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Abstract

Unsupervised domain adaptation is a promising tech-

nique for semantic segmentation and other computer vi-

sion tasks for which large-scale data annotation is costly

and time-consuming. In semantic segmentation, it is attrac-

tive to train models on annotated images from a simulated

(source) domain and deploy them on real (target) domains.

In this work, we present a novel framework for unsupervised

domain adaptation based on the notion of target-domain

consistency training. Intuitively, our work is based on the

idea that in order to perform well on the target domain, a

model’s output should be consistent with respect to small

perturbations of inputs in the target domain. Specifically,

we introduce a new loss term to enforce pixelwise consis-

tency between the model’s predictions on a target image

and a perturbed version of the same image. In comparison

to popular adversarial adaptation methods, our approach

is simpler, easier to implement, and more memory-efficient

during training. Experiments and extensive ablation studies

demonstrate that our simple approach achieves remarkably

strong results on two challenging synthetic-to-real bench-

marks, GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes.

1. Introduction

Deep neural network approaches for semantic image seg-

mentation have shown widespread success in the past decade,

but they remain reliant on large datasets with pixel-level

annotations. Data labeling for semantic segmentation is no-

toriously laborious and expensive, especially in domains

where experts are required (e.g. medical image segmenta-

tion). Even for annotations that can be performed by non-

experts like parsing an urban scene into familiar objects,

as in the Cityscapes dataset [15], it takes an estimated 90

minutes to annotate a single image [43].

The need to build generalizable models with limited data

has motivated work on unsupervised domain adaptation

(UDA) approaches for semantic segmentation [63, 49, 52, 7,

23, 11], where annotated images from a simulated (source)

domain, which are plentiful, are used in conjunction with

unlabeled images from a real (target) domain. The simulated

source domain in this “synthetic to real” translation task can

be creative, such as the video game Grand Theft Auto V

in the GTA5-to-Cityscapes benchmark [40] and the simula-

tion platform SYNTHIA as in the SYNTHIA-to-Cityscapes

benchmark [41].

The literature on UDA for semantic segmentation is dom-

inated by adversarial methods, which aim to learn domain-

invariant representations across multiple domains by intro-

ducing adversarial losses [23]. These methods have shown

strong performance, but due to the instability of their adver-

sarial losses, they are well-known to be highly sensitive to

hyperparameters and difficult to train [54, 8, 19].

Recently, a new line of work on UDA for semantic

segmentation has emerged around self-training [63, 52, 7].

These methods add loss terms to the training objective that

encourage the segmentation model to make more confident

predictions on the target domain (for example, by encourag-

ing low-entropy predictions) [52, 7, 63].

This paper begins with the observation that we do not

simply desire a model that makes confident predictions in

target domain, rather we desire a model that makes consistent

predictions in the target domain. That is, we desire a model

for which small perturbations of inputs in the target domain

lead to small, consistent changes in the output segmentation.

If a model’s predictions are always confident, but they are not

stable with respect to small perturbations of target images,

the model is likely to be poorly-adapted to the target domain.

Conversely, if a model behaves smoothly with respect to

perturbations of images in the target domain, the model is

likely to be better-adapted to that domain.

We propose a consistency training-based framework to

directly enforce this notion of smoothness in the target do-

main. Our method, denoted PixMatch, adds a loss term that

encourages the segmentation model’s predictions on a target

domain image and a perturbed version of the same image to
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be pixelwise consistent.

We experiment with four different perturbation functions,

two of which are inspired by work in semi/self-supervised

learning (Data Augmentations; CutMix) and two of which

are inspired by work in domain adaptation (Style Transfer;

Fourier Transform).

Surprisingly, we find that our baseline model, which

uses heavy data augmentation as its perturbation function,

performs best. This simple baseline delivers extremely

strong results on GTA5-to-Cityscapes [15] and SYNTHIA-

to-Cityscapes [41]. Using only a source (supervised) loss

and a target consistency loss, it outperforms complex prior

methods that used combinations of source, adversarial, and

self-training losses.

