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Abstract

Quantization-based methods are widely used in LiDAR

points 3D object detection for its efficiency in extracting

context information. Unlike image where the context infor-

mation is distributed evenly over the object, most LiDAR

points are distributed along the object boundary, which

means the boundary features are more critical in LiDAR

points 3D detection. However, quantization inevitably in-

troduces ambiguity during both the training and inference

stages. To alleviate this problem, we propose a one-stage

and voting-based 3D detector, named Point-Voxel-Grid Net-

work (PVGNet). In particular, PVGNet extracts point, voxel

and grid-level features in a unified backbone architecture

and produces point-wise fusion features. It segments Li-

DAR points into foreground and background, predicts a

3D bounding box for each foreground point, and performs

group voting to get the final detection results. Moreover,

we observe that instance-level point imbalance due to oc-

clusion and observation distance also degrades the detec-

tion performance. A novel instance-aware focal loss is pro-

posed to alleviate this problem and further improve the de-

tection ability. We conduct experiments on the KITTI and

Waymo datasets. Our proposed PVGNet outperforms previ-

ous state-of-the-art methods and ranks at the top of KITTI

3D/BEV detection leaderboards.

1. Introduction

In autonomous driving, 3D object detection is a critical

task that has received significant attention from both indus-

try and academia [8, 10, 11, 20, 24]. LiDAR sensors are the

most widely used 3D sensors. The generated point clouds

provide accurate distance measurements and geometric in-

formation for environment understanding. Different from

2D images, 3D point clouds are irregular, sparse, and un-

evenly distributed. As shown in Fig. 1, the LiDAR points

are mainly located along the object boundary. Therefore,
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Figure 1. An example of an object with representation of (a) image,

(b) grid-quantization of LiDAR points, (c) raw LiDAR points.

it is important to extract the boundary feature. Moreover,

compared with images, the boundary of an object in LiDAR

points is crystally clear with its background without ambi-

guity. Under such LiDAR points merits, effectively extract-

ing the object boundary features is critical for 3D detection.

According to the type of input point cloud representa-

tion, 3D object detectors can be divided into two categories:

point-based and quantization-based methods. Point-based

detectors [18, 19] extract local features by searching for lo-

cal neighborhoods from a set of specifically selected key

points. This local search process is time-consuming, pre-

venting point-based detectors from being widely adopted in

real-time autonomous driving systems. Quantization-based

methods include voxel-based and grid-based ones. Voxel-

based detectors [32] split point clouds into evenly spaced

voxels and use sparse 3D convolution [7] for computational

acceleration. Grid-based detectors [10] project point clouds

onto 2D grids and utilize 2D convolution for feature extrac-

tion. The quantization inevitably loses detailed geometric

information and leads to an ambiguous object boundary.

This ambiguity will introduce training uncertainty and de-

grade the discrimination of object boundary representation.

To alleviate the above quantization problem and take ad-

vantage of the efficient feature representation, we propose a

unified architecture Point-Voxel-Grid Network (PVGNet).

As illustrated in Fig. 2, PVGNet extracts these multi-level

features simultaneously and applies a point-wise supervi-

sion signal on the point-level fusion feature. As a result,

detailed geometric information and rich semantic informa-

tion are integrated into a single feature vector. The crystal-

lized object boundary in LiDAR points is preserved in the

PVGNet from the supervision signal. A bottom-up detec-

tion head is used to predict a 3D bounding box for each
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Figure 2. Our proposed PVGNet is a one-stage 3D object detector

using LiDAR point clouds, which integrates point, voxel and grid-

level features in a unified backbone network.

foreground point, followed by a group voting algorithm to

generate the final detection results.

As a one-stage bottom-up detector, the training of

PVGNet faces severe sample imbalance problems. In ad-

dition to the imbalance of foreground/background points,

we observe that the imbalance of instance-level points also

exists. Specifically, an unoccluded and closer instance usu-

ally contains more points than an occluded and farther in-

stance. Therefore, we propose a novel instance-aware focal

loss (IAFL) to alleviate the imbalance problem and further

boost the detection performance.

