
Real-Time Sphere Sweeping Stereo from Multiview Fisheye Images

Andreas Meuleman Hyeonjoong Jang Daniel S. Jeon Min H. Kim

KAIST

Abstract

A set of cameras with fisheye lenses have been used to

capture a wide field of view. The traditional scan-line stereo

algorithms based on epipolar geometry are directly inap-

plicable to this non-pinhole camera setup due to optical

characteristics of fisheye lenses; hence, existing complete

360◦ RGB-D imaging systems have rarely achieved real-

time performance yet. In this paper, we introduce an effi-

cient sphere-sweeping stereo that can run directly on multi-

view fisheye images without requiring additional spherical

rectification. Our main contributions are: First, we intro-

duce an adaptive spherical matching method that accounts

for each input fisheye camera’s resolving power concerning

spherical distortion. Second, we propose a fast inter-scale

bilateral cost volume filtering method that refines distance

in noisy and textureless regions with optimal complexity of

O(n). It enables real-time dense distance estimation while

preserving edges. Lastly, the fisheye color and distance im-

ages are seamlessly combined into a complete 360◦ RGB-D

image via fast inpainting of the dense distance map. We

demonstrate an embedded 360◦ RGB-D imaging prototype

composed of a mobile GPU and four fisheye cameras. Our

prototype is capable of capturing complete 360◦ RGB-D

videos with a resolution of two megapixels at 29 fps. Re-

sults demonstrate that our real-time method outperforms

traditional omnidirectional stereo and learning-based om-

nidirectional stereo in terms of accuracy and performance.

1. Introduction

Efficient and accurate understanding of the appearance

and structure of 3D scenes is a vital capability of computer

vision used in many applications, such as autonomous ve-

hicle [38], robotics [60], augmented/mixed reality [51, 5],

etc. Conventional stereo cameras with ordinary lenses pro-

vide a narrow field of view, insufficient to capture scenes in

all directions. In order to capture scenes in all directions,

we can build a multi-camera setup like a light-field camera

array [6, 44], but it significantly increases manufacturing

cost, in addition to computational cost for processing multi-

ple input, to obtain omnidirectional panorama and distance.

(a) Our prototype (d) Our distance result

(c) Our panorama result

(b) Input fisheye images

29 fps

Figure 1: (a) Our prototype built on an embedded system.

(b) Four input fisheye images. (c) & (d) Our results of om-

nidirectional panorama and dense distance map (shown as

the inverse of distance). It took just 34 ms per frame on this

device. Refer to the supplemental video for real-time demo.

It is a natural choice to use a smaller number of fisheye

lenses to reduce the number of cameras while covering all

directions. The omnidirectional camera configuration with

multiple fisheye lenses suffers from an inevitable tradeoff

between performance and accuracy when computing full

360◦ panorama and distance due to the optical character-

istics of fisheye lenses presented subsequently.

First, the conventional pinhole camera model is invalid

for field of views of 180◦ or more even when the calibra-

tion model can accommodate a wider FoV [25, 12, 53].

Accordingly, unlike ordinary stereo, we cannot find stereo

correspondence rapidly by sweeping plane candidates [24]

in wide angle fisheye images. Second, epipolar lines on

fisheye images are curved [39, 50], requiring warp-aware

correspondence search with spatial variation, significantly

increasing computational costs. An equirectangular or a

latitude-longitude projection can be employed to obtain

straight epipolar lines [52, 34]. However, it introduces se-

11423



vere image distortion, and a given disparity does not corre-

spond to the same distance depending on its position in the

image. Simply estimating the disparity in the equirectangu-

lar domain before converting to distance [32, 35] breaks the

local disparity consistency assumption of cost aggregation.

Lastly, we cannot merge multiview fisheye images as a 360◦

panorama image accurately without having a 360◦ dense

distance map, and a clear 360◦ dense distance map cannot

be filtered and obtained without a 360◦ panorama image. It

is a chicken-and-egg problem when combining multiview

fisheye images to a 360◦ RGB-D image with high accuracy.

In this work, we propose real-time sphere-sweeping

stereo that can run directly on multiview fisheye images,

without requiring additional spherical rectification using

equirectangular or latitude-longitude projection by tackling

three key points. First, we propose an adaptive spherical

matching method that allows us to evaluate stereo matching

directly on the fisheye image domain with consideration of

the regional discrimination power of distance in each fish-

eye image. Second, we introduce fast inter-scale cost vol-

ume filtering of optimal complexity O(n) that allows for

a stable sphere sweeping volume in noisy and textureless

regions. It enables 360◦ dense distance estimation in all

directions in real time while preserving edges. Lastly, col-

ors at different distance maps are combined into a complete

360◦ panorama and distance map seamlessly through fast

inpainting using the dense distance map.

We implemented our algorithm on a prototype made of

an embedded computer with a mobile GPU and four fisheye

cameras (Figure 1). Our prototype captures complete 360◦

RGB-D video that includes color and distance at every pixel

with a resolution of two megapixels at 29 fps. Results vali-

date that our real-time algorithm outperforms the traditional

omnidirectional stereo and the learning-based 360◦ stereo

algorithms in terms of accuracy and performance.

2. Related Work

Binocular Fisheye/360◦ Stereo. Two fisheye cameras [31,

32, 30, 13, 45, 46] or 360◦ cameras [2, 48, 35, 56] are

placed on a baseline and then are used to estimate depth

(more accurately distance in omnidirectional stereo) within

the stereo field of view. Analogue to the traditional epipo-

lar geometry, they apply spherical rectification and match-

ing along the great circle. However, disparity in spher-

ical stereo is proportional to the length of arc, which is

not linearly proportional to the inverse of distance, hence

requiring exhaustive correspondence search. An equirect-

angular or a latitude-longitude projection has been com-

monly used to rectify fisheye images before stereo match-

ing [31, 32, 30, 35, 56, 28]. This process causes severe im-

age distortion and disturbs correspondence search. Also,

in this binocular setup, distance cannot be estimated prop-

erly along the baseline axis [35, 56], i.e., no complete 360◦

panorama and distance maps can be computed directly from

this binocular stereo setup due to occlusion between the

cameras and, most importantly, due to the absence of ex-

ploitable baseline in the alignment. Our method uses just

four cameras (same number as binocular 360◦ stereo meth-

ods [35, 56]) with fisheye lenses, but it can capture complete

360◦ RGB-D videos in real time. Note that methods that de-

termine the relative position of the scene with planar depth

estimation [22] are inherently limited to FoVs below 180°.

