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Abstract

This paper introduces the unsupervised learning prob-

lem of playable video generation (PVG). In PVG, we aim

at allowing a user to control the generated video by select-

ing a discrete action at every time step as when playing a

video game. The difficulty of the task lies both in learn-

ing semantically consistent actions and in generating re-

alistic videos conditioned on the user input. We propose a

novel framework for PVG that is trained in a self-supervised

manner on a large dataset of unlabelled videos. We em-

ploy an encoder-decoder architecture where the predicted

action labels act as bottleneck. The network is constrained

to learn a rich action space using, as main driving loss,

a reconstruction loss on the generated video. We demon-

strate the effectiveness of the proposed approach on several

datasets with wide environment variety. Further details,

code and examples are available on our project page willi-

menapace.github.io/playable-video-generation-website.

1. Introduction

Humans at a very early age can identify key objects

and how each object can interact with its environment.

This ability is particularly notable when watching videos

of sports or games. In tennis and football, for example, the

skill is taken to the extreme. Spectators and sportscasters

often argue which action or movement the player should

have performed in the field. We can understand and antici-

pate actions in videos despite never being given an explicit

list of plausible actions. We develop this skill in an unsu-

pervised manner as we see actions live and on the screen.

We can further analyze the technique with which an action

is performed as well as the “amount” of action, i.e. how

much to the left. Furthermore, we can reason about what

*The second and third authors contributed equally to the work.
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Figure 1: We introduce the task of playable video genera-

tion in an unsupervised setting (left). Given a set of unla-

beled video sequences, a set of discrete actions are learned

in order to condition video generation. At test time, using

our method, named CADDY, the user can control the gen-

erated video on-the-fly providing action labels.

happens if the player took a different action and how this

would change the video.

From this observation, we propose a new task, Playable

Video Generation (PVG) illustrated in Fig 1a. In PVG, the

goal is to learn a set of distinct actions from real-world

video clips in an unsupervised manner (green block) in or-

der to offer the user the possibility to interactively generate

new videos (red block). As shown in Fig 1b, at test time, the

user provides a discrete action label at every time step and

can see live its impact on the generated video, similarly to

video games. Introducing this novel problem paves the way

toward methods that can automatically simulate real-world

environments and provide a gaming-like experience.

PVG is related to the future frame prediction prob-

lem [13, 25, 28, 40, 42, 44] and in particular to methods that

condition future frames on action labels [20, 30, 31]. Given

one or few initial frames and the labels of the performed ac-

tions, such systems aim at predicting what happens next in
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the video. For example, this framework can be used to imi-

tate a desired video game using a neural network with a re-

markable generation quality [20, 31]. However, at training

time, these methods require videos with their corresponding

frame-level action at every time step. Consequently, these

methods are limited to video game environments [20, 31] or

robotic data [30] and cannot be employed in real-world en-

vironments. As an alternative, the annotation effort required

to address real-world videos can be reduced using a single

action label to condition the whole video [45], but it lim-

its interactivity since the user cannot control the generated

video on-the-fly. Conversely, in PVG, the user can control

the generation process by providing an action at every time-

step after observing the last generated frame.

This paper addresses these limitations introducing a

novel framework for PVG named Clustering for Action

Decomposition and DiscoverY (CADDY). Our approach

discovers a set of distinct actions after watching multiple

videos through a clustering procedure blended with the gen-

eration process that, at inference time, outputs playable

videos. We adopt an encoder-decoder architecture where

a discrete bottleneck layer is employed to obtain a dis-

crete representation of the transitions between consecutive

frames. A reconstruction loss is used as main driving loss

avoiding the need for neither action label supervision nor

even the precise number of actions. A major difficulty

in PVG is that discrete action labels cannot capture the

stochasticity typical of real-world videos. To address this

difficulty, we introduce an action network that estimates the

action label posterior distribution by decomposing actions

in a discrete label and a continuous component. While the

discrete action label captures the main semantics of the per-

formed action, the continuous component captures how the

action is performed. At test time, the user provides only the

discrete actions to interact with the generation process.

Finally, we experimentally demonstrate that our ap-

proach can learn consistent actions in varied environments.

We conduct experiments on three different datasets includ-

ing both real-world (i.e. tennis and robotics [9]) and syn-

thetic (i.e. video game [2]). Our experiments show that

CADDY generates high-quality videos while offering the

user a better playability experience than existing future

frame prediction methods.

