational knowledge: where do cars tend to be lo-

cated, what tends to be inside bowls.

The first and largest source of knowledge we use is DB-

Pedia [7], containing millions of knowledge triplets in its

raw form. DBPedia is created automatically from data from

Wikipedia [1]. This tends to give a lot of categorical in-

formation e.g. (Denmark, is a, country), especially about

proper nouns such as places, people, companies, films etc.

The second source of knowledge is ConceptNet [44], a

crowd-sourced project containing over 100,000 facts orga-

nized as knowledge triples collected by translating English-

language facts into an organized triplet structure. It also

contains as a subset the WordNet [53] ontology. This

dataset contains commonsense knowledge about the world

such as (dog, has property, friendly). Following [52], we
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DBPedia
(tree, is near, building)

(car, is on, road)

(building, is made of, bricks)

(outlet, is on, wall)

(tracks, is for, train)

(chair, is near, table)

(food, is in, bowl)

(giraffe, has, spots)

(bear, has part, coat)

(wasp, has part, wing)

(cnidarian, has part, cell)

(alfalfa plant, has part, leave)

(water, has part, water 

molecule)

(human, has part, bone)

(hare, has part, long ear)

(fern, has part, spore)

(poland, is a, country)

(mark, is a, currency)

(easyjet, is a, company)

(gerbera, is a, insect)

(new era, is a, automobile)

(brussels, has part, ixelles)

(syrah, is a, grape)

leona, is a, ship)

hasPart KB
(saloon, used for, drink)

(stream, at location, forest)

(eye, used for, look)

(tearoom, used for, drink tea)

(heifer, at location, barnyard)

(quartz, is a, mineral)

(star, at location, galaxy)

(hotel room, used for, sleep in)
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Relation Types

Figure 2. Example knowledge and edge types from our knowledge graph. The graph is built from four sources of explicit knowledge.

also use the scene graphs from VisualGenome [36] as an-

other source of knowledge. As in [52], we take a split of

VisualGenome that does not contain any OK-VQA test im-

ages. This knowledge source tends to give us more spatial

relationships e.g. (boat, is on, water) and common pairwise

affordances e.g. (person, sits on, coach). Finally, we use

the new hasPart KB [10] to get part relationships between

common objects such as (dog, has part, whiskers) as well

as scientific ones (molecules, has part, atoms). We show

example knowledge triplets from our in Fig. 2.

With these knowledge sources, we can capture a large

amount of knowledge about the world. But we then run

into a problem of scale. In its raw form, DBPedia alone

contains millions of edges, with the others containing a to-

tal of over 200,000 knowledge triplets. This first presents

a technical problem—this graph is far too large to fit into

GPU memory if we use a graph neural network model. But

more fundamentally, while this knowledge graph contains a

lot of useful information for our downstream task, it also in-

cludes a lot of irrelevant knowledge. In particular, DBPedia,

being parsed automatically from Wikipedia pages, contains

information about virtually every film, book, song and no-

table human in history. While some of those may be useful

for particular questions, the vast majority is not.

To deal with these issues, we limit our knowledge graph

to entities that are likely to be helpful for our end task. First,

we collect all of the symbolic entities from the dataset: in

particular the question, answers and visual concepts that can

be picked up by visual recognition systems (see Sec. 3.2).

We then include edges that only include these concepts. Af-

ter this filtering, we have a total of about 36,000 edges and

8,000 nodes. We provide more exhaustive details of our

knowledge collection and filtering in supplementary.

Graph Network. Now we move to our symbolic knowl-

edge representation. We want to treat our knowledge graph

as input without having to decide on which few facts out

of our entire graph might be relevant. So to process on our

entire graph and decide this during training, we use a graph

neural network to incorporate our knowledge. In our net-

work, each node of the graph network corresponds to one

specific symbol representing one concept such as “dog” or

“human” in our knowledge graph.