Monocular 360◦ Stereo. The traditional structure-from-

motion algorithm has been applied to compact 360◦ imag-

ing [7, 23, 42]. However, these methods assume that a 360◦

camera moves in static scenes. If these methods are ap-

plied to a scene with dynamic objects, their performances

degrade rapidly. Also, computational costs of these meth-

ods are expensive, so they are inapplicable to real-time 360◦

RGB-D imaging. In addition, monocular stereo imaging

has been applied to 360◦ panoramas by learning an omnidi-

rectional image prior [62, 55]. Learned priors help match-

ing correspondences in warped images. However, owing to

the model complexity, no real-time learning-based method

exists yet. Also, to date, there is no real-world dataset of

omnidirectional RGB-D images available for deep learn-

ing. These methods have been trained on synthetically

rendered images of hand-made 3D models and 3D scan-

ning [8, 3, 54, 62, 59, 56, 28]. Owing to the domain gap be-

tween real and rendered images, these models often present

suboptimal performance with unseen real-world data.

Multiview Fisheye Stereo. Multiple fisheye cameras have

been combined to capture 360◦ RGB-D images with a num-

ber of cameras ranging from 4 to 20 [33, 1, 11, 6, 44]. When

the camera count increases, the quality of color and distance

images is improved significantly, but with rapid increase in

hardware and computation cost. When combining multi-

view fisheye stereo images, technical challenges still exist

hindering the real-time performance of this setup. First, for

accounting for reprojection, occlusion and visibility of dis-

tance values in the unified omnidirectional image space, we

need a complete 360◦ guide image, which cannot be ob-

tained from multiview input without a dense 360◦ distance

map. Only simple warp and blending methods were pro-

posed without distance awareness [21, 20]. As they are de-

signed for a short baseline, they often suffer from stitching

artifacts when disparity changes in the overlapping regions.

Second, due to the geometry of 360 matching, multiple true

matches may occur. This has been handled by devising a

computationally intensive cost aggregation [58, 26].

In contrast, we use the minimal number of fisheye cam-

eras to cover complete 360◦ angles in real time so that we

keep the manufacturing cost and computational requirement

as low as possible. We propose an effective camera design

and an adaptive spherical matching algorithm at multiple

scales to handle the aforementioned challenges.

11424



3. Fast Sphere Sweeping Stereo

Hardware Design. Our hardware setup employs a mini­

mum number of cameras to achieve a 360◦ RGB­D image,

i.e., four cameras with fisheye lenses. Each fisheye camera

has the field of view of 220◦. A pair of front­backward fish­

eye cameras is placed on the top, and another pair of fisheye

cameras is placed on the bottom but in a perpendicular di­

rection (Figure 1), so that each combination of neighboring

stereo pairs has the same baseline.

Spherical Geometry. We base our work on the classi­

cal binocular stereo model [30]. Each pixel in the ref­

erence frame Ic0 captured by reference camera c0 de­

scribes the perceived color of a ray at angle of polar

coordinates (θ, φ). It corresponds to the point of po­

lar coordinates (θ, φ, d), where d is a distance. This

leads to the following 3D position p in c0’s space: p =
d
[

sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)
]⊺

.

Suppose another camera c1 at rotation Rc1 and posi­

tion Tc1 w.r.t. the reference camera c0. The camera cap­

tures the images Ic0 and Ic1 . Position p in c1’s space is:

pc1 = R−1
c1

(p − Tc1). Let p̂c1 = pc1/‖pc1‖ be the normal­

ized vector of pc1 , which is the pixel coordinates in Ic1 :

(θc1 , φc1) =
(

arccos(p̂c1 z),
3π
2 − arctan2(p̂c1 y, p̂c1 x)

)

.

The pixel coordinates in c1 with camera transformation

Rc1 |Tc1 can be expressed as the projection of pixel of an­

gle (θ, φ) at distance d in the reference coordinate system:

(θc1 , φc1) = P̄Rc1
|Tc1

(θ, φ, d). Assuming Lambertian sur­

faces in a scene, a pixel Ic1(θc1 , φc1) of camera c1’s image

is the same as Ic0(θ, φ) in the reference camera. Pixels in

other cameras’ images can be expressed w.r.t. the reference

coordinate system in the same way.

Sphere Sweep Volume. Similarly to multi­view stereo with

standard camera model, we build a sweep volume for sev­

eral distance candidates d0, ..., dN−1. Instead of warping

Ic1 to Ic0 following homographies with planar distance can­

didates [24], we use the previously described mapping and

spheres distance candidates around the reference frame or a

given point [59].

For each candidate, we create a warped version of Ic1
that can be matched to Ic0 if the distance candidate is cor­

rect. In details, for all pixels coordinates (θ, φ) in I and

for all distance candidate di, we find the corresponding co­

ordinates. This process is depicted in Figure 2. We then

assign the values of the sphere sweep volume V as fol­

lows: Vc1→c0(θ, φ, i) = Ic1(P̄Rc1
|Tc1

(θ, φ, di)). In this

volume, a correct distance candidate dk shows good match­

ing: Vc1→c0(θ, φ, k)≈ Ic0(θ, φ), which provides a direct

cue for distance estimation. The quality of matching can be

evaluated through photometric difference or difference after

image transformation: gradient [17], census transform [29]

or feature extraction [59]. For robust performance, cost ag­

gregation [19, 18, 61] or deep regularization [57] is neces­

(θ, φ)

P̄Rc1
Tc1

(θ, φ, d0)

P̄Rc1
Tc1

(θ, φ, dN−1)

c0 c1

Closest sphere

Furthest sphere

Intermediate
sphere

Fisheye
camera

Figure 2: Projection in the sphere sweep volume. A pixel

of coordinates (θ, φ) in camera c0 has different coordinates

in c1 depending on the scene’s distance: the red and the

blue points correspond to pixel positions for two extreme

distances. Circles red and blue represent the closest and

furthest distance candidates around c0 while the doted ones

are intermediate candidates in the sweeping volume.

sary when selecting the best depth candidate. Several views

can also be used simultaneously [24].