Compared to existing adversarial approaches, PixMatch

is easier to implement, more stable during training, and less

memory-intensive to train. It introduces only one hyperpa-

rameter, which controls the relative weighting of the source

(supervised) loss and the target consistency loss. Moreover,

the simplicity of PixMatch means that it it may be easily

integrated into existing UDA methods and pipelines; com-

bining PixMatch with self-training yields the state-of-the-art

results.

The main contributions of this paper are:

• We introduce a novel consistency-based framework for

unsupervised domain adaptation that encourages pix-

elwise consistency between a model’s predictions on a

target image and a perturbed version of the same image.

• We investigate multiple perturbation functions, finding

that a simple baseline using data augmentation performs

extremely well.

• We perform extensive ablation studies on our baseline

method in order to better understand its strong perfor-

mance, showing that the setting of domain adaptation

differs markedly from that of semi-supervised image

classification.

• We find that our model may be easily combined with

self-training for further performance improvements.

Doing so, we achieve a new state-of-the-art on the chal-

lenging GTA5-to-Cityscapes benchmark, using a much

simpler training approach than recent adversarial meth-

ods.

2. Background

The task of semantic image segmentation is to assign to

every pixel in an image one of C semantic class labels. In

the setting of unsupervised domain adaptation (UDA) for

semantic segmentation, we consider a labeled source domain

S and an unlabeled target domain T with the same set of

semantic classes. Often, the source domain S is composed of

simulated data (e.g. GTA V) and the target T is composed of

real data (e.g. Cityscapes), thus forming a “synthetic-to-real”

adaptation task.

2.1. Related work

2.1.1 Unsupervised Domain Adaptation for Semantic

Segmentation

Recent work on UDA for semantic segmentation has been

dominated by deep neural network methods.

Most of the literature is concerned with adversarial train-

ing [23, 49, 52, 11]. Adversarial training aims to minimize

the discrepancy between source and target feature distribu-

tions by introducing a discriminator network alongside the

main segmentation network. The discriminator is trained

to predict an input image’s domain from the segmentation

network’s intermediate feature maps, while the segmentation

network is trained to fool the discriminator (and produce

good segmentations on the source domain). Adversarial

training generally produces strong performance but suffers

from instability during training, is computationally expen-

sive, and is highly sensitive to changes in hyperparameters.

During the past two years, a new line of work has emerged

around self-training. Zou et al. [63] were the first to apply

pseudolabeling to UDA; they alternatively generate pseu-

dolabels on target data and re-train the model with these

labels. They also use different pseudolabel thresholds for

each class (“class-balanced self-training”) to prevent the loss

from being dominated by easy classes.

Vu et al. [52] propose two entropy minimization ap-

proaches, one that operates directly (MinEnt) and one that

operates adversarially (AdvEnt). Chen et al. [7] builds off

AdvEnt [52] by noting that the entropy function H(·) biases

the loss toward well-classified pixels in an image rather than

more challenging pixels. To address this, Chen et al. [7]

substitute a linear function in place of the entropy function

H . These methods demonstrate competitive performance

with adversarial approaches on GTA5-to-Cityscapes and

SYNTHIA-to-Cityscapes.

Some recent work in UDA for semantic segmentation

has considered the broad notion of consistency, but they

do so in a different manner from this work. Most notably,

a significant body of research leverages cycle-consistency

to translate images in the source domain to the target do-

main for domain adaptation [23, 12, 18, 32, 61, 38]. [23]

employs cycle-consistent GANs for domain adaptation at

both the pixel-level and feature-level. [38] trains a GAN-

based image-to-image translation network and a semantic

segmentation network with the same backbone, and [32]

extends the idea of cross-domain cycle-consistency to the

multi-source setting. [33] trains an image-to-image trans-

lation model and a semantic segmentation model in alter-

nating stages, while the very recent work [28] considers a
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Figure 1. Our proposed pixelwise consistency training approach.

contrastive cycle-consistency loss on the level of pixels. Fi-

nally, [56] performs image-to-image translation for UDA

in frequency space rather than pixel space using a Fourier

transform.

Beyond cycle-consistency, [12] enforces cross-domain

consistent predictions in the context of image-to-image trans-

lation for UDA for using two image-level adversarial losses

and two feature-level adversarial losses. [18] enforces geo-

metric consistency in the context of image-to-image transla-

tion, [29] aims to learn texture-invariant representations, and

[26] aims to learn spatially-consistent features by segment-

ing images on the level of patches.

