
Boosting Monocular Depth Estimation Models to High-Resolution via

Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh∗1 Sebastian Dille∗1 Long Mai2 Sylvain Paris2 Yağız Aksoy1
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Figure 1: We propose a method that can generate highly detailed high-resolution depth estimations from a single image. Our

method is based on optimizing the performance of a pre-trained network by merging estimations in different resolutions and

different patches to generate a high-resolution estimate. We show our results above using MiDaS [35] in our pipeline.

Abstract

Neural networks have shown great abilities in estimat-

ing depth from a single image. However, the inferred

depth maps are well below one-megapixel resolution and

often lack fine-grained details, which limits their practical-

ity. Our method builds on our analysis on how the input

resolution and the scene structure affects depth estimation

performance. We demonstrate that there is a trade-off be-

tween a consistent scene structure and the high-frequency

details, and merge low- and high-resolution estimations to

take advantage of this duality using a simple depth merg-

ing network. We present a double estimation method that

improves the whole-image depth estimation and a patch se-

lection method that adds local details to the final result.

We demonstrate that by merging estimations at different

resolutions with changing context, we can generate multi-

megapixel depth maps with a high level of detail using a

pre-trained model.

(∗) denotes equal contribution.

1. Introduction

Monocular or single-image depth estimation aims to ex-

tract the structure of the scene from a single image. Un-

like in settings where raw depth information is available

from depth sensors or multi-view data with geometric con-

straints, monocular depth estimation has to rely on high-

level monocular depth cues such as occlusion boundaries

and perspective. Data-driven techniques based on deep neu-

ral networks have thus become the standard solutions in

modern monocular depth estimation methods [11, 13, 14,

15, 29]. Despite recent developments in the field including

in network design [12, 18, 21, 33], incorporation of high-

level constraints [43, 50, 56, 58], and supervision strate-

gies [14, 15, 16, 20, 23], achieving high-resolution depth es-

timates with good boundary accuracy and a consistent scene

structure remains a challenge. State-of-the-art methods are

based on fully-convolutional architectures which in princi-

ple can handle inputs of arbitrary sizes. However, practi-

cal constraints such as available GPU memory, lack of di-

verse high-resolution datasets, and the receptive field size

of CNN’s limit the potential of current methods.
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Figure 2: The pipeline of our method: (b) We first start with feeding the image in low- and high-resolution to the network,

here shown results with MiDaS [35], and merge them to get a base estimate with a consistent structure with good boundary

localization. (c) We then determine different patches in the image. We show a subset of selected patches with their depth

estimates. (d) We merge the patch estimates onto our base estimate from (b) to get our final high-resolution result.

We present a method that utilizes a pre-trained monocu-

lar depth estimation model to achieve high-resolution re-

sults with high boundary accuracy. Our main insight

comes from the observation that the output characteristics

of monocular depth estimation networks change with the

resolution of the input image. In low resolutions close to

the training resolution, the estimations have a consistent

structure while lacking high-frequency details. When the

same image is fed to the network in higher resolutions, the

high-frequency details are captured much better while the

structural consistency of the estimate gradually degrades.

We claim following our analysis in Section 3 that this du-

ality stems from the limits in the capacity and the receptive

field size of a given model. We propose a double-estimation

framework that merges two depth estimations for the same

image at different resolutions adaptive to the image content

to generate a result with high-frequency details while main-

taining the structural consistency.

Our second observation is on the relationship between

the output characteristics and the amount and distribution

of high-level depth cues in the input. We demonstrate that

the models start generating structurally inconsistent results

when the depth cues are further apart than the receptive field

size. This means that the right resolution to input the image

to the network changes locally from region to region. We

make use of this observation by selecting patches from the

input image and feeding them to the model in resolutions

adaptive to the local depth cue density. We merge these esti-

mates onto a structurally consistent base estimate to achieve

a highly detailed high-resolution depth estimation.

By exploiting the characteristics of monocular depth es-

timation models, we achieve results that exceed the state-of-

the-art in terms of resolution and boundary accuracy with-

out retraining the original networks. We present our results

and analysis using two state-of-the-art monocular depth es-

timation methods [35, 48]. Our double-estimation frame-

work alone improves the performance considerably without

too much computational overhead while our full pipeline

shown in Figure 2 can generate highly detailed results even

for very complex scenes as Figure 1 demonstrates.