3.1. Adaptive Spherical Matching

In theory, we can evaluate entire depth candidates in

all possible combinations of overlapped regions along the

baseline in the sphere sweeping volume. It is exhaustive

computation. For achieving real­time performance, we tai­

lor a camera selection method that provides the regional

best camera pairs for search correspondence in the sphere

sweeping volume w.r.t. the reference camera.

We select only the best camera among other three cam­

eras (c1, c2 and c3) for each pixel in the reference view.

If several cameras have a field of view that covers a pixel

in the reference frame, we select the one that has the high­

est distance discriminating power. This property can be de­

scribed as maximizing the difference between the layers of

the sphere sweep volume and be able to identify which can­

didate matches the best more clearly.

To quantify this for a given pixel position (θ, φ) in the

reference image Ic0 , we focus on the first and last layers 0
and N−1 of the volume, corresponding to the distance can­

didates d0 and dN−1. Let p<i>
ck

be the point in camera ck’s

space of reference coordinates (θ, φ, di). The best camera

ck is the one that shows the most angular change between

two 3D points p<0>
ck

and p<N−1>
ck

given from these two dis­

tance candidates.

In detail, if the angle between p<0>
ck

and p<N−1>
ck

is

high, the sampled location in the selected camera for the

sweeping volume will change significantly, which is suit­

able for distance estimation. We define the discriminat­

ing power weight based on those considerations: qck =
∣

∣arccos
〈

p̂<0>
ck

· p̂<N−1>
ck

〉∣

∣, with p̂ = p/‖p‖ are normal­

ized vectors. Using this evaluation, we select the optimal

camera c∗ for each pixel in the reference following:

c∗(θ, φ) = argmax
ck

(qck). (1)

11425



c0 c1

c2

(b) Selected camera for
each pixel in c0

(a) Best camera
evaluation

Right camera (c3)

Back camera (c1)

c3

Left camera (c2)

Figure 3: (a) We evaluate how a ray in c0 is reprojected in

c1 and c2. For this pixel, the best camera for matching is

the one that shows the maximum displacement for a given

distance: if a small change of distance leads to a high dis­

placement, the distance discriminating power is improved.

(a) shows that, for this specific ray in c0, c1 is a better cam­

era for matching than c2, despite the baseline between both

pairs being similar. (b) For each pixel in c0, the camera

showing the best distance discrimination is selected. Note

that (a) shows a hypothetical layout for visualization.

Figure 3 shows an example of camera selection for a given

ray angle in the reference frame and a map of which camera

is selected depending on the pixel position.

3.2. Efficient Spherical Cost Aggregation

Once we built the prototype, we calibrated the four cam­

eras using the double sphere model [53]. We perform two

220◦ distance estimation using the two opposed top cameras

as two references. For each pixel in each reference, we se­

lect the best camera using our selective matching. Let Ics be

the image from the camera selected at pixel (θ, φ) and Ic0 be

the reference frame. The matching cost for the ith distance

candidate is: C(θ, φ, i) = ‖Vcs→c0(θ, φ, i)− I(θ, φ)‖1,

where Vcs→c0 is the sphere sweeping volume from the se­

lected camera to the reference one. We then regularize

each slice of the spherical cost volume using our fast fil­

tering method described in the following section. After cost

volume filtering, the optimal distance is voted via winner­

takes­all, and sub­candidate accuracy is achieved through

quadratic fitting.

3.2.1 Fast Inter­Scale Bilateral Filtering

For aggregating sparse distance to obtain a dense dis­

tance map, there are many available methods that smooths

costs in an edge­aware manner. Bilateral grid­based meth­

ods [4, 10], while showing impressive capabilities, are still

computationally expensive to be applied on the 3D cost vol­

ume and often produce blocky artifacts even with domain

transform post processing [14]. A more hardware­friendly

Guidance center pixel

Guided downsampling Guided upsampling and blending

Result pixelPixels to aggregate

Figure 4: Inter­scale bilateral filtering. We first downsam­

ple with edge preservation using the bilateral weights be­

tween the guidance center and the neighbor pixels to aggre­

gate sparse costs. Then, we upsample using a minimal pixel

support. We use guidance weights computed between the

guidance centers and the pixels to aggregate at lower scale.

version of the fast bilateral solver has been devised [36].

While having demonstrated strong performance for a sin­

gle depth map, it is more hardware specific and is still not

computationally efficient enough to be applied to a com­

plete cost volume in real time. Another popular edge­aware

filtering is the guided filter [16, 15], which has been used

with cost volume pyramids [43] or multi­scale cost aggre­

gation [61]. While showing optimal complexity of O(n),
they cannot perform fast on GPU because they suffer from

computation overhead when computing integral images in

parallel environments. To achieve two megapixels real­

time RGB­D imaging at 29 fps on an embedded machine

with a GPU, we introduce a fast inter­scale bilateral filter­

ing method specially designed for parallel computing envi­

ronments.

Edge­Preserving Downsampling. The first step of our fil­

tering is to downscale input image without blurring, thus

preventing edge bleeding and halos. To this end, we

perform filtering with the neighbor pixels with bilateral

weights before decimation. We define I0 the original im­

age and Il image after being downsampled by two l times.