Our formulation of consistency training differs from all

of these above approaches in that it directly applies a gen-

eral consistency loss to the semantic segmentation network

in the target domain, ensuring that the output is consistent

with respect to perturbations. Our framework is flexible,

supporting perturbation functions inspired by work from

both the semi/self-supervised learning community (below)

and the domain adaptation community. Whereas most of

the previous approaches involve adversarial losses, auxil-

iary networks, or complex multi-stage training pipelines, our

framework involves only a single segmentation network with

a single non-adversarial consistency loss (in addition to the

standard source cross-entropy loss). Additionally, our frame-

work is flexible and may be used alongside any of these prior

approaches.

Algorithm 1: Target Consistency Loss

Input: Input image x ∈ R
H×W×3

Result: Target consistency loss

ypseudo = model(x) # without gradient

xpert, ypseudo pert = perturbationS(x, ypseudo)

yhat = model(xpert)

loss = cross entropy(ypseudo pert, yhat)

return loss

2.1.2 Consistency Training

Consistency training was first proposed for semi-supervised

learning by Blum and Mitchell [4] and enjoyed widespread

use throughout the 2000s under the name “co-training”. This

co-training framework was slightly different than the ap-

proach we have today; Blum and Mitchell [4] trained multi-

ple models on different views of the same set of input exam-

ples and used these models to produce pseudolabels for one

another. Modern consistency training [42] produces multiple

views of the same input using a stochastic data augmentation

function, and uses them to train a single model.

Recently, consistency training has formed the base of

multiple large advances in semi-supervised learning for im-

age classification. Xie et al. [55] use a model to generate

(soft) artificial labels and enforce strongly-augmented ex-

amples, showing strong performance on CIFAR-10 with as

few as 250 examples. In MixMatch [3], Berthelot et al. mix

labeled and unlabeled data while performing entropy mini-

mization on augmented unlabeled data. In their follow-up

ReMixMatch [2], they further improve the method’s sample-

efficiency by optimizing the data augmentation function

during training. Most recently, in FixMatch [46], Sohn et al.

replace entropy minimization with pseudolabeling followed

by filtering for high-confidence examples.

We denote our method ”PixMatch“ as a reference to this

line of work, but we emphasize that it is designed for the

different setting of unsupervised domain adaptation, not

semi-supervised image classification. In this paper we are

interested in answering the question of what forms of consis-

tency losses are effective for UDA specifically.

2.1.3 Contrastive Learning and Data Augmentation

Consistency training is closely related to contrastive learning,

which has recently led to remarkable progress in unsuper-

vised representation learning [20, 9]. Of particular relevance

for this paper is SimCLR [9]; our baseline PixMatch model

uses the data augmentations proposed in SimCLR as its per-

turbation function for consistency training. In related work,

[17] uses a student-teacher architecture with augmentations

for image classification.
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3. PixMatch

3.1. Overview

PixMatch employs consistency training and pseudolabel-

ing to enforce consistency on the target domain. Its loss

function is composed of two cross-entropy loss terms. The

first of these is the standard supervised cross-entropy loss on

the source domain:

LS = −

1

nS

X

s∈S

H·WX

i=1

H(y(i)s , p(i)(y|xs)) (1)

where p(i) is the output probability distribution at pixel i for

source input xs, y is the ground truth semantic map, and nS

is the number of images in the source dataset S.

The second of these losses is a consistency loss on the

target domain. To calculate this loss, we first run a target

image xt through the model to obtain the pseudolabel ŷt =
argmax(qt) = argmax(pt(y|xt)). We then perturb the

(image, pseudolabel) pair using a perturbation function to

yield the pair (xpert, ˆypert). Our consistency loss function

is then

LT = −

1

nT

X

t∈T

H·WX

i=1

H( ˆypert
(i), p(i)(y|xpert)) (2)

and the final loss is L = LS + λTLT , where λT is a hyper-

parameter that controls the relative weighting of the source

(supervised) loss and the target consistency loss.

3.2. Perturbation Functions

We experiment with four perturbation functions, two in-

spired by the self-supervised learning community and two

inspired by the domain adaptation community.