The idea is that the graph neural network can take in in-

formation about each specific symbol and use the knowl-

edge edges to infer information about other symbols by

passing information along the edges in the knowledge

graph. And, in our graph neural network we share the net-

work parameters across all symbols, meaning that unlike for

other types of networks, the reasoning logic is shared across

all symbols which should allow it to generalize better to rare

symbols or graph edges.

We use the Relational Graph Convolutional Network

(RGCN) [66] as the base graph network for our model. Un-

like the related GCN [34], this model natively supports hav-

ing different calculations between nodes for different edge

types (an is a relationship is treated differently than a has a

relationship) and edge directions (dog is a animal is differ-

ent than animal is a dog). With this architecture we also

avoid the large asymptotic runtime of other architectures

with these properties such as [41] or [72].

Graph Inputs. For one particular question image pair, each

node in the graph network receives 4 inputs. 1) An indi-

cator 0/1 of whether the concept appears in the question.

2) The classifier probabilities for the node’s concept, intro-

duced above (or 0 if the concept is not detected in the par-

ticular image or not one of the classifier’s concepts) With

4 image classifiers or detectors, the node receives 4 sepa-

rate numbers. 3) The 300d word2vec (GloVe [57]) repre-

sentation of that concept, or average word2vec for multi-

word concepts. 4) The implicit knowledge representation

zimplicit from Sec. 3.1 passed through a fully connected

layer: fc(zimplicit) with ReLU activation to reduce the size

of this feature to 128 for efficient graph computation.

Following the standard formulation of graph neural net-

works, we write the input to the graph neural networks

(described above) as X=H(0) where X is a R
n×ds ma-

trix with n node inputs of size ds = 433. Then for

each layer of the RGCN, we have a non-linear function

H(l+1)=f(H(l),KG) where KG is the knowledge graph.

The RGCN convolution uses different weight matrices for

different edge types and for different directions. As a result

the semantic difference between an is-a relationship and a

has-a relationship as well as the direction of those edges is

captured in the structure of the network and different trans-

formations are learned for each. After all RGCN layers are

computed we end up with H(L)=G which is a R
n×dh ma-

trix which corresponds to having a hidden state of size fh
for each node (and therefore concept) in our graph. Addi-

tional architectural details and parameters of the graph net-

work can be found in supplementary.
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Figure 3. Our model: KRISP integrates implicit knowledge and reasoning (bottom) with explicit graph-based reasoning on a knowledge

base (top). The implicit knowledge model receives the visual features and question encoding whereas the explicit knowledge model

operates on image and question symbols. They predict answers according to Eq. 1&2 and we take the max overall prediction (see Sec. 3.3).

3.3. Integrating Implicit and Symbolic Knowledge

Finally, given the output of our implicit transformer-

based module zimplicit and our explicit/symbolic module

G, how do we get our final prediction? Our main insight

to make a separate prediction for zimplicit and for each

node/concept in the knowledge graph.

Implicit Answer Prediction. As is now commonplace

among VQA methods, to get the implicit answer prediction,

we do a final prediction layer and predict the answer within

a set vocabulary of answers V ∈ R
a where a is the size of

the answer vocabulary. We simply have:

yimplicit=σ(Wzimplicit+b) (1)

where σ is the sigmoid activation.

Symbolic Answer Prediction. To predict the answers for

symbolic, we note that G can be rewritten as a hidden state

node zsymbolic
i for each node/concept i in the knowledge

graph. Because each of these nodes corresponds to a word

or multi-word symbol, we actually have nodes and corre-

sponding hidden states that are possible answers to a V QA
question. So for each hidden state that is in our answer vo-

cab V ∈ R
a we make a prediction for it.

For each of these answer nodes i, we predict:

ysymbolic
i =σ((W szsymbolic

i +bs)T (W zzimplicit+bz)). (2)

We additionally re-use the implicit hidden state zimplicit

to make this prediction. This gives us an additional late fu-

sion between the implicit and symbolic parts of our model.

Final Prediction. Finally, given our final predictions

yimplicit and ysymbolic, we simply choose the final answer

by choosing the highest scoring answer from both answer

vectors. For training, we can simply optimize yimplicit and

ysymbolic separately with a binary cross entropy loss end-

to-end through the entire network. See Fig. 3.