We first define bilateral weights:

w↓
mn(I, x, y) = exp

(

‖I(x, y)− I(x+m, y + n)‖2

2σ2

I

)

, (2)

where σI is the edge preservation parameter, and (x, y) are

pixel coordinates. We define the downsampling scheme as:

I↓(x, y) =
1

∑

m,n=−1

I(2x+m, 2y + n)w↓
mn(I, 2x, 2y)/τ, (3)

where τ is the normalizing constant. In the pyramid, we

note Il+1 = I↓l . We define the number of scale levels L.

Edge­Preserving Upsampling. Unlike existing edge­

preserving upsampling methods [27, 9] that use the high

resolution image as guide, our method uses the bilateral

weights between the downsampled and the full resolution

image to achieve optimal complexity. Note that we inten­

tionally do not use Gaussian spatial weights proposed by

Kopf et al. [27] to focus on efficiency, and as they are de­

signed for a wider support.

In addition to bilateral weights, we blend the scales using

a Gaussian function of the current scale index. They are

11426



Guide

F
il

te
r

re
su

lt
F

il
te

r
k
er

n
el

σI = 5σI = 30σI = 100

Figure 5: Impact of the filter kernel with different edge

preservation parameters. Our method yields high preserva­

tion and smoothing capabilities with global support while

showing minimal runtime.

defined for each scale as w↑
l = exp

(

(2l)2

2σ2
s

)

, where σs is the

smoothness parameter. The weight for the higher resolution

scale is naturally 1 − w↑
l . Figure 4 depicts our multi­scale

filtering process.

Filter Kernel. The final filter kernel obtained after this

downsampling/upsampling process yields smooth fall off

driven by σs as we move away from the center and does not

cross edge boundaries as shown in an example in Figure 5.

Although the each step of the algorithm only covers a min­

imal pixel support, the bilateral downsampling/upsampling

filtering yields a kernel that covers the entire image. The

guidance through the bilateral weights is a composition of

exponential with a higher order far from a given pixel. This

naturally provides increased guidance between spaced pix­

els. For our results, σs is set to 25, and σI is set to 10.

Complexity. The number of operations follows the sum of

a geometric series with ratio 1
4 . The asymptotic complexity

is therefore O(n) with n the number of pixels, making the

algorithm optimal. The number of levels has to allow the

lowest level L to have a size above one pixel. We there­

fore downsample at most ln4(n) times. While the down­

sampling and upsampling have to be run sequentially with

O(ln(n)) levels, each downsampling and upsampling steps

are fully parallelized.

3.3. Distance­aware Panorama Stitching

Instead of estimating distance at the center, our distance

estimation algorithm relies on reference frames for edge

preservation and to avoid multiple true matches (Figure 6).

While this approach yields an increased accuracy, an extra

step is required to merge the fisheye images. We present

an efficient method that first synthesize a distance map at

a desired location, then project the image following the 3D

coordinates and finally merges the images through a blend­

ing process giving more weight to the least displaced pixels.

Novel View Synthesis. The first step is to reproject the

dense distance maps to a selected location, common to both

references. To this end, we find for each pixel (θ, φ) its cor­

responding position, and translate them to the selected loca­

tion and find the coordinates (θr, φr) in the reprojected im­

age. We obtain: (θr, φr) = P̄T∗(θ, φ, D̂(θ, φ)), where T ∗

is the desired position with respect to the camera and D̂ is

Closest match

Furthest match

O

O Camera rig center

Figure 6: A ray from O
crosses multiple objects

that are seen from both

cameras, meaning that

several depth candidates

have true matches. We

instead stitch fisheye

images using depth maps.

the estimated distance map.

This forward warping opera­

tion leads inevitably to multi­

ple pixels in the original dis­

tance map mapping to the

same target pixel, i.e., several

couples (θ, φ) may be pro­

jected to the same coordinates

(θr, φr). This ambiguity re­

quires splatting to obtain the

final value.

We merge the possible

pixels in an occlusion aware

manner following [40].

Specifically, we use min­

imum distance splatting,

i.e., z­buffering, hence the

reprojected distance:

D̂r(θr, φr) =min D̂(θ, φ), (4)

s.t. P̄T∗(θ, φ, D̂(θ, φ)) = (θr, φr).

Directional Inpainting. While some pixels in the target

can have several counterparts in the original distance map,

some pixels have none due to occlusion. We inpaint the

missing regions using the background as they can be oc­

cluded by the foreground objects. To this end, we first

determine the background­to­foreground direction. This is

given by the derivative of the projection w.r.t. the distance.

Indeed, occlusion holes in the reprojected map are caused

by areas with different distance not being reprojected at the

same location. We therefore define the inpainting direction:

vT∗(θ, φ) = ∂P̄T∗ (θ,φ,d)
∂d

. This inpainting direction leads

to a directed diffusion kernel that can be used iteratively

as proposed by [41]. We determine kernel weights around

each pixel depending on their similarity with the inpainting

direction: wm,n = 〈vT∗(θ, φ) · (m,n)〉
+

, where + is the

positive part and (m,n) ∈ [[−1, 1]]2\(0, 0) are the indices

of the eight neighbor pixels. As the dot product gives high

weights for aligned vectors, this method naturally creates a

diffusion kernel that uses the values of the pixels aligned

with the inpainting direction (Figure 8).

Once the distance is moved to the given point of view, we

simply project the color pixel following the 3D coordinates

given in the distance map, providing the RGB image at a

different location.

Blending. After projecting color images to a common lo­

cation, the two 220◦ images need to be merged together to

create a complete panorama stored in the standard equirect­

angular projection. To that end, we provide blending

weights that correspond to the amount of possible occlu­

11427



Inverse distanceFisheye input CloseupPanorama

Figure 7: Real results captured with our prototype. Refer to the supplemental video for real-time demo of our prototype.