Our contributions are summarized as follows:

• We propose PVGNet framework by extracting point,

voxel, and grid-level features in a unified backbone and

detecting 3D objects in a bottom-up one-stage manner.

This framework enables learning integrated point-wise

features for accurate object bounding box prediction.

• We propose a group voting-based method to generate

the final detection results, which is more efficient and

accurate than NMS based post-processing.

• We propose a new instance-aware focal loss for deal-

ing with instance-level foreground point number im-

balance. Extensive experiments are carried out to ex-

plore its effectiveness.

Unlike the grid feature map-based method such as PVR-

CNN [20] and HVNet [29], the proposed PVGNet is a

bottom-up 3D detector with point-level supervision, which

segments point clouds and generates bounding boxes simul-

taneously in one-stage manner. Different from the Hough

voting in VoteNet [16] that is used to generate votes for a

refinement deep network module, the group voting in our

algorithm is proposed to directly generate the final detection

results from the point-level 3D bounding box predictions.

2. Related Work

2.1. Two­stage 3D Object Detection

A typical two-stage 3D object detector consists of Stage-

I for proposal generation and Stage-II for fine-grained box

refinement. PointRCNN [21] designs a bottom-up strategy

to segment the input point clouds and generates propos-

als from the segmented foreground points. Part-A2net [22]

develops an encoder-decoder backbone network and uses

3D intra-object part locations to improve detection per-

formance in Stage-II. STD [28] proposes the sparse to

dense strategy for multi-stage proposal refinement. PV-

RCNN [20] uses anchor-based 3D voxel CNN backbone for

proposal generation and applies keypoint-to-grid ROI fea-

ture abstraction for proposal refinement.

2.2. One­stage 3D Object Detection

A set of 3D boxes is classified and regressed to improve

computational efficiency in a one-stage framework. Vox-

elNet [32] designs voxel feature encoding (VFE) layers to

obtain the feature representation of each voxel and uses

convolutional middle layers to generate 2D feature maps.

SECOND [25] proposes an improved sparse 3D convolu-

tion to speed up inference and optimize GPU usage. Point-

Pillars [11] extracts features from stacked pillars and rep-

resents the feature maps as 2D pseudo-images for convo-

lution. HVNet [29] designs a hybrid voxel network to en-

hance the voxel-wise feature. SA-SSD [9] employs an aux-

iliary network to learn point-level structure information and

exhibits better object localization performance.

2.3. Feature Extraction on Point Clouds

We group most previous point cloud representations into

point, voxel and grid-based categories. PointNet [18] is a

pioneer work to extract features directly on points. Point-

Net++ [19] is an evolved version of PointNet and is widely

used as the backbone of point-based detectors [21, 28,

16, 17, 30]. VoxelNet [32] introduces VFE layers, which

are also adopted in [25, 3], to extract voxel-wise features.

Voxel-based methods use 3D convolution to achieve high-

quality detection results, but voxelization still leads to loss

of geometric details. Grid-based methods [2, 26, 11] project

the point clouds onto regular grids and apply 2D convolu-

tion. They are usually efficient but have limited detection

accuracy. In comparison, our PVGNet extracts features at

point, voxel and grid-level simultaneously, and integrates

them into point-wise representations.

3. Proposed PVGNet

In this section, we present our proposed one-stage 3D

object detection framework PVGNet. Fig. 3 illustrates

the overall architecture, consisting of the Point-Voxel-Grid

(PVG) feature fusion, the point-wise prediction and group

voting parts. These three parts are described in Sec. 3.2,

Sec. 3.3 and Sec. 3.4 respectively. Then we detail how to

use the instance-aware focal loss for imbalance problem al-

leviation in Sec. 3.5 and define the total loss function in

Sec. 3.6.
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Figure 3. Illustration of the PVGNet architecture for 3D object detection. First, we voxelize the point cloud and apply the voxel and point

feature encoding to each non-empty voxel. Second, a backbone network composed of sparse 3D convolution and 2D convolution is adopted

to produce multi-scale voxel-wise features and grid-wise BEV features. By concatenating these different-level features, point-wise PVG

fusion features are obtained. Then we use PVG features to segment the point clouds and regress a 3D bounding box for each foreground

point. Finally, a group voting-based method is used to generate the final detection results by merging redundant boxes.