2. Related Work

Early works on monocular depth estimation rely on

hand-crafted features designed to encode pictorial depth

cues such as object size, texture density, or linear per-

spective [37]. Recent works leverage deep neural net-

works to learn depth-related priors directly from training

data [6, 11, 14, 34, 44, 46, 57]. In recent years, impressive

depth estimation performance has been achieved thanks to

the availability of large-scale depth datasets [7, 29, 47, 54]

and several technical breakthroughs including innovative

architecture designs [12, 13, 18, 21, 28, 33], effective in-

corporation of geometric and semantics constraints [4, 43,

50, 52, 55, 56, 58], novel loss functions [26, 29, 35, 44, 48],

and supervision strategies [5, 14, 15, 16, 20, 23, 27, 45, 46].

In this work, rather than developing a new depth estimation

method, we show that by merging estimations from differ-

ent resolutions and patches, existing depth estimation mod-

els can be adapted to generate higher-quality results.

While impressive performance has been achieved across

depth estimation benchmarks, most existing methods are

trained to perform on relatively small input resolution, im-

peding their use in applications for which high-resolution

depth maps are desirable [31, 39, 41, 42]. Several works

propose refinement methods for low-resolution depth esti-

mates using guided upsampling alone [10, 31] or in combi-

nation with residual training [59]. Our approach instead fo-

cuses on generating the high-frequency details by changing

the input of the network and merging multiple estimations.

Our patch-based framework shares similarities with

patch-based image editing, matting, and synthesis tech-

niques where local results are generated from image patches

and blended into global results [9, 22, 49, 51, 53]. While

related, existing patch-based editing techniques are not

directly applicable to our scenario because of problem-

specific challenges in monocular depth estimation. These

challenges include varying range of depth values in patch

estimates, strong dependency on context present in the im-

age patch, and characteristic low-frequency artifacts that

arise in high-resolution depth estimates.
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Figure 3: At small input resolutions, the network [35] can estimate the overall structure of the scene successfully but often

misses the details in the image, notice the missing birds in the bottom image. As the resolution gets higher, the performance

around boundaries gets much better. However, the network starts losing the overall structure of the scene and generates

low-frequency artifacts in the estimate. The resolution at which these artifacts start appearing depends on the distribution of

contextual cues in the image.

Figure 4: Since the model is fixed, changing the image reso-

lution affects how much of the scene the receptive field can

“see”. As the resolution increases, depth cues get farther

apart, starving the network of information, which progres-

sively degrades the accuracy.

3. Observations on Model Behavior

Monocular depth estimation, with the lack of geometric

cues that multi-camera systems exploit, has to rely on high-

level depth cues present in the image. In their analysis, Hu

et al. [17] show that monocular depth estimation models

indeed make use of monocular depth cues that the human

visual system utilizes such as occlusions and perspective-

related cues [40] that we will refer to as contextual cues

or more broadly as context. In this section, we present our

observations on how the context or more importantly how

the context density in the input affects the network perfor-

mance. We present examples from MiDaS [35] and show

similar results from [48] in the supplementary material.

Most depth estimation methods follow the common

practice of training with a pre-defined and relatively low

input resolution but the models themselves are fully convo-

lutional, which in principle can handle arbitrary input sizes.

When we feed an image into the same model with different

resolutions, however, we see a specific trend in the result

characteristics. Figure 3 demonstrates that in smaller res-

olutions the estimations lack many high-frequency details

while generating a consistent overall structure of the scene.

As the input resolution gets higher, more details are gen-

Figure 5: The original image with resolution 192 × 192
gains additional details in the depth estimate when fed to

the network after upsampling to 500 × 500 (right) instead

of its original resolution (middle).

erated in the result but we see inconsistencies in the scene

structure characterized by gradual shifts in depth between

image regions. We explain this duality through the limited

capacity and the limited receptive field size of the network.