(b) Reprojected (c) Kernel (d) Inpainted(a) Original

vT∗(θ, φ) (m,n)

Figure 8: Depth at the camera position (a) is projected to

the desired view in a depth-aware manner (b). As occlusion

generates holes in the projected distance map, we compute

an inpainting kernel (c) depending on the occlusion direc-

tion. We finally apply this inpainting kernel to the distance

map to remove holes using the background depth values (d).

sion. In pixels where vT∗(θ, φ) is large, distance changes

can modify the image greatly, introducing wider occluded

regions, more distance related distortion and potential ar-

tifacts. We therefore define the blending weights follow-

ing a Gaussian on the length of this vector: bck(θ, φ) =

exp
(

−
‖vT∗ (θ,φ)‖2

2

2σ2

)

. Note that we handle the pixels that

cannot be captured by the camera by setting bck(θ, φ) = 0.

We estimate the derivatives through finite difference over

the distance range.

4. Results

Prototype. We install four cameras using Sony IMX477

sensors on an NVIDIA Jetson Xavier embedded computer

with a mobile GPU. The cameras look at four different

directions to have both horizontal and vertical baselines

(6.8 cm), see Figure 1. We capture and process four fish-

eye frames of 1216×1216 px and output 2048×1024 px dis-

tance maps and panoramas. Two reference frames’s res-

olution is 1024×1024 px. We therefore process a total of

2.1 Mpx. For our tests, we used 32 distance candidates with

a [0.55, 100] m range. On the NVIDIA Jetson Xavier, our

algorithm computes a RGB-D frame within 34 ms in to-

tal, including: cost computation: 14 ms, cost regularization:

10 ms, distance selection and sub-candidate interpolation:

3 ms, and reprojection and stitching: 7 ms. For experiments

on a desktop computer, we use an AMD Ryzen Threadrip-

per 3960X with an NVIDIA GTX 1080 Ti. Figure 7 shows

results.

Dependency on the camera rig. Our method can be gen-

eralized to other rig layouts without modification as long as

two cameras cover the entire field of view for stitching. It is

also possible to use and stitch more than two references with

the same methodology in case no couple of cameras covers

the entire field of view. In addition, when using more than

four cameras, our adaptive matching will not be prone to a

significant change in performance or accuracy.

Synthetic Dataset. To evaluate a wider variety of camera

setups with ground truth panorama and distance maps, we

build our own rendered dataset. We render 95 frames at

random locations with ten different scenes, collected from

McGuire computer graphics archive [37] and the official

Blender website [49]. Each frame is composed of four fish-

eye images with 220◦ FoV. We follow positions and rota-

tion shown in OmniHouse [58] for fair comparison with

learning-based methods trained on this dataset, with scal-

ing to match our prototype’s form factor. In addition, we

render the ground truth RGB panorama and distance maps

at the center of the rig as equirectangular images and an ad-

ditional equirectangular RGB panorama at 7.5 cm to create

a stereo pair and evaluate spherical binocular stereo meth-

ods. We constrain a minimum distance between the camera

rig and the scene of 0.55m to ensure a distance map within

the range of all methods.

Metric. We evaluate the distance quality in its inverse do-

main on equirectangular images. We define the distance

error for one pixel as:

E(θ, φ) =
∣

∣

∣

1
D̂(θ,φ)

−
1

D∗(θ,φ)

∣

∣

∣
, (5)

where D̂ is the estimated distance and D∗ is the ground

11428



O
m

n
iM

V
S

[5
8

]
C

ro
w

n
C

o
n
v

[2
6

]

Inverse Distance

O
u

rs
L

in
et

al
.

[3
3

]

Error (3×)

F
is

h
e y

e
in

p
u

t

G
T

Figure 9: Distance results from fisheye images on our synthetic dataset. Refer to the supplemental document for more results.

truth in meters. We evaluate the proportion of bad pixels,

noted >x in our tables, which represents the percentage of

pixel with E(θ, φ)>x in the output distance map.

Quantitative Evaluation. We analyze the impact of our

adaptive matching. Table 1 shows that our selection of

the best camera (Equation (1)) marginally increases quality

over naı̈ve variance calculation while reducing the runtime.

Using all views is not beneficial for the quality as when a

camera’s baseline is aligned with the reference, its contri-

bution for candidate discrimination is low. Simultaneously,

using more cameras yields increased computational cost.

Inverse distance (% | m-1) Runtime (ms)

>0.1 >0.4 MAE RMSE 1080 Ti Xavier

All views (naı̈ve) 14.81 0.57 0.056 0.082 5.7·100 2.5·101

Adaptive matching 12.51 0.55 0.053 0.079 2.7·100 1.4·101

Table 1: Impact of our adaptive matching on the distance

quality for 2048×1024 px. All views indicates that we used

the variance between all cameras during matching, while

adaptive matching uses only the best camera per pixel for

cost computation. Runtimes only include cost volume com-

putation.

We compare our inter-scale bilateral filter against the fast

bilateral solver [4], the guided filter [16], the fast guided

filter [15] and cross-scale cost aggregation [61]. When fil-

tering each slice of the cost volume using the fast bilateral

solver, we use guide precomputation and OpenMP paral-

lelization. We pair cross-scale stereo with a 7×7 box filter

for being the best reported runtime and with the guided filter

for showing the best results on the Middlebury dataset [47].

We implement cross-scale stereo, the guided filter and the

fast guided filter on GPU for fair runtime comparison. We

also precompute guide variance and mean for the guided fil-

ters and use an aggressive downsampling ratio s = 4 for the

fast guided filter. For fair comparison, we tune hyperparam-

eters for all competing methods so that RMSE is minimized.

For the fast bilateral, we find σxy = σl = σuv = 10 (opti-

mized together) and λ = 385. For cross-scale is paired with

box, we find λ = 17.5. We find ε = 0.105 for the guided

filter and ε = 0.63 for the fast guided filter.