4. Results
4.1. Experimental Setup

For all experiments, we train our models with Py-

Torch [56] and the MMF Multimodal Framework [68]. We

use PyTorch Geometric [21] for our graph neural network

implementations. We use the default training hyperparam-

eters from MMF which we provide in supplementary. For

consistency, for each result we train each model on 3 ran-

dom seeds and take the average as the result. We show sam-

ple std on these runs in supplementary.

For the purpose of state-of-the art comparisons in Ta-

ble 1, we compare our main method on the 1.0 version of

OK-VQA [51]. Recently, a 1.1 version of the dataset was

released, and all other experiments including ablations are

done on this version. The only change between the versions

is a change in how answer stemming is handled, resulting

in a more coherent answer vocabulary. In particular, we ob-

serve that the new answer vocabulary has much fewer “non-

word” stemming such as “buse” for busses and “poni tail”

instead of “pony tail.” Unless otherwise stated, an experi-

ment is on version 1.1.

For many of our ablations and analysis we train just

the Multi-modal BERT (MMBERT) model described in

Sec. 3.1 by itself by scratch or we do multi-modal pre-

training. Unless otherwise stated, this model and ours is

always initialized from BERT.

In Sec. 4.3 we do a through ablation of KRISP com-

paring the different parts of the model and design choices

we made. In Sec. 4.2 we add multimodal pretraining to

our models to show how our model achieves state-of-the-art

performance on OK-VQA. In Sec. 4.4 we show the results

of a number of experiments to more thoroughly analyze our

method, especially looking at its performance on rare an-

swers. Finally in Sec. 4.5 we look at some specific questions

and predictions from our model to get a more grounded idea
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Method accuracy (v1.0) accuracy (v1.1)

Q-Only 14.93 -

MLP 20.67 -

BAN [33] 25.17 -

BAN+AN [51] 25.61 -

BAN+KG-Aug [39] 26.71 -

MUTAN [8] 26.41 -

MUTAN+AN [51] 27.84 26.64

ConceptBERT [26] 33.66 -

KRISP (w/o mm pre.) 29.77 32.31

KRISP (with mm pre.) 38.35 38.90

Table 1. Benchmark results on OK-VQA

of what our model does on real examples.

4.2. State­of­the­Art Comparisons

We provide the comparisons to the state-of-the-art of

OKVQA in Table 1. To achieve best results, like other

works [26] we pretrain our network on other tasks. We

find it the most effective to pretrain our models on the VQA

dataset [27]. See supplementary for more details.

In order to compare to other works (all of which show

results on v1.0), we compute the performance of our best

model (VQA joint graph and transformer pretraining) on

OK-VQA v1.0 as well. We see that our model achieves

38.35% accuracy versus the best previous state-state-of-the-

art of 33.66% [26]. We also compare on v1.1 as well, re-

running the MUTAN+AN model from [51] to get a compar-

ison with KRISP.

4.3. Model Analysis and Ablations

We first analyse our model to see where the improvement

is coming from with several ablations, especially focusing

on symbolic vs. implicit knowledge and their integration.

We want to understand which parts are working and why.

Ablation of Symbolic Knowledge. First, we see how much

of the improvement comes from the Multi-modal BERT

backbone of our model versus from the symbolic Graph

Network. In Table 2 (lines 1&2), we see that KRISP com-

bining implicit and symbolic knowledge improves signifi-

cantly over the Multi-modal BERT by about 3%.