The receptive field size of a network depends mainly on

the architecture as well as the training resolution. It can be

defined as the region around a pixel that contributes to the

output at that pixel [2, 25]. As monocular depth estima-

tion relies on contextual cues, when these cues in the image

gets further apart than the receptive field, the network is not

able to generate a coherent depth estimation around pixels

that do not receive enough information. We demonstrate

this behavior with a simple scene in Figure 4. MiDaS [35]

with its receptive field size of 384 × 384 starts to gener-

ate inconsistencies between image regions as the input gets

larger and the contextual cues concentrated at the edges of

the image get further apart than 384 pixels. The inconsis-

tent results for the flat wall in Figure 3 (top) also support

this observation.

Convolutional neural networks have an inherently lim-

ited capacity that provides an upper bound to the amount

of information they can store and generate [3]. As the net-

work can only see as much as its receptive field size at once,

the limit in capacity applies to what the network can gener-

ate inside its receptive field. We attribute the lack of high-
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frequency details in low-resolution estimates to this limit.

When there are many contextual cues present in the input,

the network is able to reason about the larger structures in

the scene much better and is hence able to generate a con-

sistent structure. However, this results in the network not

being able to generate high-frequency details at the same

time due to the limited amount of information that can be

generated in a single forward pass. We show a simple ex-

periment in Figure 5. We use an original input image of

192× 192 pixels and simply upsample it to generate higher

resolution results. This way, the amount of high-frequency

information remains the same in the input but we still see an

increase in the high-resolution details in the result, demon-

strating a limit in the network capacity. We hence claim that

the network gets overwhelmed with the amount of contex-

tual cues concentrated in a small image and is only able to

generate an overall structure of the scene.

4. Method Preliminaries

Following our observations in Section 3, our goal is to

generate multiple depth estimations of a single image to be

merged to achieve a result that has high-frequency details

with a consistent overall structure. This requires (i) retriev-

ing the distribution of contextual cues in the image that we

will use to determine the inputs to the network, and (ii)

a merging operation to transfer the high-frequency details

from one estimate to another with structural consistency.

Before going into the details of our pipeline in Sections 5

and 6, we present our approach to these preliminaries.

Estimating Contextual Cues Determining the contextual

cues in the image is not a straightforward task. Hu et al. [17]

focus on this problem by identifying the most relevant pix-

els for monocular depth estimation in an image. While they

provide a comparative analysis of contextual cues used by

different models during inference, we were not able to gen-

erate high-resolution estimates we need for cue distribution

for MiDaS [35] using their method. Instead, following their

observation that image edges are reasonably correlated with

the contextual cues, we use an approximate edge map of

the image obtained by thresholding the RGB gradients as a

proxy.

Merging Monocular Depth Estimates In our problem

formulation, we have two depth estimations that we would

like to merge: (i) a low-resolution map obtained with a

smaller-resolution input to the network and (ii) a higher-

resolution depth map of the same image (Sec. 5) or patch

(Sec. 6) that has better accuracy around depth discontinu-

ities but suffers from low-frequency artifacts. Our goal is to

embed the high-frequency details of the second input into

the first input which provides a consistent structure and a

fixed range of depths for the full image.

While this problem resembles gradient transfer methods

such as Poisson blending [32], due to the low-frequency ar-

tifacts in the high-resolution estimate, such low-level ap-

proaches do not perform well for our purposes. Instead,

we utilize a standard network and adopt the Pix2Pix ar-

chitecture [19] with a 10-layer U-net [36] as the genera-

tor. Our selection of a 10-layer U-net instead of the de-

fault 6-layer aims to increase the training and inference res-

olution to 1024 × 1024, as we will use this merging net-

work for a wide range of input resolutions. We train the

network to transfer the fine-grained details from the high-

resolution input to the low-resolution input. For this pur-

pose, we generate input/output pairs by choosing patches

from depth estimates of a selected set of images from Mid-

dlebury2014 [38] and Ibims-1 [24]. While creating the low-

and high-resolution inputs is not a problem, consistent and

high-resolution ground truth cannot be generated natively.

Note that we also can not directly make use of the original

ground-truth data because we are training the network only

for the low-level merging operation and the desired output

depends on the range of depth values in the low-resolution

estimate. Instead, we empirically pick 672*672 pixels as in-

put resolution to the network which maximizes the number

of artifact-free estimations we can obtain over both datasets.