Table 2 shows comparison between different cost ag-

gregation methods. Our method shows competitive results

against much more computationally intensive methods such

as the bilateral solver [4]. In addition, adaptation and care-

ful implementation of the bilateral solver [36], although

achieving high quality depth super-resolution, reports run-

times that are significantly higher than our method while

running on dedicated hardware, thus making it unsuitable

for real-time cost volume filtering. The guided filters, due

to their local nature, are not able to handle large textureless

regions and the hyperparameter tuning tend to lead to weak

11429



Inverse distance (% | m-1) Runtime (ms)

>0.1 >0.4 MAE RMSE 1080 Ti Xavier

Fast bilateral solver [4] 12.52 0.58 0.054 0.081 3.7·102 1.4·103

Guided filter [16] 32.08 8.89 0.136 0.238 1.4·102 2.9·102

Fast guided filter [15] 34.18 8.34 0.135 0.232 1.5·101 5.0·101

Cross-scale + Box [61] 17.40 0.93 0.062 0.093 3.8·101 6.4·101

C-S + G-F [61, 16] 17.39 2.03 0.070 0.115 2.4·102 4.6·102

Ours 12.51 0.55 0.053 0.079 3.5·100 1.0·101

Table 2: Comparison of our cost aggregation on the dis-

tance quality for 2048×1024 px with other filtering meth-

ods. Note that we implement all methods on GPU except

the fast bilateral solver that benefits from a multithreaded

implementation. Our method shows competitive accuracy

while being orders of magnitude faster.

guidance, with large regularization parameters ε. Cross-

scale cost aggregation [61] is able to efficiently handle large

textureless regions. However, due to the absence of inter-

scale guidance, it is not able to maintain edge preservation

even when paired with the guided filter.

We compare distance accuracy of our method against

four distance from fisheye methods [33, 59, 58, 26]

and three distance from rectified spherical stereo image

pairs [31, 35, 56]. As we use their rigs layout, we do not

retrain data driven methods. To compare against 360SD-

Net [56], we used the pretrained weights that show the low-

est RMSE. Due to the high computational requirements of

weighted thin plate smoothing, we omit post processing

from [35]. Li et al. [31, 32, 30] propose a rectification to

allow for standard stereo algorithms to run on spherical im-

ages. For fair comparison, we paired it with a more recent

and highly optimized SGM implementation on GPU [18].

We also implement Lin et al.’s [33] method on GPU.

Table 3 shows that our method significantly outperforms

both analytical and data driven methods on our rendered

dataset while being orders of magnitude more computation-

ally efficient. In addition, as the three depth from spherical

image pair methods [56, 35, 32] are unable to estimate depth

in the baseline’s alignment, the distance estimation quality

is highly degraded, hence their substantial >0.4 bad pixel

ratio. We do not evaluate the panorama quality for these

method as we use the rendered panoramas as input, ignor-

ing possible stitching artifacts that may occur in real world

scenarios. Figures 7, 9 and 10 show that our method is able

to estimate distance accurately using our prototype, while

providing a convincing panorama. Refer to the supplemen-

tal document for additional comparisons.

5. Conclusion

Our work achieves real-time omnidirectional RGB-D

imaging directly from fisheye images. The method does

not rely on temporal information nor on special illumina-

∗ CrownConv inference runs with a fixed number of vertices (10242).
† no reference implementation is provided.
‡ part of the method runs on CPU.

O
m

n
iM

V
S

[5
8

]

Panorama Error (5×)

C
ro

w
n

C
o

n
v

[2
6

]
O

u
rs

L
in

et
al

.
[3

3
]

G
T

Figure 10: Image stitching results on our synthetic dataset.

Inverse distance (% | m-1) Panorama Runtime

>0.1 >0.4 MAE RMSE PSNR SSIM (ms)

CrownConv∗ [26] 57.09 2.53 0.135 0.168 36.35 0.985 5.2·102

OmniMVS† [58] 39.01 5.64 0.124 0.182 37.28 0.986 1.3·103

Sweepnet‡ [59] 37.13 3.00 0.101 0.133 35.46 0.981 1.0·105

Lin et al.† [33] 37.25 5.13 0.181 0.181 36.22 0.980 2.5·103

360SD-Net [56] 54.29 13.27 0.212 0.341 – 6.1·102

Matzen et al.†‡ [35] 29.59 18.64 0.170 0.275 – 9.3·101

Li + SGM [32, 18] 31.04 16.85 0.170 0.283 – 5.8·100

Ours 20.38 0.56 0.068 0.095 38.78 0.990 2.8·100

Table 3: Comparison of our spherical RGB-D results

against other methods. All methods are run on our desktop

test system and output a 1024×512 px distance map. Note

that since [56, 35, 32] inputs are ground truth panoramas,

the image quality is not directly comparable.

tion making it robust to changing scenes and suitable for

both indoor and outdoor situations. Thanks to our adaptive

spherical matching and fast inter-scale bilateral filtering, we

demonstrate a combination of accuracy and performance

suitable for interactive and robotic applications in dynamic

environments.

Acknowledgments

Min H. Kim acknowledges Samsung Research Fund-

ing Center (SRFC-IT2001-04) for developing partial 3D

imaging algorithms, in addition to partial support of Korea

NRF grants (2019R1A2C3007229, 2013M3A6A6073718),

MSIT/IITP of Korea (2017-0-00072), and MSRA.

11430



References

[1] Robert Anderson, David Gallup, Jonathan T. Barron, Janne

Kontkanen, Noah Snavely, Carlos Hernandez Esteban,

Sameer Agarwal, and Steven M. Seitz. Jump: Virtual reality

video. ACM Transactions on Graphics (Proc. SIGGRAPH

Asia), 2016.

[2] Z. Arican and P. Frossard. Dense disparity estimation from

omnidirectional images. In 2007 IEEE Conference on Ad-

vanced Video and Signal Based Surveillance, pages 399–

404, 2007.

[3] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.

Joint 2d-3d-semantic data for indoor scene understanding.

arXiv preprint arXiv:1702.01105, 2017.

[4] Jonathan T. Barron and Ben Poole. The fast bilateral solver.