2. Related Works

Video generation. Recent advances in deep generative

models have led to impressive progress in video genera-

tion. A variety of formulations have been explored includ-

ing Generative Adversarial Networks (GANs) [35, 42, 44],

variational auto-encoders (VAEs) [1] and auto-regressive

models [47]. While early works addressed the uncondi-

tional case [35, 44], many conditional video generation

tasks have been addressed. The generated video can be con-

ditioned on specific type of information. Among numerous

examples, we can cite video to video translation [46], image

animation [37, 38] or pose-based generation [4].

Another typical example is the problem of future frame

prediction that consists in generating a video conditioned

on the first video frames. Early works employ determin-

istic predictive models [10, 28, 44] that cannot handle the

stochasticity inherent to real-world videos. Several meth-

ods have been proposed to incorporate stochasticity in the

model using VAE formulations [13, 25, 42], GANs [24], or

normalizing flows [23]. Inspired by VAE-based approaches,

we adopt a probabilistic formulation that is compatible with

our encoder-decoder pipeline. Nevertheless, our playable

video generation framework goes beyond video prediction

methods and allows the user to control generation of future

frames with discrete actions.

To offer better control over the generation process than

video prediction methods, some approaches condition the

generated video on an input action label [21, 45]. However,

these approaches require action annotations for training and

the generated video cannot be controlled on-the-fly since a

single label is used to generate the whole video. To fur-

ther increase the level of control, other approaches condi-

tion each frame in the generated video on a different action

label [6, 20, 30, 31]. In particular, Kim et al. recently pro-

posed GameGAN [20], a framework that visually imitates a

desired game. During training, GameGAN ingests a large

collection of videos and the corresponding keyboard actions

pressed by the player. The network is trained to predict the

next frame from past frames and keyboard actions. While

these methods allow playable video generation similarly to

our approach, the requirement for frame-level annotation

limits their application to constrained environments such as

video games. Conversely, our approach does not use ac-

tion label supervision and can be employed in real-world

environments. In the context of future frame predictions,

Rybkin et al. [34] propose to infer latent actions. However,

this method learns a continuous action space that is later

mapped to discrete actions with action supervision.

Few works have focused on the generation of videos with

controllable characters in real-world environments [14, 49].

However, these approaches heavily rely on prior knowledge

specific to the environment, such as pre-trained full-body

pose estimators. On the contrary, in PVG, the goal is to

design a general framework that can be applied to varied

environments without modifications.

Deep clustering and unsupervised learning. Unsuper-

vised learning has attracted growing attention with the raise

of self-supervised learning techniques. Recent works ad-

dress jointly clustering and representation learning so that

the network is trained to categorize the training data while

learning deep representation. For instance, DeepCluster [3]

alternates between k-mean clustering and a feature learn-
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ing phase where cluster assignments are used as supervi-

sion. As an alternative to this iterative algorithm, other

approaches [18, 29] propose the use of networks that di-

rectly output cluster assignment rather than feature repre-

sentations. In these methods, the network is trained with an

information-theoretic criterion formulated as a mutual in-

formation maximization problem. Differently from these

approaches that focus only on image clustering, CADDY

tackles the problem of learning actions in videos by blend-

ing clustering with a generation formulation.

Note that, recent works address the problem of unsuper-

vised learning for videos [8, 27, 32, 39] but they are either

limited to representation learning [8, 27] or perform clus-

tering at the video-level [32, 39] while PVG requires action

labels at every time step.

3. Method

3.1. Overall Pipeline

In this work, we propose a framework where a user can

interactively control the video generation process by select-

ing an action at every time step among a set of K discrete

actions. Our method, named CADDY, is trained on a dataset

of unannotated videos. We only assume that the video se-

quences depict a single agent acting in an environment. No

action labels are required.

Inspired by Reinforcement Learning (RL) literature

[41], the object in the scene is modeled as an agent interact-

ing with its environment by performing an action at every

time step. Differently from RL, our goal is to jointly learn

the action space, the state representation that describes the

state of the agent and its environment, and a decoder that

reconstructs the observations (i.e. frames) from the state.