To ensure that the ground truth and higher-resolution patch

estimation have the same amount of fine-grained details,

we apply a guided filter on the patch estimation using the

ground truth estimation as guidance. These modified high-

resolution patches serve as proxy ground truth for a seam-

lessly merged version of low- and high-resolution estima-

tions. Figures 6 and 7 demonstrate our merging operation.

5. Double Estimation

We show the trade-off between a consistent scene struc-

ture and the high-frequency details in the estimates in Sec-

tion 3 and Figure 3 with changing input resolution. We also

show in Figures 3 and 4 that the network starts to produce

structurally inconsistent results when the contextual cues in

the image are further apart than the receptive field size. The

maximum resolution at which the network will be able to

generate a consistent structure depends on the distribution

of the contextual cues in the image. Using an edge map as

the proxy for contextual cues, we can determine this maxi-

mum resolution by making sure that no pixel is further apart

from contextual cues than half of the receptive field size.

For this purpose, we apply binary dilation to the edge map

with a receptive-field-sized kernel in different resolutions.

Then, the resolution for which the dilated edge map stops

to produce all-one results is the maximum resolution where

every pixel will receive context information in a forward

pass. We refer to this resolution that is adaptive to the im-

age content as R0. We will refer to resolutions above R0

as Rx where x represents the percentage of pixels that do
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Figure 6: We show the depth estimates obtained at different resolutions, (a) at the training resolution of MiDaS [35] at

384× 384, (b) at the selected resolution with edges separated at most by 384 pixels, and (c) at a higher resolution that leaves

20% of the pixels without nearby edges. Although the increasing resolution provides sharper results, beyond (c), the estimates

become unstable in terms of the overall structure, visible through incorrect depth range for the bench in the background and

unrealistic depth gradients around the tires. (d) Our merging network is able to fuse the fine-grain details in (c) into the

consistent structure in (a) to get the best of two worlds.

not receive any contextual information at a given resolution.

Estimations with resolutions above R0 will lose structural

consistency but they will have richer high-frequency con-

tent in the result.

Following these observations, we propose an algorithm

that we call double estimation: to get the best of two worlds,

we feed the image to the network in two different resolu-

tions and merge the estimates to get a consistent result with

high-frequency details. Our low-resolution estimation is set

to the receptive field size of the network that will determine

the overall structure in the image. Resolutions below the

receptive field size do not improve the structure and in fact

reduce the performance as the full capacity of the network

is not utilized. We determined through experimental analy-

sis in Section 7.2 that our merging network can successfully

merge the high-frequency details onto the low-resolution es-

timate’s structure up to R20. The low-resolution artifacts in

estimations beyond R20 start to damage the merged results.

Note that R20 may be higher than the original resolution.

Figure 6 demonstrates that we can preserve the structure

in the low-resolution estimation (a) while integrating the de-

tails in the high-resolution estimation (c) successfully into

our result (d). Through merging, we can generate consis-

tent results beyond R0 (b), which is the limit set by the

receptive field size of the network, at the cost of a second

forward-pass through the base network.

6. Patch Estimates for Local Boosting

We determine the estimation resolution for the whole im-

age based on the number of pixels that do not have any

contextual cues nearby. These regions with the lowest con-

textual cue density are dictating the maximum resolution

we can use for an image. Regions with higher contex-

tual cue density, however, would still benefit from higher-

resolution estimations to generate more high-frequency de-

tails. We present a patch-selection method to generate depth

estimates at different resolutions for different regions in the

image that are merged together for a consistent full result.

Ideally, the patch selection process should be guided

with high-level information that determines the local res-

olution optimum for estimation. This requires a data-driven

approach that can evaluate the high-resolution performance

of the network and an accurate high-resolution estimation

of the contextual cues. However, the resolution of the cur-

rently available datasets are not enough to train such a sys-

tem. As a result, we present a simple patch selection method

where we make cautious design decisions to arrive at a re-

liable high-resolution depth estimation pipeline without re-

quiring an additional dataset or training.

Base estimate We first generate a base estimate using the

double estimation in Section 5 for the whole image. The

resolution of this base estimate is fixed as R20 for most im-

ages. Only for a subset of images we increase this resolution

as detailed at the end of this section.