Grid Size Ambiguous Grid Ratio

1m*1m 80.7%

0.5m*0.5m 65.9%

0.2m*0.2m 45.4%

0.05m*0.05m 20.9%

0.02m*0.02m 8.9%

→0 →0
Table 1. Statistical results of the ambiguous grid ratio of the Car

category from the KITTI train set.

3.1. Motivation

Fig. 1 shows a vanilla example of object appearance rep-

resentation. For an object from an image, detailed con-

text information appeared on both the inner and bound-

ary in Fig. 1(a). In contrast, LiDAR points of an instance

are mainly located along the object boundary, while the

inner region contains only quite a few points as shown

in Fig. 1(b). Therefore, effectively extracting the object

boundary features is the critical issue for 3D detection.

However, the quantization-based LiDAR point projection

usually introduces the uncertainty of grid/voxel if multi-

ple points from different classes are projected into the same

grid/voxel (named as ambiguous grid/voxel). The statistical

results of the ambiguous grid ratio of the Car category from

the KITTI train set are given in Table 1. It is seen that the

ambiguous grid ratio is above 45% for the grid size large

than 0.2m, which deteriorates both the feature extraction

and supervision signal generation. Fig. 1(c) is the point-

level representation, which has a clear boundary between

the object and the background. The point-level representa-

tion is equivalent to a grid size with zero, which means zero

ambiguous grid ratio. This analysis motivates us to design

the architecture from the point-level feature representation.

3.2. PVG Feature Fusion

3.2.1 Voxel and Point Feature Encoding

Sparse 3D voxel CNN is widely used in many state-of-

the-art 3D detectors due to its high efficiency and accu-

racy. Point cloud P = {pi}
N
i=1 is firstly divided into evenly

spaced voxels with the size of (vd, vh, vw) along the Z, Y

and X axes. The points residing in the same voxel are

grouped based on their spatial coordinates, then the sam-

pling stage sub-samples a fixed number of T points from

each voxel. The sub-sampled point set of a specified voxel

ṽ is denoted as Ps, which will be fed into the VFE layers to

extract voxel-wise features f (v0) = VFE(Ps). More details

about the VFE layer can be found in [32].

Previous works such as [20] and [9] revealed the im-

portance of leveraging fine-grained spatial information of

points to achieve accurate bounding box localization. In

our work, we introduce a voxel and point feature encoding

(VPFE) layer, as shown in Fig. 4, to extract the point-wise

features of all observed points as well as the voxel-wise fea-

tures. The VPFE layer is an extension of the VFE layer.

First, in the VFE stage, the voxel-wise feature f (v0) is en-

coded using the sampled point set Ps. Then all of the raw

points {pi} in voxel ṽ, including the points retained and

dropped during the VFE process, are fed into a MLP net-

work to generate features {f
(raw)
i }. Finally, we augment

each f
(raw)
i with f (v0) via concatenation and produce the

output point-wise encoded feature set {f
(p)
i } using MLP:

f
(p)
i = M

([

f
(raw)
i , f (v0)

])

, (1)

where [·] denotes concatenation and M(·) denotes a MLP

network.
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Figure 4. Voxel and point feature encoding layer. For each non-

empty voxel, the stacked VFE layers are used to generate the

voxel-wise feature using the sampled T points. Then the point-

wise features for all observed points in the voxel are extracted by

additional concatenation and MLP layers.

The voxel-wise feature set {f (v0)} will be fed into the

backbone network, and the point-wise feature set {f
(p)
i }

will be used for further PVG feature fusion described later.