CADDY is articulated into four main modules illustrated

in Fig. 2: (i) an encoder employs a network E to extract

frame representations; (ii) a temporal model estimates the

label corresponding to the action performed in the current

frame and predicts a state st+1 that describes the environ-

ment at the next time step, after performing the detected

action. The action label is predicted via a network A that

receives the frame representations from the current and next

frames. To predict the next frame environment state st+1,

we employ a recurrent neural network R that we refer to

as Dynamics network. (iii) a decoder module employs a

network D to reconstruct each frame from the frame em-

bedding predicted by the temporal model. (iv) the recon-

structed frames are fed to the encoder to assess the quality

of the estimated action labels.

The overall pipeline is trained in an end-to-end fashion

using as main driving loss a reconstruction loss on the out-

put frames. The key idea of our approach is that the action

network A needs to predict consistent action labels in or-

der to correctly estimate the next frame embeddings st+1,

and then, accurately reconstruct the input frames. We now

describe each network.

Video encoder. Let us consider a video sequence {xt}
T
t=1

of length T . First, for every frame, we extract a feature

representation ft with t ∈ {1, .., T} which we call frame

features. The aim of this representation is to encode infor-

mation about the appearance and the semantics of the input

frame:
ft = E(xt). (1)

Action network. Next, the action network A is used to in-

fer the discrete action at ∈ {1..K} performed between the

frames xt and xt+1. The action label at characterizes the

transition between the features ft and its successor ft+1.

In a deterministic environment, the evolution of the envi-

ronment is fully described by at. However, in real scenar-

ios this assumption is rarely satisfied and agents acting in a

complex environment may express a behavior that can only

be partially described with discrete actions. To handle this,

we propose to model the transition between two consecutive

frame features as the combination of the discrete action at
and a continuous component vt referred to as action vari-

ability embedding, i.e.:

at, vt = A(ft, ft+1). (2)

While the discrete action at describes the action performed

by the agent at a high level, the continuous component vt
describes the variability of each action and captures the pos-

sible non-determinism in the environment.

In order to handle this non-determinism, we propose a

probabilistic auto-encoder formulation to train the action

network. In this regard, details are given in Sec. 3.2.

Dynamics network. Given the features ft, the action at,

and the corresponding action variability embedding vt, the

dynamics network R is used to embed the dynamics of the

environment observed in the input sequence. We model the

dynamics network as a recurrent network based on convo-

lutional LSTMs [36] with the environment state st:

st+1 = R(st, ft, at, vt). (3)

The induction in Eq. (3) is initialized with a parameter s0
that we consider to be trainable. The action label at and the

action variability embedding vt are concatenated channel-

wise with the input feature ft in the dynamics network.

Decoder. We use a decoder network D to reconstruct the

frames x̂t+1 from the environment state st+1.

3.2. Probabilistic Action Network

As introduced earlier, the goal of the action network is

to estimate the action label at and action variability em-

bedding vt. The action network first uses an action state

network As to extract an action embedding et which repre-

sents the information in ft that is related to the action cur-

rently performed. Following a probabilistic formulation, As
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Figure 2: CADDY’s training procedure for unsupervised playable video generation. An encoder E extracts frame represen-

tations from the input sequence. A temporal model estimates the successive states using a recurrent dynamics network R

and an action network A which predicts the action label corresponding to the current action performed in the input sequence.

Finally, a decoder D reconstructs the input frames. The model is trained using reconstruction as the main driving loss.

predicts the posterior distribution of the action embedding

modeled as Gaussian:
et ∼ N (µet , σ

2
et
) (4)

with µet , σ
2
et

= As(ft). (5)

Similarly, the distribution of the action embedding

et+1∼N (µet+1
, σ2

et+1
) is estimated from ft+1. We can then

combine the action states et and et+1 to predict the per-

formed action. More precisely, we propose to model the

posterior distribution of the action (at, vt) using the differ-

ence between the two action embeddings which still follows

a Gaussian distribution. From the independence between

random variables et and et+1 we have:

dt = et+1 − et ∼ N (µdt
, σ2

dt
) (6)

with µdt
= µet+1

− µet and σ2
dt

= σ2
et+1

+σ2
et
. (7)

Finally, the action direction dt is sampled according

to (6) using the re-parametrization trick [22] and fed to a

single-layer classifier to estimate the probability of each ac-

tion pt={pkt }
K
k=1∈[0, 1]

K . Importantly, we implement the

classification layer using a Gumbel-Softmax layer [17] to

obtain the discrete label at from the probabilities pt while

preserving differentiability for Stochastic Gradient Descent

(SGD).