Patch selection We start the patch selection process by

tiling the image at the base resolution with a tile size equal

to the receptive field size and a 1/3 overlap. Each of these

tiles serves as a candidate patch. We ensure each patch re-

ceives enough context to generate meaningful depth esti-

mates by comparing the density of the edges in the patch to

the density of the edges in the whole image. If a tile has less

edge density than the image, it is discarded. If a tile has a
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Figure 7: Input patches are shown in our base estimate,

patch-estimate pasted onto the base estimate, and our result

after merging. The image is picked from [8].

higher edge density, the size of the patch is increased until

the edge density matches the original image. This makes

sure that each patch estimate has a stable structure.

Patch estimates We generate depth estimates for patches

using another double estimation scheme. Since the patches

are selected with respect to the edge density, we do not ad-

just the estimation resolution further. Instead, we fix the

high-resolution estimation size to double the receptive field

size. The generated patch-estimates are then merged onto

this base estimate one by one to generate a more detailed

depth map as shown in Figure 2. Note that the range of

depth values in the patch estimates differs from the base es-

timate since monocular depth estimation networks do not

provide a metric depth. Rather their results represent the or-

dinal depth relationship between image regions. Our merg-

ing network is designed to handle such challenges and can

successfully merge the high-frequency details in the patch

estimate onto the base estimate as Figure 7 shows.

Base resolution adjustment We observe that when the

edge density in the image varies a lot, especially when a

large portion of the image lacks any edges, our patch selec-

tion process ends up selecting too small patches due to the

small R20. We solve this issue for such cases by upsam-

pling the base estimate to a higher resolution before patch

selection. For this, we first determine a maximum base size

Rmax = 3000×3000 from the R20 value of a 36-megapixel

outdoors image with a lot of high-frequency content. Then

we define a simple multiplier for the base estimate size as

max (1,Rmax/(4KR20)) where K is the percentage of pix-

els in the image that are close to edges determined by di-

lating the edge map with a kernel of quarter of the size of

the receptive field. The max operation makes sure that we

never decrease the base size. This multiplier makes sure

that we can select small high-density areas within an over-

all low-density image with small patches when we define

the minimum patch size as the receptive field size in the

base resolution.

7. Results and Discussion

We evaluate our method on two different datasets, Mid-

dleburry 2014 [38] for which high-resolution inputs and

ground-truth depth maps are available, and IBMS-1 [24].

We evaluate using a set of standard depth evaluation metrics

as suggested in recent work [35, 48], including root mean

squared error in disparity space (RMSE), percentage of pix-

els with δ = max( zi

z
∗

i

,
z
∗

i

zi

) > 1.25 (δ1.25), and ordinal error

(ORD) from [48] in depth space. Additionally, we propose

a variation of ordinal relation error [48] that we call depth

discontinuity disagreement ratio (D3R) to measure the qual-

ity of high frequencies in depth estimates. Instead of using

random points as in [48] for ordinal comparison, we use the

centers of superpixels [1] computed using the ground truth

depth and compare neighboring superpixel centroids across

depth discontinuities. This metric hence focuses on bound-

ary accuracy. We provide a more detailed description of our

metric in the supplementary material.

Our merging network is light-weight and the time it takes

to do a forward pass is magnitudes smaller than the monoc-

ular depth estimation networks. The running time of our

method mainly depends on how many times we use the base

network in our pipeline. The resolution at which the base

estimation is computed, R20, and the number of patches we

merge onto the base estimate is adaptive to the image con-

tent. Our method ended up selecting 74.82 patches per im-

age on average with an average R20 = 2145× 1501 for the

Middleburry 2014 [38] dataset and 12.17 patches per image

with an average R20 = 1443× 1082 for IBMS-1 [24]. The

difference between these numbers comes from the different

scene structures present in the two datasets. Also note that

the original image resolution of IBMS-1 [24] is 640× 480.

As we demonstrate in Section 3, upscaling low-resolution

images does help in generating more high-frequency de-

tails. Hence, our estimation resolution depends mainly on

the image content and not on the original input resolution.