We should, however, make sure this improvement is due

to the symbolic knowledge and not merely from a more

complex or better architecture. While our KRISP only has

slightly more parameters (116M parameters versus MM-

BERT with 113M), it does add at least some extra compu-

tation. To test this, we approximate a version of our method

with only the architecture and not the underlying knowl-

edge. To do this, we keep all network details the same,

but instead of using the knowledge graph we constructed in

Sec. 3.2, we use a randomly connected graph. We keep all

of the nodes the same, but we randomize the edges connect-

ing them. So in this version with a random graph, our graph

network receives all of the same inputs and the outputs, but

Method accuracy

1. KRISP (ours) 32.31

Ablation of Symbolic Knowledge

2. MMBERT 29.26

3. KRISP w/ random graph 30.15

Ablation of Implicit Knowledge

4. KRISP w/o BERT pretrain 26.28

5. MMBERT w/o BERT pretrain 21.82

Ablation of Network Architecture

6. KRISP no late fusion 31.10

7. KRISP no MMBERT input 31.10

8. KRISP no MMBERT input or late fusion 25.00

9. KRISP no backprop into MMBERT 27.98

10. KRISP with GCN 30.58

11. KRISP feed graph into MMBERT 30.99

Ablation of Graph Inputs

12. KRISP no Q to graph 31.74

13. KRISP no I to graph 31.59

14. KRISP no symbol input 30.26

15. KRISP no w2v 31.95

Table 2. KRISP ablation on OK-VQA v1.1. We show the per-

formance of our model compared with the implicit-only baseline

(MMBERT). We also show ablations without BERT training, with

a random knowledge graph, ablations on our model architecture,

and ablations where we remove the question input to the graph

network (no Q), the image inputs (no I) and both (no symbol).

all connections are completely random. If the performance

were just from the computation, we would expect this to

work. Instead, we see from line 3 that the performance us-

ing the random graph drops significantly.

Ablation of Implicit Knowledge. Next we look at the im-

plicit knowledge contained in the BERT versus our com-

bined system to see how much of an effect it had. From

Table 2 we can see that BERT is a crucial element. Without

the BERT pretraining (lines 4&5), our method falls by 6%

and the Multi-modal BERT falls by an even larger 7%. This

shows that the implicit knowledge is an important compo-

nent of our model. The difference between KRISP and

Multi-modal BERT when neither has BERT pretraining is

actually higher than the difference with BERT, about 4.5%,

suggesting that there is some overlap in the knowledge con-

tained in our knowledge graphs with the implicit knowledge

in BERT, but most of that knowledge is non-overlapping.

Ablation of Network Architecture. Next, we want to get

a sense of which parts of our architecture were important.

As we can see, our particular architecture is critical: the use

of MMBERT features as input to KRISP and the late fusion

were both important. With just one of these, performance

drops by about 1%, but without either (line 8), performance

drops over 7%. Without at least one connection between the

Multi-modal BERT and the graph network, there can be no
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Method accuracy

1. KRISP max(yimplicit, ysymbolic) (ours) 32.31

2. KRISP yimplicit 31.47

3. KRISP ysymbolic 29.36

4. KRISP no backprop yimplicit 28.19

5. KRISP oracle(yimplicit|ysymbolic) 36.71

Table 3. KRISP Subpart Analysis on OK-VQA v1.1. Here we

show the OK-VQA accuracy of different parts of the model sep-

arately: just the MMBERT (yimplicit), just the graph network

(ysymbolic). We also show the MMBERT only without a back-

propogation signal between the two parts and an oracle best-case

performance between the two parts.

fusion of the visual features and question and the graph net-

work cannot incorporate any of the implicit knowledge in

BERT. We also tried KRISP where these two ways of fus-

ing were present, but we did not allow any backpropogation

from the Graph Network to MMBERT (line 9). This also

performs badly, as the graph network cannot correct errors

coming from this input, but not as bad as removing these

connections entirely (line 8).

We also tried a less powerful graph network: GCN [34]

(line 10) which critically does not have directed edges or

edge types. This baseline hurts performance by about 2%

justifying our choice of a graph network that uses edge di-

rection and type. We also have another architectural abla-

tion, where we feed the graph network features directly to

the Multi-modal BERT rather than having a separate answer

prediction directly from the graph as in KRISP or any of the

other baselines (line 11). This architecture performs much

worse than our final model.