Regarding the action variability embedding vt, consider-

ing vt=dt would not favour the model to learn meaningful

action labels at since the changes in the environment could

be directly encoded in dt without using at. Thus, we pro-

pose to make vt dependent on both dt and at in a way that

dt cannot be recovered from vt alone, enforcing the learn-

ing of action labels at. To this aim, we consider a set of

K action direction centroids {ck}
K
k=1 (one per action) that

are defined as the expected action directions for each ac-

tion. Practically, the cluster centroids are estimated using

an exponential moving average over the action direction as-

sociated with each discrete action. We propose to define the

action variability embedding vt as the difference between

the observed action direction dt and its assigned cluster cen-

troid. Following a soft-assignement formulation, the action

variability embedding is given by the expected difference

with its action centroid:

vt =

K
∑

k=1

pkt (dt − ck). (8)

In this way, vt acts as a bottleneck for dt since, assuming

distinct centroids ck, dt cannot be completely encoded in

vt. To ensure distinct centroids, we introduce a loss that

prevents their collapse to a single point (see Sec. 3.3).

3.3. Training objectives and test

CADDY is trained in an end-to-end fashion with a com-

bination of objectives that aim at obtaining both high-

quality output sequences and a discrete action space that

captures the agent’s high-level actions.

Reconstruction losses. The main driving loss of our system

is a frame reconstruction loss based on the perceptual loss

of Johnson et al. [19]:

Lx
rec =

1

T

T
∑

t=1

J
∑

j=1

‖Nj(xt)−Nj(x̂t)‖1 , (9)

where Nj , j ∈ {1, ..., J} indicates the jth channel extracted

from a specific VGG-19 layer and J is the number of feature

channels in this layer. The reconstruction loss is averaged

over different layers and resolutions [38]: D is equipped

with multiple heads to output x̂t at different resolutions and

xt is down-sampled to form a pyramid. This loss is com-

pleted by a L1 reconstruction loss (denoted as L1) between

x̂t and xt to improve convergence.

Additionally, we propose to assess reconstruction quality

at the frame feature and action levels. The computation of

these additional losses is represented in the green block of

Fig. 2. The reconstructed frame x̂t is fed to E leading to
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frame features f̂t. Then, the Euclidean distance between

initial and reconstructed features is employed:

Lf
rec =

1

T

T
∑

t=1

∥

∥

∥
ft − f̂t

∥

∥

∥

2

2
. (10)

The motivation for this loss is that it enforces that the se-

mantic information extracted from input frames xt is also

preserved in x̂t. To avoid trivial minimization of (10), we

do not back-propagate the loss gradient through ft.

Action losses. Regarding action understanding, we propose

an information-theoretic objective that acts on the action

probabilities. The reconstructed frame features f̂t and f̂t+1

are fed to A that internally estimates the action probabilities

p̂t. We then maximize the mutual information between the

actions extracted from the input sequences and the corre-

sponding ones extracted from the reconstructed sequences:

max
θ

MI(pt, p̂t) = max
θ

(H(pt)−H(pt|p̂t)). (11)

Maximizing this objective function has two desirable ef-

fects. First, minimizing the conditional entropy term

H(pt|p̂t) imposes that the same action must be inferred

from the input and the reconstructed sequence. Second,

maximizing the entropy term H(pt) enforces that the maxi-

mal number of actions must be discovered. This avoids triv-

ial solutions where only a single action label at is constantly

predicted and ensures that the K action direction centroids

{ck}
K
k=1 do not collapse to a single point.