ECCV, 2016.

[5] Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian

Richardt. OmniPhotos: Casual 360° VR photography. ACM

Transactions on Graphics, 39(6):266:1–12, Dec. 2020.

[6] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-

son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay

Busch, Matt Whalen, and Paul Debevec. Immersive light

field video with a layered mesh representation. ACM Trans-

actions on Graphics (TOG), 39(4):86–1, 2020.

[7] D. Caruso, J. Engel, and D. Cremers. Large-scale direct slam

for omnidirectional cameras. In 2015 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS),

pages 141–148, 2015.

[8] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-

D data in indoor environments. International Conference on

3D Vision (3DV), 2017.

[9] Jiawen Chen, Andrew Adams, Neal Wadhwa, and Sam Hasi-

noff. Bilateral guided upsampling. ACM Transactions on

Graphics (Proceedings of SIGGRAPH Asia 2016), 2016.

[10] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time

edge-aware image processing with the bilateral grid. ACM

Trans. Graph., 26(3):103–es, July 2007.

[11] Zhaopeng Cui, Lionel Heng, Y. Yeo, Andreas Geiger, M.

Pollefeys, and Torsten Sattler. Real-time dense mapping

for self-driving vehicles using fisheye cameras. 2019 In-

ternational Conference on Robotics and Automation (ICRA),

pages 6087–6093, 2019.

[12] F. Devernay and O. Faugeras. Straight lines have to be

straight. In Machine Vision and Applications, 2001.

[13] W. Gao and S. Shen. Dual-fisheye omnidirectional stereo.

2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 6715–6722, 2017.

[14] Eduardo S. L. Gastal and Manuel M. Oliveira. Domain

transform for edge-aware image and video processing. ACM

TOG, 30(4):69:1–69:12, 2011. Proceedings of SIGGRAPH

2011.

[15] Kaiming He and Jian Sun. Fast guided filter. ArXiv,

abs/1505.00996, 2015.

[16] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-

tering. In Kostas Daniilidis, Petros Maragos, and Nikos Para-

gios, editors, Computer Vision – ECCV 2010, pages 1–14,

Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[17] S. Hermann and T. Vaudrey. The gradient - a powerful and

robust cost function for stereo matching. In 2010 25th In-

ternational Conference of Image and Vision Computing New

Zealand, pages 1–8, 2010.

[18] Daniel Hernandez-Juarez, Alejandro Chacón, Antonio Es-

pinosa, David Vázquez, Juan Carlos Moure, and Antonio M.

López. Embedded real-time stereo estimation via semi-

global matching on the GPU. In International Conference

on Computational Science 2016, ICCS 2016, 6-8 June 2016,

San Diego, California, USA, pages 143–153, 2016.

[19] H. Hirschmuller. Accurate and efficient stereo processing

by semi-global matching and mutual information. In 2005

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), volume 2, pages 807–814

vol. 2, 2005.

[20] T. Ho, I. D. Schizas, K. R. Rao, and M. Budagavi. 360-

degree video stitching for dual-fisheye lens cameras based

on rigid moving least squares. In 2017 IEEE International

Conference on Image Processing (ICIP), pages 51–55, 2017.

[21] Tuan Anh Ho and Madhukar Budagavi. Dual-fisheye lens

stitching for 360-degree imaging. 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2172–2176, 2017.

[22] Christian Häne, Lionel Heng, Gim Lee, Alexey Sizov, and

Marc Pollefeys. Real-time direct dense matching on fisheye

images using plane-sweeping stereo. pages 57–64, 02 2015.

[23] Sunghoon Im, Hyowon Ha, François Rameau, Hae-Gon

Jeon, Gyeongmin Choe, and In So Kweon. All-around depth

from small motion with a spherical panoramic camera. In

European Conference on Computer Vision, pages 156–172.

Springer, 2016.

[24] Jose M. Alvarez Jiayu Yang, Wei Mao and Miaomiao Liu.

Cost volume pyramid based depth inference for multi-view

stereo. In CVPR, 2020.

[25] J. Kannala and S. S. Brandt. A generic camera model and cal-

ibration method for conventional, wide-angle, and fish-eye

lenses. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(8):1335–1340, 2006.

[26] Ren Komatsu, Hiromitsu Fujii, Yusuke Tamura, Atsushi Ya-

mashita, and Hajime Asama. 360◦ depth estimation from

multiple fisheye images with origami crown representation

of icosahedron. In IROS, 2020.

[27] Johannes Kopf, Michael Cohen, Dani Lischinski, and Matt

Uyttendaele. Joint bilateral upsampling. In ACM Transac-

tions on Graphics (Proceedings of SIGGRAPH 2007), vol-

ume 26. Association for Computing Machinery, Inc., August

2007.

[28] Po Kong Lai, Shuang Xie, Jochen Lang, and Robert

Laqaruère. Real-time panoramic depth maps from omni-

directional stereo images for 6 DOF videos in virtual reality.

In 2019 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR), pages 405–412. IEEE, 2019.

[29] Jongchul Lee, Daeyoon Jun, Changkyoung Eem, and Hyunki

Hong. Improved census transform for noise robust stereo

matching. Optical Engineering, 55(6):1 – 10, 2016.

11431



[30] Shigang Li. Binocular spherical stereo. IEEE Transactions

on intelligent transportation systems, 9(4):589–600, 2008.

[31] Shigang Li and Kiyotaka Fukumori. Spherical stereo for the

construction of immersive VR environment. In IEEE Pro-

ceedings. VR 2005. Virtual Reality, 2005., pages 217–222.

IEEE, 2005.

[32] Li, Shigang. Real-time spherical stereo. In 18th Interna-

tional Conference on Pattern Recognition (ICPR’06), vol-

ume 3, pages 1046–1049, 2006.