Ablation of Graph Inputs. Next we look at the symbolic

and non-symbolic inputs to the knowledge graph nodes to

see what effect those might have had in the next section

of Table 2. First, we ablate the question indicator input

(line 12) and the image confidences (line 13) described in

Sec. 3.2. We find that removing one or the other drops per-

formance, but not drastically; removing both (line 14) drops

performance by about 2%, much more than the effect of

dropping the MMBERT input to the graph. We also ablate

the word2vec inputs to nodes (line 15) and find that this part

made the least difference, dropping it less than 1%.

Preserving Symbolic Meaning. One major claim we make

is that symbolic and implicit knowledge are both necessary

for this problem. The results without BERT training make

the case pretty clearly that implicit, non-symbolic knowl-

edge from BERT is critical. From the ablation of symbolic

knowledge, we show that it is the symbolic knowledge (and

not just the architecture) greatly contributes to the perfor-

mance of our method. On the symbol input side, we show

that removing the symbolic inputs (line 12) hurts perfor-

mance, even more than removing the Multi-modal BERT

hidden input (line 7) which contains information about the

Metric→ Frequency Rank # Unique answers

Method ↓ All Correct All Correct

KRISP (ours) 528.5 456.7 1349 780

MMBERT 467.1 427.4 1247 719

Table 4. Long-tail Analysis. We show KRISP and the non-

symbolic MMBERT long-tail metrics for “all” predictions made

by the model and for “correct” predictions. Higher is better.

same image and question, but in a non-symbolic form. Fi-

nally we have a baseline (line 11) where instead of pre-

dicting separate outputs from the graph network and Multi-

modal BERT, we directly connect the graph network into

MMBERT, feeding a pooled graph hidden state (see supple-

mentary for details) into MMBERT as an input. This base-

line does significantly worse. What these ablations have

in common is that they remove the direct connection be-

tween the knowledge graph and the input and/or answer

symbols. When the graph network is not able to connect

the knowledge symbolically to the input symbols or the out-

put symbols, we see that it performs worse. In addition,

we know symbolic knowledge itself is useful because when

we only change the connections between nodes and noth-

ing else (line 3), performance drops drastically. Our entire

graph module directly connects symbols in the input (ques-

tion words and image symbols from classifiers) to symbols

in the output (the answer words) and this seems critical to

performance.

4.4. Quantitative Result Analysis

First we examine the parts of our model separately to

see if we can learn anything about how the MMBERT and

Graph Network parts of KRISP interact.

In Table 3 we look at the performance of different

parts of our model (without retraining the model for lines

1,2,3,5). Since the MMBERT and Graph Network parts of

KRISP produce separate predictions, we can analyze them

separately. For instance, we find that despite the fact that the

MMBERT part of our model does not receive input from the

Graph Network, the MMBERT (Table 3, line 2) has a higher

accuracy of 31.47% than the MMBERT baseline (Table 2,

line 2), 29.26%. This we suspect is because this part of the

network receives a back-propagation from the Graph Net-

work part of the model and this extra component improves

the quality of the MMBERT pooled feature because it is

also trained to reduce the loss from the late fusion predic-

tions. Indeed, if we remove the back-propagation signal

(Table 3, line 4) we see that the accuracy of this part of

the model drops down to 28.19%. We also see a direct im-

provement beyond this effect. Comparing the Multi-modal

BERT (line 2) and Graph Network (line 3) -only accuracies,

the Graph Network does a bit worse on its own, but not by a

huge amount, and the Graph Network predictions are used

47% of the time in the joint model (line 1). Since the accu-
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Q: What source of heat is the pot using?

Knowledge

(gas, used for, heat) (gas, used for, cook)

(pot, is on, stove) (pot, used for, cook)

(gas stove, is a, stove) (gas, has part, methane)

Q: Can you guess the model of tv shown in this picture?

Knowledge

(samsung, is a, company) (tv, used for, learn)

(tv, at location, living room) (tv, made of, metal)

(remote control, at location, tv) (tv, is a, media)

Q: The kids on skateboards are wearing what kind of safety gear?