To compute the mutual information in Eq. (11), we con-

sider a mini-batch B of action probabilities (pt,p̂t). We esti-

mate the joint probability matrix Pij=P (at=i, ât=j), with

(i, j) ∈ {1, ...,K}2, as follows:

Pij = P (at=i, ât=j) =
1

B̄

∑

(pt,p̂t)∈B

pt.p̂
⊤
t , (12)

where B̄ denotes the size of B. We obtain Pi=P (at=i)
and Pj=P (ât=j) by marginalization over Pij . The mutual

information loss term is then given by:

Lact = −MI(pt, p̂t) =
K
∑

t=1

K
∑

j=1

Pij ln
Pij

Pi.Pj

. (13)

This action matching loss Lact is completed by a loss that

enforces that the action variability embeddings match. Con-

sidering the action direction distributions dt∼N (µdt
σ2
dt
)

and d̂t∼N (µ
d̂t

, σ2
d̂t

) associated with each (pt, p̂t) in B, we

measure the average Kullback–Leibler (KL) divergence be-

tween the distribution of d̂t and dt:

La
rec=

1

B̄

∑

(d̂t,dt)∈B

DKL(N (µ
d̂t

, σ2
d̂t

)‖N (µdt
, σ2

dt
)). (14)

Assuming a Gaussian prior for dt, we minimize the average

KL divergence DKL between the distributions of dt and a

Gaussian prior with unit variance N (0, In),

LKL =
1

B̄

∑

dt∈B

DKL(N (µdt
, σ2

dt
)‖N (0, In)). (15)

Total loss. The total objective is given by:

L =L1 + Lx
rec + λf

recL
f
rec + λa

recL
a
rec (16)

+ λactLact + λKLLKL,

where λact, λrep, λKL, λ
a
rec are positive weighting param-

eters. These parameters are estimated on the training set:

for every term, we iteratively experiment raising parameter

values until we can observe that the first back-propagation

steps lead to a decrease of the loss term.

Test time. At test time, CADDY receives as input the initial

video frame and the user provides an action label at every

time-step. We follow an auto-regressive approach where the

estimated x̂t+1 is used as input at the next time step (instead

of xt+1). We no longer employ the action network A and

use the action labels at provided by the user. Regarding the

action variability embedding, we employ vt=0 that corre-

sponds to the maximum of its posterior distribution.

Note that, this difference between training and test would

affect the performance of the network that has never re-

ceived generated images as inputs. To mitigate this prob-

lem, we propose a mixed training procedure. For the first

Tf frames, we use the training procedure as described above

where the Dynamic Network R receives in input the frame

features ft computed from original frames. Then, for t>Tf ,

R is fed with the frame features f̂t computed from the

reconstructed frames x̂t. By mixing original and recon-

structed frames, we obtain a network that can handle both

real and reconstructed frames, and consequently, is less

prone to the shift issue typical of auto-regressive methods.

4. Experiments

Datasets. We evaluate our method on three video datasets:

• BAIR robot pushing dataset [9]. We employ a version of

the dataset in 256x256 resolution, composed of about 44K

videos of 30 frames. Ground-truth robotic arm positions are

available but are only used for evaluation purposes.

• Atari Breakout dataset. We collect a dataset using a Rain-

bow DQN agent [15] trained on the Atari Breakout video

game environment. We collect 1407 sequences of about 32

frames with resolution 160x210 (358 for training, 546 se-

quences for validation and 503 for testing).

• Tennis dataset. We collect Youtube videos correspond-

ing to two tennis matches from which we extract about 900

videos with resolution 256x96. (See Sup. Mat. for more de-

tails). To respect the single agent assumption, we consider

only the lower part of the field.

Evaluation Protocol. We propose to evaluate both action

and video generation qualities by comparing the models on

the video reconstruction task. A test sequence is considered
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and the action network is used to extract the sequence of

learned discrete actions characterizing the input sequence.

Starting from the initial frame, the extracted actions are

used to reconstruct the remaining of the sequence. The eval-

uation is completed with a user-study that directly assesses

the quality of the learned set of discrete actions. We adopt

a large set of metrics.

Video quality metrics.

• LPIPS [50]: We report the average LPIPS computed on

corresponding frames of input and reconstructed sequences.

• FID [16]: We report the average FID between the original

and reconstructed frames.

• FVD [43]: We compute the FVD between the original and

reconstructed videos.

Action-space metrics. We introduce two metrics that mea-

sure the quality of the action space. Both metrics use addi-

tional knowledge (i.e. ground-truth information or an ex-

ternally trained detector) to measure motion consistency

among frames where the same action is performed. As-

suming two consecutive frames, we measure the displace-

ment ∆ of a reference point on the object of interest. On

the Tennis dataset, we employ FasterRCNN [33] to detect

the player and use the bounding box center as the refer-

ence point. On Atari Breakout, we employ a simple pixel

matching search to detect the rectangular platform and use

its center as the reference point. Finally, on BAIR, we use

the ground-truth location information of the robotic arm.