3.2.2 Backbone Network

We show the details of our backbone network in Fig. 5. The

input is the encoded voxel-wise feature map {f (v0)}. The

first part consists of several sparse 3D convolutional lay-

ers. We insert sparse 3D convolutions with a stride of 2

to gradually produce 2×, 4×, 8× downscaled sparse vol-

umes. The corresponding multi-scale voxel-wise feature

vector sets are respectively denoted as {f (v1)}, {f (v2)} and

{f (v3)}, as shown in Fig. 5(a). Then, by concatenating the

voxel-wise feature vectors along the Z axis into one chan-

nel, the downscaled sparse volumes are reshaped into 2D

BEV feature maps. 2D convolutions are applied for further

feature abstraction and enlarging the receptive field.

Feature pyramid network (FPN) [12] has been proven to

be very effective in 2D image detection and segmentation

tasks. Following the design of FPN, we apply the trans-

posed convolutional layers to up-sample the BEV feature

maps. We concatenate the higher-level features contain-

ing stronger semantic information with the lower-level fea-

tures containing richer location information. Before con-

catenation, we reshape the lower-level sparse 3D volumes

into 2D BEV features with dimensionality reduction. The

resulting multi-scale BEV feature map set is denoted as

{f (bevk)}k=0,1,2,3, as illustrated in Fig. 5(c).

3.2.3 Point-wise PVG Feature Fusion

In 3D detection tasks, since context and location informa-

tion are both important, it is best to integrate these multi-

level features together for subsequent classification and re-

gression. PVG feature fusion is designed for this purpose.

The feature set {f
(p)
i } encodes point interactions within a

voxel and describes the fine-grained structure of the point

cloud. However, the receptive field of {f
(p)
i } is extremely

limited. The voxel-wise feature set {f (vk)} encodes voxel

interactions in 3D space. In this way, the feature discrimi-

nation ability along the Z axis can be better preserved. The

grid-wise feature set {f (bevk)} encodes grid interactions un-

der BEV. Compared with {f
(p)
i } and {f (vk)}, {f (bevk)} has

a larger receptive field and captures richer contextual infor-

mation. For a specific point pi, we denote f
(vk)
i and f

(bevk)
i

as the k-th level feature vector of the voxel and grid where

pi is located, respectively. Then the fused PVG feature is

generated by integrating f
(p)
i , f

(vk)
i and f

(bevk)
i :

f
(PV G)
i =

[

f
(p)
i ,Mv

([

f
(vk)
i

])

,Mbev

([

f
(bevk)
i

])]

,

(2)

where [f
(vk)
i ] and [f

(bevk)
i ] are the concatenated voxel-wise

and grid-wise feature vectors. The PVG fusion feature set

{f
(PV G)
i }Ni=1 are generated for all points {pi}

N
i=1.

3.3. Point­wise Segmentation and Regression

Given the per-point features {f
(PV G)
i }Ni=1, we pre-

dict foreground confidence si, bounding box bi and 3D

Intersection-over-Union (IoU) score sioui
by three MLP

headers. For point segmentation, the ground-truth semantic

classes of points can be easily generated by the 3D ground-

truth boxes. A segmentation branch with MLP layers is ap-

plied to calculate the foreground confidence of each point.

For each segmented foreground point, a regression

branch is used to predict the corresponding 3D bounding

box encoded as

bi = (cx, cy, cz, l, w, h, θ). (3)

Instead of regressing the center value directly, we predict

the offset, (∆x,∆y,∆z), from the center of the instance

where pi resides to the position of pi. The estimation of

size (l, w, h) and orientation θ are similar to those in [20].

More details can be found in Sec. 3.6.

Besides, for each predicted box, the 3D IoU score is es-

timated for localization quality evaluation. Previous works

such as [28] and [20] have shown that the quality-aware

IoU score achieves better performance than the traditional

classification score. In the training phase, all the re-

gression components described above are predicted point-

wisely from the network, but only the foreground points are

contributed to the loss computation.