Data Augmentation Consistency Our baseline PixMatch

model uses heavy data augmentation as the perturbation

function (Figure 3). It is important to note that, unlike in

image classification, when we augment an input target image

using a geometric transform (e.g. cropping), we also have to

perform the corresponding augmentation on the pseudolabel

produced by the model.

CutMix Consistency Our second model uses the recently-

proposed CutMix [58] regularization method as a perturba-

tion function. Specifically, we cut-and-paste a rectangular

region from a source image onto the target image and enforce

that the predictions on this mixed image are consistent with

the corresponding mixed labels. Note that this perturbation

function takes as input both the source and target image,

rather than just the target image. We use CutMix rather

than other regularization methods because, in comparison to

MixMatch [3] and others, [58] argues that CutMix promotes

the learning of more localizable features. This perturbation

function is closely related to the approach taken in [16] for

semi-supervised semantic segmentation.

Style Consistency Our third perturbation function is in-

spired by the line of work in domain adaptation that tries to

transfer the style of the target images to the source prior to or

during training [23, 49, 12, 38]. Here, we transfer the style

of the source to the target and enforce consistency between

the model’s predictions on the original target image and the

source-stylized target image. To perform the target-to-source

stylization, we use the zero-shot style transfer model from

[45] (AvatarNet).

Fourier Consistency Our fourth perturbation function, in-

spired by but different from [56], modifies the target image

in frequency space using a Fourier transform. [56] replaces

the low-frequency part of source images with that of target

images, creating source images with low-frequency target

styles; they train using a cross-entropy loss between these

modified source images and the source labels, alongside en-

tropy minimization on the target images. Differently, we

replace the low-frequency part of the target images with that

of the source, creating target images with low-frequency

source styles; we train with a consistency loss between the

original images and these Fourier-stylized target images,

alongside the standard cross-entropy loss on the source.

3.3. Relationship between PixMatch and Self-
Training

As a general framework, PixMatch is closely related to

self-training methods. In particular, if the perturbation func-

tion is the identity function, then the pseudolabels produced

during consistency training are the standard pseudolabels

from self-training. It is also possible to perform PixMatch in

a soft manner, analogous to the way in which entropy mini-

mization is a soft variant of pseudolabeling. In our ablation

studies on our baseline model, we find that a hard approach

gives better empirical results.

However, our framework is different from other self-

training methods in that it enables domain-adaptation-

specific self-training; the perturbation function may incor-

porate information from the source data. For example,

our Fourier-based consistency function uses source-domain

Fourier frequencies to perturb the target images. By con-

trast, other pure self-training approaches [63, 7, 52] use only

target-domain information.

4. Experiments

Datasets We evaluate our method on the two stan-

dard large-scale UDA segmentation benchmarks, GTA5-to-

Cityscapes and SYNTHIA-to-Cityscapes. For evaluation, we
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Figure 2. Qualitative examples of our consistency training method and prior methods on GTA5-to-Cityscapes. The column ”Ours” refers to

our baseline model with augmentation-based perturbations. Note that these images are not hand-picked; they are the first 5 images in the

Cityscapes validation set. Visually, our method yields better segmentations than prior techniques. On the third image, for example, it is the

only method that properly segments the bicycle (shown in red) and the only method that does not mistake a large proportion of the building

for sky.

measure per-class and mean Intersection-over-Union (IoU).

As is standard, we evaluate using all 19 classes for GTA5-to-

Cityscapes, and using both 16 and 13 classes for SYNTHIA-

to-Cityscapes (because SYNTHIA shares only 16 classes

with Cityscapes).

Model For purposes of comparison with previous meth-

ods, we use the DeepLab-v2 segmentation model [6] with a

ResNet-101 [21] backbone. We train using SGD with learn-

ing rate 1.0·10−4, momentum 0.9, weight decay 5·10−4, and

a polynomial learning rate decay: lr = lr∗(1− iter
max iter

)0.9.

All experiments are conducted on a single NVIDIA RTX

2080TI GPU with 11GB of VRAM. The exact parameters

used for each perturbation function are included in the ap-

pendix.