The key idea of the two action quality metrics is to assess

whether the predicted action labels and the displacement ∆
are consistent by trying to predict one from the other:

• ∆ Mean Squared Error (∆-MSE): This metric measures

how ∆ can be regressed from the action label. For each ac-

tion, we estimate the average displacement ∆, which is the

optimal estimator for ∆ (in terms of MSE). We report the

MSE to evaluate regression quality. To facilitate compari-

son among datasets, we normalize the MSE by the variance

of ∆ over the dataset.

• ∆-based Action Accuracy (∆-Acc): This metric measures

how the predicted action can be predicted from the displace-

ment ∆. To this aim, we train a linear classifier and report

the action-accuracy measured on the test set.

Action-conditioning metrics. Finally, we consider two

metrics that measure how the action label conditions the

generated video. Therefore, it evaluates both generation

quality and the learned action space:

• Average Detection Distance (ADD). Similarly to [38], we

report the Euclidean distance between the reference object

keypoints in the original and reconstructed frames. We em-

ploy the same detector as for the action-quality metrics to

estimate the reference points.

• Missing Detection Rate (MDR): We report the percentage

of detections that are successful in the input sequence, but

not in the reconstructed one. This represents the proportion

Variant G.S vt Lact LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑

(i) 0.263 80.0 1300 69.7 51.2

(ii) X 0.209 42.3 571 64.8 37.9

(iii) X X 0.249 76.4 1130 92.7 24.1

(iv) X X 0.245 76.9 1130 93.7 27.6

CADDY (Full) X X X 0.202 35.9 423 54.8 69.0

Table 1: Ablation results on the BAIR dataset. G.S: use

of Gumbel-Softmax, vt; use of the action variability em-

bedding vt; Lact: training with the mutual information loss

Lact. ∆-MSE and ∆-Acc in %.

of frames where the object of interest is missing.

4.1. Experimental analysis of CADDY

Ablation study. In this section, we study the impact of

three key elements: Gumbel-Softmax sampling, the action

loss Lact and action variability embeddings vt. We pro-

duce the following variants of our method: (i) uses none of

these components, (ii) introduces G.S., (iii) employs G.S.

and Lact, (iv) uses G.S. and vt. The BAIR dataset is used

because ground-truth displacement ∆ are available.

The results are presented in Tab. 1. In (i), when no com-

ponent is used, the lack of G.S. sampling makes the model

exploit pt at training time to encode information about the

next frame, learning a continuous rather than a discrete ac-

tion representation. At test time, when discrete actions are

used, this mismatch leads to poor performance. When G.S.

sampling is introduced in (ii), the model learns discrete ac-

tion representations with a ∆-MSE of 64.8%. However, the

model lacks a mechanism to resolve the ambiguity of which

variation of the discrete action should be performed. This

results in difficulties in optimizing the reconstruction objec-

tive and leads to reduced video quality. In (iii), when both

G.S. sampling and Lact are present, the optimization pro-

cess favors Lact rather than the reconstruction objective, re-

sulting in degraded performance. Lastly, in (iv), when both

G.S. sampling and vt are used without Lact, the model uses

vt at training time to encode complete information about

the next frame and a discrete action space is not learned.

At test time, when vt=0, performance of the model is poor.

Overall, this ablation study confirms the positive impact of

G.S sampling, the action variability embeddings, and our

mutual-information loss on the performance.

Visualization. Fig. 3 shows the object motion distribution

corresponding to each action learned by CADDY. On BAIR,

the model learns actions related to movements on the x (1,

4), y (2, 3) and z (6) axes as well as a no-movement ac-

tion (7). On Atari Breakout, the model learns actions cor-

responding to the three possible movements, as well as the

inertia of the platform and the physics of the ball and blocks.

Finally, on Tennis, the model learns actions corresponding

to forward (2) and backward (3) movement, lateral move-

ment (4, 7), no-movement (6) and hitting (1, 5).
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Figure 3: Qualitative evaluation of the action space learned by our model on the three datasets. We consider an initial frame

and, for every action, produce a sequence by repeatedly selecting that action and show the final frame. The bottom row

shows, for each action, the distribution of the displacement ∆ associated with the object of interest.