3.4. Group Voting

Our network predicts a 3D bounding box for every fore-

ground point. For inference, it is necessary to merge these

boxes to generate the final detection results. NMS is widely

used in many detectors for this purpose. However, in NMS,

only the box with the highest score is selected and the

other overlapping boxes are suppressed. To better perform

box merging, we propose a method based on group voting,
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Figure 5. Backbone network composed of sparse 3D convolution, 2D convolution and lateral connections.

which improves efficiency and effectiveness compared with

NMS.

In the group voting algorithm, all segmented foreground

points are translated by predicted displacement to the cor-

responding centroids to form the votes {vi}
Nfg

i=1 . Then the

vote clusters are generated through sampling and grouping,

and each cluster corresponds to an object. Specifically, we

use farthest point sampling (FPS) to sample a subset of K

key votes {ok}
K
k=1 from {vi}

Nfg

i=1 . For each sampled key

vote ok, a vote cluster Gk is formed by finding all votes that

are within a radius r to ok:

Gk = {vi| ‖vi − ok‖ ≤ r}, for k = 1, . . . ,K. (4)

After clustering, we average the attributes (center, size, ori-

entation, and score) of the predicted boxes belonging to the

same cluster.

3.5. Instance­aware Focal Loss

For the point-wise segmentation task, the extreme fore-

ground/background class imbalance overwhelms the train-

ing process and degrades model performance. Moreover, in

3D detection, we are more concerned about instance-level

segmentation/detection performance than point-level. In a

frame, different instances have different numbers of points.

An unoccluded and closer instance usually contains more

points than an occluded and farther instance. As a result,

“easy” instances with more points comprise the majority of

the point-wise foreground segmentation loss and dominate

the gradient, limiting overall performance. To this end, we

propose an instance-aware focal loss (IAFL) to alleviate the

instance-level imbalance problem.

For each foreground point pi, we can find the instance

I(pi) to which pi belongs. We propose to add a modulating

factor IA(pi) to the focal loss:

IA(pi) = β

(

1−
1

NI(pi)

∑

k

sk · ✶[pk in I(pi)]

)τ

, (5)

where ✶[pk in I(pi)] indicates whether a point pk belongs

to instance I(pi), sk is the predicted foreground probabil-

ity of point pk, and NI(pi) is the count of total number of

points in I(pi). The term 1
NI(pi)

∑

k sk · ✶[pk in I(pi)],

denoted as sI(pi) for brevity, is used to evaluate the clas-

sification accuracy of instance I(pi). β and τ are tunable

hyperparameters.

By adding the factor IA(pi) to the original focal loss

FL(pi, st) [13], we get the IAFL

IAFL(pi, st) =

{

(1 + IA(pi))FL(pi, st) if y = 1,

FL(pi, st) otherwise.

(6)

When most points in I(pi) are well classified, the fac-

tor IA(pi) is near 0 and IAFL is equivalent to FL. As

sI(pi) → 0, the factor IA(pi) rises and the loss of all points

in I(pi) is up-weighted. In this way, IAFL reduces the loss

contribution from “easy” instances that may contain many

points and makes the training process more balanced.

3.6. Total Loss Function

The overall multi-task loss consists of point-wise seg-

mentation loss, bounding box regression loss and 3D IoU

score prediction loss.

Point-wise segmentation loss Lseg is computed by the

IAFL described in Sec. 3.5, as

Lseg =
1

N

N
∑

i=1

IAFL(pi), (7)

where N is the total number of points.

Smooth-L1 loss is uses for point-wise bounding box re-

gression task. We define the vector b∗

i ∈ R7 containing the

regression training targets corresponding to center location

(cxt
, cyt

, czt), box size (lt, wt, ht) and the orientation θt, as

cxt
= x− cxg

, cyt
= y − cyg

, czt = z − czg ,

lt = log(
lg

la
), wt = log(

wg

wa

), ht = log(
hg

ha

),

θt = sin(θg),

(8)

where (cxg
, cyg

, czg , lg, wg, hg, θg) is the 3D ground-truth

bounding box, (x, y, z) is the point position coordinate, and

(la, wa, ha) is the predefined constant anchor size. We then
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average the regression loss of all foreground points as

Lreg =
1

Nfg

Nfg
∑

i=1

LsmoothL1
(bi,b

∗

i ), (9)

where Nfg is the number of foreground points.