7.1. Boosting Monocular Depth Estimation Models

We evaluate how much our method can improve upon

pre-trained monocular depth estimation models using Mi-

DaS [35] and SGR [48] as well as the depth refinement

method by Niklaus et al. [31] and a baseline where we

refine the original method’s results using a bilateral fil-

ter after bilinear upsampling. The quantitative results in

Table 1 show that for the majority of the metrics, our

full pipeline improves the numerical performance consider-

ably and our double-estimation method already provides a

good improvement at a small computational overhead. Our

content-adaptive boosting framework consistently improves

the depth estimation accuracy over the baselines on both

datasets in terms of ORD and D3R metrics, indicating ac-

curate depth ordering and better-preserved boundaries. Our
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Table 1: Quantitative evaluation of our method using two base networks on two different datasets. Lower is better.

Middleburry2014[38] Ibims-1 [24]

MiDaS [35] SGR [48] MiDaS [35] SGR [48]

ORD D3R RMSE δ1.25 ORD D3R RMSE δ1.25 ORD D3R RMSE δ1.25 ORD D3R RMSE δ1.25

Original Method 0.3840 0.3343 0.1708 0.7649 0.4087 0.3889 0.2123 0.7989 0.4002 0.3698 0.1596 0.6345 0.5555 0.4736 0.1956 0.7513

Refine-Bilateral 0.3806 0.3366 0.1707 0.7627 0.4078 0.3904 0.2122 0.7990 0.3982 0.3768 0.1596 0.6350 0.5551 0.4750 0.1956 0.7501

Refine-with [31] 0.3826 0.3377 0.1704 0.7622 0.4081 0.3880 0.2115 0.7993 0.4006 0.3761 0.1600 0.6351 0.5488 0.4780 0.1953 0.7482

Single-est (R0) 0.3554 0.2504 0.1481 0.7161 0.4312 0.3131 0.1999 0.7841 0.4504 0.3269 0.1687 0.6633 0.6343 0.4901 0.2146 0.7856

Double-est (R20) 0.3496 0.1709 0.1563 0.7364 0.3944 0.2540 0.1983 0.7931 0.4112 0.3272 0.1597 0.6386 0.5591 0.4829 0.1967 0.7473

OURS 0.3467 0.1578 0.1557 0.7406 0.3879 0.2324 0.1973 0.7891 0.3938 0.3222 0.1598 0.6390 0.5538 0.4671 0.1965 0.7460

Input MiDaS [35] Ours using MiDaS SGR [48] Ours using SGR

Figure 8: Additional results using MiDaS [35] and the Structure-Guided Ranking Loss method [48] compared to the original

methods run at their default size.

method also performs comparably in terms of RMSE and

δ1.25. We also observe that simply adjusting the input res-

olution adaptively to R0 meaningfully increases the perfor-

mance.

The performance improvement provided by our method

is much more significant in qualitative comparisons shown

in Figure 8. We can drastically increase the number of high-

frequency details and the boundary localization when com-

pared to the original networks.

We do not see a large improvement when depth refine-

ment methods are used in Table 1 and also in the qualitative

examples in Figure 9. This difference comes from the fact

that we utilize the network multiple times to generate richer

information while the refinement methods are limited by the

details available in the base estimation results. Qualitative

examples show that the refinement methods are not able to

generate additional details that were missed in the base es-

timate such as small objects or sharp depth discontinuities.

7.2. Double Estimation and Rx

We chose R20 as the high-resolution estimation in our

double-estimation framework. This number is chosen based

on the quantitative results in Table 2, where we show that

using a higher resolution R30 results in a decrease in per-

9691



Input MiDaS [35] MiDaS + Bilat. Up. MiDaS + [31] Ours using MiDaS GT

Figure 9: We compare out method to bilateral upsampling and the refinement method proposed by Niklaus et al. [31] as

applied to MiDaS [35] output. Refinement methods fail to add any details that do not exist in the original estimation. With

our patch-based merging framework, we are able to generate sharp details in the image.

Table 2: Whole image estimation performance of Mi-

DaS [35] with changing resolution and double estimation

on the Middlebury dataset [38]. Lower is better.