4.2. Comparison with Previous Works

Baseline selection. Since we present the first method for

unsupervised PVG, we compare the proposed model against

a selection of baselines, adapting existing methods to this

new settings. We consider two criteria in the selection of

the baselines: the architecture should be adaptable to the

new setting without deep modifications, and the source code

must be available to include these modifications. Compar-

ing existing video prediction methods in terms of FVD on

a 64x64 version of the BAIR dataset (quantitative compari-

son available in Sup. Mat) shows that SAVP [25] is the best

performing method with the code publicly available. Only

the methods described in [7, 26, 47] are marginally outper-

forming SAVP but their code is not available.

Furthermore, SAVP [25] is widely used and features an

architecture prone to be adapted to the current setting. Dur-

ing training, SAVP learns an encoder E that encodes infor-

mation relative to the transition between successive frames

which is used by the generator in the synthesis of the next

frame. After training the SAVP model, we cluster the la-

tent space learned by the encoder network on the training

sequences using K-means. This procedure produces a set

of K centroids that we use as action labels. During eval-

uation, we compute the latent representations for the input

sequence and assign them the index of the nearest centroid.

As a second baseline, we choose MoCoGAN [42]. This

method possesses favorable characteristics for adaptation: it

separates the content from the motion space and it employs

an InfoGAN [5] loss to learn discrete video categories. We

consider 6-frame short videos and assume a constant action

over them. We employ an action discriminator that predicts

the action performed in the input video sequence. This pre-

dicted action is used as an auxiliary input to the generator

and the InfoGAN loss is used to learn the action space.

Finally, we also include SRVP [13] in our comparison.

SRVP is modified similarly to SAVP [25] to handle PVG.

However, due to the poor empirical results and the high

training costs, we consider this baseline only on the BAIR

dataset. Several other works have been considered, but not

adopted [21, 48] since they would require too important

modifications to handle the PVG problem.

SAVP [25], MoCoGAN [42] and SRVP [13] are de-

signed for video generation at resolutions lower than our

datasets. Therefore, we generate videos at the resolution of

64x80, 64x64 and 128x48 respectively for the Atari Break-

out, BAIR and Tennis datasets, and then upscale to full reso-

lution for evaluation. In addition, we create two other base-

lines, referred to as SAVP+ and MoCoGAN+, obtained by

increasing the capacity of the respective networks to gener-

ate videos at full resolution. Due to the high memory re-

quirements of SRVP [13], it was not feasible to produce a

version operating at full resolution.

Quantitative evaluation. We show the results for the eval-

uation on the BAIR dataset in Tab. 2. According to ∆-MSE,

MoCoGAN, SAVP and our model learn an action space cor-

related with the movement of the robot (∆-MSE<100), but

our method surpasses these baselines by 26.1% in ∆-MSE

and by 24.2% in ∆-Acc, showing greater capacity in learn-

ing a set of discrete actions. Finally, SRVP clearly under-

performs all the other methods in term of reconstruction

(LPIPS), video quality (FID and FVD). Moreover, SRVP

predicts a single action class for the whole test set. This de-

generated behavior results in a 100%∆-ACC and a poor ∆-

MSE. Because of these poor results and its very high com-

putational requirement, SRVP is not shown in the following.

Tab. 3 reports the results on the Atari Breakout dataset.

Our method outperforms the baselines in both action and

video quality metrics. In particular, our model replicates

the movement of the platform with an average ADD of 7.29

pixels and an MDR of 2.70%, indicating that the learned

set of actions are consistent with the movement of the user-

controlled Atari Breakout platform. Note that MoCoGAN

obtains a lower MDR but a much higher ADD showing that

it generates correctly the platform but at the wrong position.

The evaluation results on the Tennis dataset are reported

in Tab. 4. With the exception of FVD, where the result is
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LPIPS ↓ FID ↓ FVD ↓ ∆-MSE ↓ ∆-Acc ↑

MoCoGAN [42] 0.466 198 1380 88.8 20.7

MoCoGAN+ 0.201 66.1 849 98.4 22.9

SAVP [25] 0.433 220 1720 80.9 41.4

SAVP+ 0.154 27.2 303 82.0 44.8

SRVP [13] 0.491 224 3540 (100) (100)

CADDY (Ours) 0.202 35.9 423 54.8 69.0

Table 2: Comparison with baselines on the BAIR dataset.