For the confidence prediction branch, similar to [20], we

use 3D IoU between detected bounding boxes and corre-

sponding groud-truth boxes as the training target

s∗iou = min(1,max(0,
1

bu − bl
(IoU − bl))), (10)

where the lower bound bl and the upper bound bu are used to

map IoU to the target probability score. The IoU prediction

loss is defined as a smooth-L1 loss of

Liou =
1

Nfg

Nfg
∑

i=1

LsmoothL1
(sioui

, s∗ioui
), (11)

where sioui
denotes the estimated score of the model.

Our total loss is the weighted sum of the above three

losses, expressed as

L =Lseg + λiouLiou + λregLreg, (12)

where λiou and λreg are constant weights to balance differ-

ent tasks.

4. Experiments

We conduct experiments on the KITTI [6] dataset and

compare our method with previous state-of-the-art in terms

of 3D object and BEV detection. Mean average precision

(mAP) with an IoU threshold of 0.7 is used as the evalu-

ation metric. KITTI dataset contains 7,481 training sam-

ples and 7,518 test samples. The training set is divided into

train split with 3,712 samples and val split with 3,769 sam-

ples as suggested in [32]. The labeled instances are further

divided into easy, moderate, and hard categories based on

their height in the image, occlusion ratios, etc.

4.1. Implementation Details

4.1.1 Data Augmentation

We conduct the cut-and-paste augmentation strategy [25, 4]

to randomly sample additional ground-truth boxes from

other scenes into the current scene to simulate objects in

various environments. We also apply the widely used

global augmentation strategies [20], including random flip-

ping, global rotation, global scaling, and global transla-

tion. The angle of global rotation is randomly sampled from

U(−π
4 ,

π
4 ), and the ratio of global scaling is sampled from

U(0.95, 1.05). Global translation is applied by randomly

adding a displacement sampled from N (−0.2, 0.2). Be-

sides, we perform instance-level augmentation strategies on

individual annotations. The noise of instance rotation is uni-

formly drawn from U(− π
20 ,

π
20 ), and the ratio of scaling is

drawn from U(0.95, 1.05).

4.1.2 Network Architecture and Training Details

On the KITTI dataset, the detection range is within

[0, 71.68]m for the X axis, [−40.32, 40.32]m for the Y

axis and [−3, 1]m for the Z axis. The voxel size is set to

(0.07m, 0.07m, 0.2m). The VPFE module extracts 64-dim

features for each non-empty voxel and 80-dim features for

each observed point. The backbone network utilizes nine

3×3×3 sparse 3D convolutional layers to gradually convert

the voxel features into feature volumes with 2×, 4×, 8×
downscaled sizes. These sparse feature volumes are con-

verted into dense tensors, and a series of 2D transposed con-

volutional layers are used to generate full-resolution BEV

feature maps by upsampling spatially coarser features. At

last, the concatenated multi-scale voxel-wise and grid-wise

features are further processed by MLP with output sizes of

96 and 96. The final fused PVG feature is a 272-dim vec-

tor. The point segmentation and box regression branches

are both realized through MLP layers.

We train the entire network with batch size 16 and learn-

ing rate 0.01 on 8 RTX 2080 Ti GPUs. ADAM optimizer is

adopted to train our PVGNet from scratch in an end-to-end

manner with cosine annealing learning rate. The hyperpa-

rameters β and τ defined in IAFL are empirically set to 0.4

and 2.0, the lower bound bl and upper bound bu defined in

Eq. (10) are set to 0.55 and 0.85, and λiou and λreg in to-

tal loss Eq. (12) are set to 2 and 4, respectively. A fixed

number of 64 key votes are sampled for group voting of the

KITTI dataset. A key vote represents an instance after clus-

tering. The maximum number of instances in a frame is 22

in KITTI val split and 64 is to guarantee to be sufficient in

both val split and test set. Since the number of targets in a

frame may be less than 64, NMS with threshold 0.01 is ap-

plied on key votes to further remove the redundant bounding

boxes.