Results We present our results on the highly competitive

GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes bench-

marks in Tables 1 and 2. For comparison, we have included

27 other methods from the past two years, including all top

results from the SoTa benchmark list on PapersWithCode.

Our simple consistency training method performs extremely

well relative to other methods.

We also show qualitative results in Figures 2 and 5.

5. Analysis

Overall On GTA5-to-Cityscapes (Table 1), our base-

line augmentation-based model performs best, followed

by CutMix-, Fourier-, and finally style-based consistency.

When combined with entropy minimization (in the form of

the max-square loss), our baseline method attains an mIoU

of 50.3, outperforming all other methods with the exception

of a single method using a distillation of multiple models

that performs 0.1 mIoU better (50.4).

On SYNTHIA-to-Cityscapes (Table 2), CutMix-based

training method performed best, followed by Fourier-,

augmentation-, and again style-based consistency. Apart

from style-based consistency, all are within 0.4 mIoU; they

perform very competitively with more complex domain adap-

tation approaches.

Fourier It is natural to compare the results of our Fourier-

based model to those from FDA [56], which modifies the

source images directly. On GTA5-to-Cityscapes, our method

outperforms FDA (45.4 vs 44.6 mIoU). On SYNTHIA-to-

Cityscapes, [56] only presents results for a distillation of

an ensemble of models, not a single model, but nonetheless

our single model only slightly underperforms the distilled

ensemble (51.1 vs 52.5 mIoU).
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No Adaptation

Source only RN-101 71.4 15.3 74.0 21.1 14.4 22.8 33.9 18.6 80.7 20.9 68.5 56.6 27.1 67.4 32.8 5.6 7.7 28.4 33.8 36.9

Adversarial Methods

[49] 2018 AdaptSegNet RN-101 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

[49] 2018 AdaptSegNet-LS RN-101 91.4 48.4 81.2 27.4 21.2 31.2 35.3 16.1 84.1 32.5 78.2 57.7 28.2 85.9 33.8 43.5 0.2 23.9 16.9 44.1

[52] 2019 AdvEnt RN-101 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8

[52] 2019 AdvEnt+MinEnt RN-101 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

[50] 2019 Patch-Disc RN-101 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

[60] 2019 CAG RN-101 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2

[53] 2020 FADA RN-101 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2

[53] 2020 FADA-MST RN-101 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

[25] 2020 CrCDA RN-101 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6

Image-to-Image / Style Transfer Methods

[33] 2019 BDL (M2-F2) RN-101 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

[12] 2019 CrDoCo DRN-26 95.1 49.2 86.4 35.2 22.1 36.1 40.9 29.1 85.0 33.1 75.8 67.3 26.8 88.9 23.4 19.3 4.3 25.3 13.5 45.1

[56] 2020 FDA RN-101 88.8 35.4 80.5 24.0 24.9 31.3 34.9 32.0 82.6 35.6 74.4 59.4 31.0 81.7 29.3 47.1 1.2 21.1 32.3 44.6

[56] 2020 FDA (Ensemble) RN-101 92.5 53.3 82.3 26.5 27.6 36.4 40.5 38.8 82.2 39.8 78.0 62.6 34.4 84.9 34.1 53.12 16.8 27.7 46.4 50.4

[29] 2020 LTIR RN-101 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2

Self-Training Methods

[63] 2018 CBST-SP WRN-38 88.0 56.2 77.0 27.4 22.4 40.7 47.3 40.9 82.4 21.6 60.3 50.2 20.4 83.8 35.0 51.0 15.2 20.6 37.0 46.2

[52] 2019 MinEnt RN-101 86.2 18.6 80.3 27.2 24.0 23.4 33.5 24.7 83.3 31.0 75.6 54.6 25.6 85.2 30.0 10.9 0.1 21.9 37.1 42.3

[7] 2019 MaxSquare (MS) RN-101 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.2 44.3

[7] 2019 MS+IW+Multi RN-101 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4

[62] 2019 CRST (MRENT) RN-101 91.8 53.4 80.6 32.6 20.8 34.3 29.7 21.0 84.0 34.1 80.6 53.9 24.6 82.8 30.8 34.9 16.6 26.4 42.6 46.1