∆-MSE, ∆-Acc and MDR in %, ADD in pixels. Paren-

theses indicate degenerated cases resulting in uninformative

metrics (see details in the text).

LPIPS↓ FID↓ FVD↓∆-MSE↓∆-Acc↑ (ADD, MDR)↓

MoCoGAN [42] 0.234 99.9 447 99.6 81.9 (46.0,0.795)

MoCoGAN+ 65.8e-3 10.4 103 103 57.5 (54.6,17.4)

SAVP [25] 0.239 98.4 487 103 58.1 24.7, 21.0

SAVP+ 39.3e-3 4.84 84.4 104 85.6 15.8, 51.5

CADDY (Ours) 7.66e-3 0.716 5.94 82.7 91.6 7.29, 2.70

Table 3: Comparison with baselines on the Atari Breakout

dataset. ∆-MSE, ∆-Acc and MDR in %, ADD in pixels.

LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑ (ADD, MDR)↓

MoCoGAN [42] 0.266 132 3400 101 26.4 28.5, 20.2

MoCoGAN+ 0.166 56.8 1410 103 28.3 48.2, 27.0

SAVP [25] 0.245 156 3270 112 19.6 10.7, 19.7

SAVP+ 0.104 25.2 223 116 33.1 13.4, 19.2

CADDY (Ours) 0.102 13.7 239 72.2 45.5 8.85, 1.01

Table 4: Comparison with baselines on the Tennis dataset.

∆-MSE, ∆-Acc and MDR in %, ADD in pixels.
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Figure 4: Reconstruction results on the BAIR (left) and Ten-

nis (right) datasets. We zoom in for better visualization.

close to SAVP+, our method obtains the best performance in

all the metrics. A ∆-MSE of 72.2% shows that actions with

a consistent associated movement are learned. On the other

hand, the ∆-MSE scores of the other baselines show that

the movements associated with each action do not present

a consistent meaning. Moreover, our method features the

lowest ADD and a significantly lower MDR of 1.01% which

indicate that our method consistently generates the player

and moves it accurately on the field.

Qualitative evaluation In Fig. 4, we show examples of re-

Agreement Diversity Other votes

MoCoGAN [42] -3.15e-3 1.58 1.80%

MoCoGAN+ -2.84e-3 1.51 28.0%

SAVP [25] 0.0718 1.69 7.14%

SAVP+ -1.97e-3 1.80 5.40%

CADDY (Ours) 0.469 1.65 1.61%

Table 5: User study results on the Tennis dataset.

constructed sequences on the BAIR and Tennis datasets. Our

method achieves a precise placement of the object of inter-

est with respect to the input sequence. In the Sup. Mat. we

show additional qualitative results as well as sample videos

generated interactively.

User evaluation. To complete our evaluation, we perform

a user study on the Tennis dataset. We sample 23 random

frames that we use as initial frames. For each of them, we

generate K continuations of the sequences, one for each ac-

tion, each produced by repeatedly selecting the correspond-

ing action. For each sequence, users are asked to select the

performed action among a predefined set (Left, Right, For-

ward, Backward, Hit the ball or Stay). An additional option

Other is provided in case the user cannot recognize any ac-

tion. We measure user agreement using the Fleiss’ kappa

measure [11] that is commonly used to evaluate agreement

between categorical ratings [12]. In addition, to validate

that all the actions can be generated (i.e. detecting mode

collapse), we compute the diversity of the action space, ex-

pressed as the entropy of the user-selected actions. Results

are shown in Tab. 5. While all methods capture actions with

high diversity, our method shows a higher agreement, indi-

cating that users consistently associate the same action label

to each learned action. Looking at the details of the votes

for our method (see Supp. Mat.), we observe that most dis-

agreements are due to cases where the player hits the ball

while moving. In contrast, the other methods do not obtain

high user agreement, with actions assuming different mean-

ings, depending on the particular frame used as context.

5. Conclusions

In this work, we propose the unsupervised learning prob-

lem of playable video generation. We introduce CADDY, a

self-supervised method based on an encoder-decoder archi-

tecture that uses predicted action labels as a bottleneck. We

evaluate our method on three varied datasets and show state-

of-the-art performance. Our experiments show that we can

learn a rich set of actions that offer the user a gaming-like

experience to control the generated video. As future work,

we plan to extend our method to multi-agent environments.
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