4.2. 3D Object Detection on KITTI

4.2.1 Evaluation on KITTI Test Set

We evaluate our PVGNet detector on KITTI test set with the

official online test server. The mAP results on the most im-

portant car category calculated with 40 recall positions are

listed in Table 2 test set column. In both 3D object and BEV

detection tasks, our method achieves the best performance

among all competitors. In the context of one-stage detector,

PVGNet outperforms SA-SSD [9] with remarkable mar-

gins. Specifically, it increases the mAP of 3D detection by

1.19%, 2.02%, 2.93% on easy, moderate and hard difficulty

levels, respectively. Compared with the state-of-the-art two-

stage detector PVRCNN [20], our one-stage model achieves
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Test Set Validation Set

3D Detection BEV Detection 3D Detection BEV Detection

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Two-stage:

AVOD-FPN [10] 83.07 71.76 65.73 90.99 84.82 79.62 84.41 74.44 68.65 – – –

PointRCNN [21] 86.96 75.64 70.70 92.13 87.39 82.72 88.88 78.63 77.38 – – –

F-ConvNet [23] 87.36 76.39 66.69 91.51 85.84 76.11 89.02 78.80 77.09 90.23 88.79 86.84

SERCNN [30] 87.74 78.96 74.30 94.11 88.10 83.43 89.50 79.21 78.16 90.23 87.53 86.45

STD [28] 87.95 79.71 75.09 94.74 89.19 86.42 89.70 79.80 79.30 90.50 88.50 88.10

PVRCNN [20] 90.25 81.43 76.82 94.98 90.65 86.14 – 83.90 – – – –

One-stage:

VoxelNet [32] 77.47 65.11 57.73 89.35 79.26 77.39 81.97 65.46 62.85 89.60 84.81 78.57

PointPillars [11] 82.58 74.31 68.99 90.07 86.56 82.81 87.29 76.99 70.84 90.07 87.06 83.81

TANet [14] 84.39 75.94 68.82 91.58 86.54 81.19 88.21 77.85 75.62 90.17 87.55 87.14

SECOND [25] 84.65 75.96 68.71 91.81 86.37 81.04 87.43 76.48 69.10 89.96 87.07 79.66

3DSSD [27] 88.36 79.57 74.55 92.66 89.02 85.86 89.71 79.45 78.67 – – –

SA-SSD [9] 88.75 79.79 74.16 95.03 91.03 85.96 90.15 79.99 78.78 – – –

PVGNet 89.94 81.81 77.09 94.36 91.26 86.63 89.40 85.05 79.00 90.55 88.88 88.30
Table 2. Performance comparison on the KITTI test and val set. The results are evaluated by the mean average precision with 40 recall

positions for the test set and 11 recall positions for the val set.

3D Detection BEV Detection

Easy Mod. Hard Easy Mod. Hard

PVRCNN [20] 92.57 84.83 82.69 95.76 91.11 88.93

Proposed PVGNet 92.75 85.51 83.04 96.57 91.88 89.56
Table 3. Performance comparison on the KITTI val set. The results are evaluated by the mAP with 40 recall positions.

(0.38%, 0.27%) improvement in 3D detection and (0.61%,

0.49%) improvement in BEV detection on the moderate and

hard difficulty levels, respectively.

As of Aug. 10th, 2020, the proposed PVGNet ranks 1st

on both the car 3D and BEV detection leaderboards among

all published papers, including one-stage and two-stage ap-

proaches. This leaderboard demonstrates the effectiveness

of our method and proves that a well-designed one-stage de-

tector has excellent potential in 3D object detection tasks.