[62] 2019 CRST (MRKLD) RN-101 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

[62] 2019 CRST (LRENT) RN-101 91.8 53.5 80.5 32.7 21.0 34.0 29.0 20.3 83.9 34.2 80.9 53.1 23.9 82.7 30.2 35.6 16.3 25.9 42.8 45.9

[34] 2019 PyCDA RN-101 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

[26] 2019 MLSL (SISC) ST RN-101 91.0 49.3 79.9 24.4 27.9 37.9 45.1 45.1 81.3 19.0 61.7 63.9 28.0 86.5 23.9 42.3 41.9 33.1 44.4 48.7

[26] 2020 MLSL (+PWL) ST RN-101 89.0 45.2 78.2 22.9 27.3 37.4 46.1 43.8 82.9 18.6 61.2 60.4 26.7 85.4 35.9 44.9 36.4 37.2 49.3 49.0

Other Methods

[30] 2019 SWD RN-101 92.0 46.4 82.4 24.8 24.0 35.1 33.4 34.2 83.6 30.4 80.9 56.9 21.9 82.0 24.4 28.7 6.1 25.0 33.6 44.5

[31] 2020 CCM RN-101 93.5 57.6 84.6 39.3 24.1 25,2 35.0 17.3 85.0 40.6 86.5 58.7 28.7 85.8 49.0 56.4 5.4 31.9 43.2 49.9

[28] 2020 PLCA RN-101 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7

[39] 2020 IntraDA RN-101 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3

Ours (CutMix) RN-101 90.9 45.2 81.3 26.4 19.2 21.7 33.2 18.3 84.3 41.1 78.8 61.2 21.3 87.2 43.6 50.2 5.8 29.3 21.8 45.4

Ours (Style) RN-101 83.7 34.5 81.5 18.9 11.0 17.6 24.3 24.0 84.7 31.5 77.9 59.8 21.2 81.3 42.5 36.2 2.51 6.30 5.23 39.2

Ours (Fourier) RN-101 83.0 34.4 81.1 27.9 14.4 22.3 35.1 15.7 85.3 39.4 77.3 59.1 18.2 86.6 43.3 49.5 5.46 30.2 26.8 44.0

Ours (Augmentations) RN-101 81.0 33.4 84.3 32.9 27.6 25.7 38.3 47.0 86.5 36.9 84.9 64.6 28.7 85.8 42.3 40.2 1.5 33.7 41.8 48.3

Ours (Augmentations) + MS RN-101 91.6 51.2 84.7 37.3 29.1 24.6 31.3 37.2 86.5 44.3 85.3 62.8 22.6 87.6 38.9 52.3 0.65 37.2 50.0 50.3

Table 1. GTA5-to-Cityscapes results. RN-101 and WRN-38 refer to ResNet-101 and Wider-ResNet-38 architectures.

CutMix The CutMix-based model, which has no domain-

adaptation-specific components, gives very strong results.

This is notable because most highly-competitive recent meth-

ods employ domain-adaptation-specific components in the

form of adversarial training (e.g. [53]), domain-specific

priors (e.g. [26]), style transfer (e.g. [29]), or distribution

alignment (e.g. [30]). Compared to other pure self-training

methods (e.g. MinEnt [52], MaxSquare [7], CRST [62],

PyCDA [34]) our method performs substantially better.

Style The style-based variant performs badly relative to

our other models and to other approaches that use style

transfer directly. We hypothesize that this underperformance

may be due to our choice of style transfer model, as we
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mIoU-16 mIoU-13

No Adaptation

Source only RN-101 17.7 15.0 74.3 10.1 0.1 25.5 6.3 10.2 75.5 77.9 57.1 19.2 31.2 31.2 10.0 20.1 30.1 34.3

Adversarial Methods

[49] 2018 AdaptSegNet RN-101 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9

[49] 2018 AdaptSegNet-LS RN-101 84.0 40.5 79.3 10.4 0.2 22.7 6.5 8.0 78.3 82.7 56.3 22.4 74.0 33.2 18.9 34.9 40.8 47.6

[52] 2019 AdvEnt RN-101 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6

[52] 2019 AdvEnt+MinEnt RN-101 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

[50] 2019 Patch-Disc RN-101 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