Single estimation Double estimation

Fixed size (pixels) Context-adaptive

384 768 1152 1536 R0 R10 R20 R0 R10 R20 R30

ORD 0.384 0.371 0.426 0.478 0.355 0.457 0.505 0.361 0.349 0.349 0.352

D3R 0.334 0.217 0.187 0.189 0.250 0.197 0.199 0.258 0.183 0.170 0.171

RMSE 0.170 0.152 0.165 0.186 0.148 0.183 0.198 0.164 0.157 0.156 0.156

δ1.25 0.764 0.745 0.740 0.793 0.716 0.788 0.803 0.749 0.730 0.736 0.745

formance. This is due to the high-resolution results having

heavy artifacts as the number of pixels in the image without

contextual information increases. Table 2 also demonstrates

that our double estimation framework outperforms fixed in-

put resolutions which are the common practice, as well as

estimations at R0 which represents the maximum resolu-

tion an image can be fed to the networks without creating

structural inconsistencies.

7.3. Limitations

Since our method is built upon monocular depth estima-

tion, it suffers from its inherent limitations and therefore

generates relative, ordinal depth estimates but not absolute

depth values. We also observed that the performance of the

base models degrade with noise and our method is not able

to provide meaningful improvement for noisy images. We

address this in an analysis on the NYUv2 [30] dataset in

the supplementary material. The high-frequency estimates

suffer from low-magnitude white noise which is not always

filtered out by our merging network and may result in flat

surfaces appearing noisy in our results.

We utilize RGB edges as a proxy for monocular depth

cues and make some ad-hoc choices in our patch selection

process. While we are able to significantly boost base mod-

Figure 10: Our boundary accuracy is better visible in this

example where we apply a threshold to the estimated depth

values of MiDaS [35] (a) and ours (b).

els with our current formulation, we believe research on

contextual cues and the patch selection process will be ben-

eficial to reach the full potential of pre-trained monocular

depth estimation networks.

8. Conclusion

We have demonstrated an algorithm to infer a high-

resolution depth map from a single image using pre-trained

models. While previous work is limited to sub-megapixel

resolutions, our technique can process the multi-megapixel

images captured by modern cameras. High-quality high-

resolution monocular depth estimation enables many appli-

cation scenarios such as image segmentation. We show a

simple segmentation by thresholding the depth values in

Figure 10 which also demonstrates our boundary localiza-

tion. Our work is based on a careful characterization of the

abilities of existing depth-estimation networks and the fac-

tors that influence them. We hope that our approach will

stimulate more work on high-resolution depth estimation

and pave the way for compelling applications.
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Süsstrunk. SLIC superpixels compared to state-of-the-art su-

perpixel methods. IEEE Trans. Pattern Anal. Mach. Intell.,

34(11):2274–2282, 2012.

[2] Andre Araujo, Wade Norris, and Jack Sim. Computing

receptive fields of convolutional neural networks. Distill,

2019.

[3] Pierre Baldi and Roman Vershynin. The capacity of feed-

forward neural networks. Neural networks, 116:288–311,

2019.

[4] Po-Yi Chen, Alexander H Liu, Yen-Cheng Liu, and Yu-

Chiang Frank Wang. Towards scene understanding: Un-

supervised monocular depth estimation with semantic-aware

representation. In Proc. CVPR, 2019.

[5] Tian Chen, Shijie An, Yuan Zhang, Chongyang Ma, Huayan

Wang, Xiaoyan Guo, and Wen Zheng. Improving monocu-

lar depth estimation by leveraging structural awareness and

complementary datasets. In Proc. ECCV, 2020.

[6] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-

image depth perception in the wild. In Proc. NeurIPS, 2016.

[7] Weifeng Chen, Shengyi Qian, David Fan, Noriyuki Kojima,

Max Hamilton, and Jia Deng. OASIS: A large-scale dataset

for single image 3D in the wild. In Proc. CVPR, 2020.

[8] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conot-

ter, and Giulia Boato. Raise: A raw images dataset for digital

image forensics. In Proc. ACM Multimedia Systems Confer-

ence, 2015.

[9] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B

Goldman, and Pradeep Sen. Image melding: Combining in-

consistent images using patch-based synthesis. ACM Trans.

Graph., 31(4):1–10, 2012.

[10] Adrian Dziembowski, Adam Grzelka, Dawid Mieloch, Ol-

gierd Stankiewicz, and Marek Domański. Depth map up-
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