[33] Hong-Shiang Lin, Chao-Chin Chang, Hsu-Yu Chang, Yung-

Yu Chuang, Tzong-Li Lin, and Ming Ouhyoung. A low-cost

portable polycamera for stereoscopic 360◦ imaging. IEEE

Transactions on Circuits and Systems for Video Technology,

2018.

[34] Chuiwen Ma, Liang Shi, Hanlu Huang, and Mengyuan Yan.

3d reconstruction from full-view fisheye camera. arXiv

preprint arXiv:1506.06273, 2015.

[35] Kevin Matzen, Michael F Cohen, Bryce Evans, Johannes

Kopf, and Richard Szeliski. Low-cost 360 stereo photog-

raphy and video capture. ACM Transactions on Graphics

(TOG), 36(4):148, 2017.

[36] Amrita Mazumdar, Armin Alaghi, Jonathan T. Barron, David

Gallup, Luis Ceze, Mark Oskin, and Steven M. Seitz. A

hardware-friendly bilateral solver for real-time virtual reality

video. In Proceedings of High Performance Graphics, HPG

’17, New York, NY, USA, 2017. Association for Computing

Machinery.

[37] Morgan McGuire. Computer graphics archive, July 2017.

https://casual-effects.com/data.

[38] M. Menze and A. Geiger. Object scene flow for autonomous

vehicles. In 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3061–3070, 2015.

[39] Branislav Micusı́k and Tomás Pajdla. Estimation of omni-

directional camera model from epipolar geometry. In IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, pages 485–490, 2003.

[40] Simon Niklaus and Feng Liu. Softmax splatting for video

frame interpolation. In CVPR, 2020.

[41] Manuel Oliveira, Brian Bowen, Richard McKenna, and Yu-

Sung Chang. Fast digital image inpainting. VIIP, pages 261–

266, 01 2001.

[42] Sarthak Pathak, Alessandro Moro, Atsushi Yamashita, and

Hajime Asama. Dense 3D reconstruction from two spherical

images via optical flow-based equirectangular epipolar recti-

fication. In 2016 IEEE International Conference on Imaging

Systems and Techniques (IST), pages 140–145. IEEE, 2016.

[43] Eric Penner and Li Zhang. Soft 3D reconstruction for view

synthesis. In ACM Transactions on Graphics (Proc. SIG-

GRAPH Asia). ACM, 2017.

[44] Albert Pozo, Michael Toksvig, Terry Schrager, Joyce Hsu,

Uday Mathur, Alexander Sorkine-Hornung, Rick Szeliski,

and Brian Cabral. An integrated 6DoF video camera and

system design. ACM Transactions on Graphics, 38:1–16, 11

2019.

[45] Menandro Roxas and Takeshi Oishi. Real-time variational

fisheye stereo without rectification and undistortion. arXiv

preprint arXiv:1909.07545, 2019.

[46] M. Roxas and T. Oishi. Variational fisheye stereo. IEEE

Robotics and Automation Letters, 5(2):1303–1310, 2020.

[47] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and

evaluation of dense two-frame stereo correspondence algo-

rithms. In Proceedings IEEE Workshop on Stereo and Multi-

Baseline Vision (SMBV 2001), pages 131–140, 2001.

[48] M. Schönbein and A. Geiger. Omnidirectional 3d recon-

struction in augmented manhattan worlds. In 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 716–723, 2014.

[49] Christophe Seux. Blender demo files, November 2020.

blender.org/download/demo-files/.

[50] TomáXs Svoboda, TomáXs Pajdla, and Václav HlaváXc.

Epipolar geometry for panoramic cameras. In Hans

Burkhardt and Bernd Neumann, editors, ECCV, 1998.

[51] Xiao Tang, Xiaowei Hu, Chi-Wing Fu, and Daniel Cohen-

Or. GrabAR: Occlusion-aware grabbing virtual objects in

AR. UIST, 2020.

[52] Akihiko Torii, Atsushi Imiya, and Naoya Ohnishi. Two- and

three- view geometry for spherical cameras. In workshop on

omnidirectional vision, camera networks and non-classical

cameras, 2005.

[53] V. Usenko, N. Demmel, and D. Cremers. The double sphere

camera model. In Proc. of the Int. Conference on 3D Vision

(3DV), September 2018.

[54] Fu-En Wang, Hou-Ning Hu, Hsien-Tzu Cheng, Juan-Ting

Lin, Shang-Ta Yang, Meng-Li Shih, Hung-Kuo Chu, and

Min Sun. Self-supervised learning of depth and camera mo-

tion from 360◦ videos. ACCV, 2018.

[55] Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and

Yi-Hsuan Tsai. BiFuse: Monocular 360 depth estimation via

bi-projection fusion. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

[56] Ning-Hsu Wang, Bolivar Solarte, Yi-Hsuan Tsai, Wei-Chen

Chiu, and Min Sun. 360SD-Net: 360◦ stereo depth estima-

tion with learnable cost volume. In ICRA, 2020.

[57] Yan Wang, Zihang Lai, Gao Huang, Brian H. Wang, Lau-

rens Van Der Maaten, Mark Campbell, and Kilian Q Wein-

berger. Anytime stereo image depth estimation on mobile

devices. International Conference on Robotics and Automa-

tion (ICRA), 2019.

[58] Changhee Won, Jongbin Ryu, and Jongwoo Lim. Om-

niMVS: End-to-end learning for omnidirectional stereo

matching. In ICCV, 2019.

[59] Changhee Won, Jongbin Ryu, and Jongwoo Lim. SweepNet:

Wide-baseline omnidirectional depth estimation. In ICRA,

2019.

[60] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez,

and Thomas Funkhouser. TossingBot: Learning to throw

arbitrary objects with residual physics. 2019.

[61] K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, and S. Yan.

Cross-scale cost aggregation for stereo matching. IEEE

Transactions on Circuits and Systems for Video Technology,

27(5):965–976, 2017.

[62] Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas,

and Petros Daras. Omnidepth: Dense depth estimation for in-

doors spherical panoramas. In ECCV, pages 453–471, 2018.

11432