4.2.2 Evaluation on KITTI Val Set

We compare our PVGNet with other state-of-the-art ap-

proaches on KITTI val set. Results with R40 are reported in

Table 3. The proposed PVGNet leads PVRCNN by (0.18%,

0.68%, 0.35%) in 3D detection and (0.81%, 0.77%, 0.63%)

in BEV detection. Table 2 validation set column shows our

results evaluated by the mAP with R11. PVGNet achieves a

significant improvement of 5.06% compared with SA-SSD

and 1.15% compared with PVRCNN in 3D detection on the

most important moderate subset.

4.3. Ablation Studies

Extensive ablation experiments are carried out to analyze

the individual components of our proposed method. All the

results are evaluated on the KITTI val set by the 3D mAP

with 40 recall positions.

Grid Point Voxel Easy Mod. Hard

X 87.90 79.99 78.73

X 89.83 77.22 73.11

X X 92.41 83.23 80.62

X X X 92.75 85.51 83.04
Table 4. Effects of PVG feature fusion.

4.3.1 Effects of PVG Feature Fusion

We validate the effectiveness of PVG feature fusion strategy

by comparing different feature combinations. As shown in

Table 7, fusing multi-level features contributes significantly

to the performance on all difficulty levels. Due to the lack of

information along Z axis, using only grid-level features re-

sults in the lowest mAP. Voxel-wise and point-wise features

are more refined to be more beneficial for object localiza-

tion. Since context and location information are both crit-

ical in 3D detection, integrating these multi-level features

increases the mAP performance.

Easy Mod. Hard

PVGNet with Rotated NMS 92.41 83.74 81.72

PVGNet with Group Voting 92.75 85.51 83.04
Table 5. Effects of group voting.

4.3.2 Effects of Group Voting

We compare the detection results of using group voting and

rotated NMS for box merging. Table 5 shows that group
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Figure 6. The results on KITTI val set. The predicted bounding boxes are shown in green. The predictions are projected onto the RGB

images (upper row) for better visualization.

voting achieves (0.34%, 1.77%, 1.32%) mAP improvement

than rotated NMS on different difficulty levels.

Grid Point Voxel without IAFL with IAFL

X 79.02 79.99

X X 82.19 83.23

X X X 85.12 85.51
Table 6. Effects of instance-aware focal loss. The results are eval-

uated on the moderate difficulty level.

4.3.3 Effects of Instance-aware Focal Loss

The 3D detection results with and without IAFL are sum-

marized in Table 6. For different feature fusion strate-

gies, using the proposed IAFL consistently achieves supe-

rior performance. It demonstrates that reducing the imbal-

ance of instance-level points is beneficial for the LiDAR-

based bottom-up 3D detectors.

4.4. Qualitative Results

Visualization of detection results by PVGNet is shown

in Fig. 6. It demonstrates that the proposed one-stage 3D

object detector predicates high-quality 3D bounding boxes.

4.5. Evaluation on Waymo Val Set

For the Waymo Open dataset [15, 31], the detection

range is within [−75.2, 75.2]m for the X and Y axes and

[−2, 4]m for the Z axis. We report the whole val set result

using the training dataset, as shown in Table 7. We outper-

forms the state-of-the-art with a large margin on the Vehicle,

Pedestrian and Cyclist categories.

Vehicle Ped Cyc

MVF [31] 62.9 65.3 –

AFDet [5] 63.7 – –

RCD [1] 69.6 – –

PVRCNN [20] 70.3 – –

PVGNet 74.0 69.5 72.3
Table 7. Results on Waymo by official LEVEL 1 3D mAP.

5. Conclusion

This work introduces a novel one-stage bottom-up 3D

object detection framework named PVGNet, which extracts

point, voxel and grid-level features in a unified backbone

architecture. A box merging method based on group vot-

ing is proposed to generate the detection results. Further-

more, an instance-aware focal loss is designed to allevi-

ate the instance-level imbalance in point-wise segmenta-

tion. Experiments conducted on the well-known KITTI and

Waymo datasets demonstrate that our one-stage PVGNet

outperforms previous one-stage and two-stage state-of-the-

art algorithms with remarkable margins.
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