[60] 2019 CAG RN-101 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 52.6

[53] 2020 FADA RN-101 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5

[25] 2020 CrCDA R RN-101 86.2 44.9 79.5 8.3 0.7 27.8 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 42.9 50.0

Image-to-Image / Style Transfer Methods

[33] 2019 BDL (M2-F2) RN-101 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

[12] 2019 CrDoCo DRN-26 62.2 21.2 72.8 4.2 0.8 30.1 4.1 10.7 76.3 73.6 45.6 14.9 69.2 14.1 12.2 23.0 33.4 38.5

[56] 2020 FDA (Ensemble) RN-101 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5

[29] 2020 LTIR RN-101 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3

Self-Training Methods

[63] 2018 CBST-SP WRN-38 53.6 23.7 75.0 12.5 0.3 36.4 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 42.5 48.4

[52] 2019 MinEnt RN-101 73.5 29.2 77.1 7.7 0.2 27.0 7.1 11.4 76.7 82.1 57.2 21.3 69.4 29.2 12.9 27.9 38.1 44.2

[7] 2019 MaxSquare (MS) RN-101 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 39.3 45.8

[7] 2019 MS + IW + Multi RN-101 82.9 40.7 80.3 10.2 0.8 25.8 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 41.4 48.2

[62] 2019 CRST (MRENT) RN-101 69.6 32.6 75.8 12.2 1.8 35.3 23.3 29.5 77.7 78.9 60.0 28.5 81.5 25.9 19.6 41.8 43.4 49.6

[62] 2019 CRST (MRKLD) RN-101 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

[62] 2019 CRST (LRENT) RN-101 65.6 30.3 74.6 13.8 1.5 35.8 23.1 29.1 77.0 77.5 60.1 28.5 82.2 22.6 20.1 41.9 42.7 48.7

[34] 2019 PyCDA RN-101 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3

[26] 2020 MLSL (SISC) RN-101 73.7 34.4 78.7 13.7 2.9 36.6 28.2 22.3 86.1 76.8 65.3 20.5 81.7 31.4 13.9 47.3 44.4 50.8

[26] 2020 MLSL (+PWL) RN-101 59.2 30.2 68.5 22.9 1.0 36.2 32.7 28.3 86.2 75.4 68.6 27.7 82.7 26.3 24.3 52.7 45.2 51.0

Other Methods

[30] 2019 SWD RN-101 82.4 33.2 82.5 - - - 22.6 19.7 83.7 78.8 44.0 17.9 75.4 30.2 14.4 39.9 - 48.1

[31] 2020 CCM RN-101 79.6 36.4 80.6 13.3 0.3 25.5 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.27 29.9 52.0 45.2 52.9

[28] 2020 PLCA RN-101 82.6 29.0 81.0 11.2 0.2 33.6 24.9 18.3 82.8 82.3 62.1 26.5 85.6 48.9 26.8 52.2 46.8 54.0

[39] 2020 IntraDA RN-101 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

Ours (CutMix) RN-101 84.8 42.1 81.0 6.98 0.25 27.9 15.6 16.6 82.3 80.7 53.9 21.8 83.1 39.3 21.0 43.1 43.8 51.2

Ours (Augmentations) RN-101 73.0 38.9 70.8 6.0 0.1 27.0 17.0 20.3 83.0 84.2 59.1 27.0 80.1 37.4 17.8 52.4 43.4 50.8

Ours (Fourier) RN-101 82.9 36.2 81.7 9.74 0.11 29.7 16.7 19.2 84.3 84.2 62.3 16.9 84.6 39.4 3.04 52.5 44.0 51.1

Ours (Style) RN-101 82.1 38.0 76.2 3.97 0.12 26.4 14.2 11.0 75.5 70.7 54.3 20.6 75.8 36.9 19.4 39.3 40.3 47.3

Ours (Fourier + CutMix) RN-101 92.5 54.6 79.8 4.78 0.08 24.1 22.8 17.8 79.4 76.5 60.8 24.7 85.7 33.5 26.4 54.4 46.1 54.5

Table 2. Results on the SYNTHIA-to-Cityscapes benchmark. mIoU-16 and mIoU-13 refer to mean intersection-over-union on the standard

sets of 16 and 13 classes, respectively.

used AvatarNet [45] rather than CycleGAN as in [33] or

CycleGAN + StyleSwap as in [29].