Q: What healthy properties do these fruit contain?

Knowledge

(banana, has part, vitamin) (fruit, has property, healthy)

(banana, is a, fruit) (fruit, has property, very healthy)

(orange, is a, fruit) (vitamin, is a, nutrition)

Q: What branch of the military is this woman from?

Knowledge

(navy, is a, colour) (plant, has part, branch)

(navy, is a, fashion) (military, part of, government)

(military, is a, film) (person, at location, military base)

Q: What is this street made of?

Ours: vitaminBL: orange

Ours : helmetBL: skateboard

Ours : samsungBL: flat screen

Ours: gasBL: hot

BL: brick Ours: concrete

Ours: marineBL: navy

Knowledge

(helmet, used for, protection) (helmet, used for, protect head)

(helmet, is a, safety) (boy, is on, skateboard)

(wheel, is on, skateboard) (helmet, is on, head)

Knowledge

(sidewalk, made of, concrete) (freeway, made of, concrete)

(building, is made of, brick) (brick, made of, clay)

(stripe is on street) (avenue, is a, street)

Figure 4. Qualitative examples from KRISP. Showing predictions by our model and the implicit knowledge baseline Multi-modal BERT.

We show the question, image, and answers given by both models. We also show knowledge in the graph related to the question, answers

or image that seemed most relevant.

racy of the combined model is higher than each, it is able

to choose the correct answer from between MMBERT and

Graph Network. Finally, we see that if we had an oracle that

always chose the best prediction from either the MMBERT

or the Graph Network, we would improve the accuracy to

36.71%. Obviously this is not a realistic number to achieve

since it uses ground truth, but it shows that the MMBERT

and Graph Network predictions are non-redundant.

Long-Tail Analysis. Next, we try to see whether our ex-

plicit/implicit model performs any differently on the “long

tail” of OK-VQA. OK-VQA itself is built as a long-tail

dataset, specifically rejecting answers that appear too many

times to avoid models overfitting to the answer vocabulary,

making it a good dataset to study knowledge-based VQA.

Even with this filtering, some answers do appear more of-

ten than others, so we can try to study whether our method

does better on rare answers.

In Table 4 we show metrics on KRISP versus the base-

line Multi-modal BERT. First we use a metric we refer to

as “Answer Frequency Rank”. This simply means we order

the answers in the dataset from most common to least com-

mon and assign them a rank from 1 for the most common

to the total number of answers in the dataset. On this metric

our model scores higher, which means it chooses on aver-

age less common answers. This is true whether one mea-

sures for all prediction or for only correct predictions. For

a perhaps more intuitive metric we also look at the number

of unique answers our model predicts versus the baseline.

Here we predict 1349 versus 1247 or 780 versus 719 if we

only look at correct predictions. These results indicate that

our model is generalizing better to the long-tail.

4.5. Qualitative Analysis

Finally, we show examples to understand how the knowl-

edge graph might be helping our model to answer questions.

In the top left example in Fig. 4 our model correctly answers

that the source of heat for the pot is “gas.” Looking at the

knowledge graph, some knowledge that may be helpful is

that gas is used for heat, and that both gas and pot are used

to cook. The knowledge graph here connects directly from

a word in the question to the answer. The next question

asks what model the TV is and our model predicts Samsung.

This is supported by an edge that indicates that Samsung is

a company which makes it more likely to be a “model” of a

product. We include more examples in supplementary.

5. Conclusion

In this paper we introduce Knowledge Reasoning with

Implicit and Symbolic rePresentations (KRISP): a method

for incorporating implicit and symbolic knowledge into

Knowledge-Based VQA. We show it outperforms prior

works on OK-VQA [51], the largest available open-domain

knowledge VQA dataset. We show through extensive abla-

tions that our particular architecture outperforms baselines

and other alternatives by preserving the symbolic represen-

tations from input to prediction. Moreover, through exper-

iments, analysis, and examples we find our model makes

use of both implicit and symbolic knowledge to answer

knowledge-based questions and generalizes to rare answers.
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