Combining Perturbation Functions PixMatch also

makes it easy to combine multiple perturbation functions.

For example, Table 2 shows the result of combining the

Fourier- and CutMix-based perturbations on the SYNTHIA

benchmark. We give additional results for combining per-

turbation functions in the Appendix (Table 6). We find that

combining two perturbation functions often improves results,

while combining three or more is “too much” perturbation.

We note that we have not experimented with using dif-

ferent strengths/weights for different perturbation functions,

nor have we experimented with stochastically applying per-

turbation functions. Studying the interactions of multiple

perturbation functions could be a promising avenue for fu-
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λT 0.00 (Source) 0.05 0.10 0.15 0.20

mIoU 36.9 48.7 49.4 49.8 48.0

Table 3. Results of our augmentation-based model, varying the

consistency loss weight hyperparameter λT .

τ 0.00 0.50 0.90 0.95

mIoU 49.9 48.7 47.1 47.0

Table 4. Results of our augmentation-based model with an addi-

tional pseudolabel threshold. A threshold of τ ∈ [0, 1) corresponds

to only calculating the consistency loss on pseudolabeled pixels for

which the model assigns an output probability greater than τ to one

class.

λMSL 0.00 0.05 0.10 0.15

mIoU 49.9 50.7 50.5 50.4

Table 5. Results of a model combining the max-square loss [7] with

our augmentation-based consistency loss, for different values of

λMSL

ture research.

6. Ablation Studies and Further Experiments

Below, we present an extensive set of ablation studies on

our baseline (augmentation-based) model.

Ablation: Varying λT Our proposed consistency train-

ing method involves choosing a perturbation function and

tuning the single hyperparameter λT , which trades off be-

tween the strength of the source supervised loss and the

target consistency loss. We present results for λT =
0.00, 0.05, 0.10, 0.15, and 0.20 in Table 3, finding that

λT = 0.10 and 0.15 both yield strong results. This finding

shows a stark contrast between UDA for semantic segmen-

tation and self-supervised learning for image classification,

where the consistency loss is usually much greater than 1

(λunsup > 1) [46, 55].

Ablation: Adding a Pseudolabel Threshold It is also

possible to add a pseudolabel threshold in our formulation

of consistency training. This corresponds to only pseudola-

beling pixels in which the target output probability exceeds

some threshold τ (other pixels are ignored from the loss).

For example, [46] uses τ = 0.95.

In Table 4, we show results for τ = 0, 0.5, 0.9, and 0.95.

Surprisingly, unlike in semi-supervised learning for image

classification, we find that τ = 0.0 (i.e. no thresholding)

performs best. We hypothesize that this may be because

when a large threshold is used, the loss is dominated by

easy classes; if this is the case, future work could potentially

address the issue by performing consistency training with

class-wise thresholds [63].

Combining PixMatch with Other Methods Our consis-

tency training method is complementary to a wide range

of other domain adaptation techniques. To demonstrate

this, we combine our method with the max-square loss

proposed in [7]. That is, we modify our loss function to

be L = LS + λTLT + λMSLLMSL. In Table 5, we fix

λT = 0.10 and present results for different weightings

λMSL of the max-square loss term. The across-the-board

performance improvement demonstrates that our method is

readily combinable with other self-training approaches. As

a highlight, the variant with λMSL = 0.05 achieves state-of-

the-art performance on GTA5-to-Cityscapes.

7. Conclusion

We present PixMatch, an unsupervised domain adaptation

approach for semantic segmentation that incorporates consis-

tency training in the target domain. Through an extensive set

of ablation studies, we sought to understand which aspects

of this consistency training framework are most important to

the model’s final performance. In comparison to adversarial

approaches that have dominated the recent literature, our

approach is faster, more stable, has superior performance,

and may be readily combined with other methods. Future

work may explore new perturbation functions, the combi-

nation of multiple perturbation functions, or the application

of this framework to other tasks (e.g. object detection). We

will release code and pretrained models to facilitate future

research.
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