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Abstract

Our objective is language-based search of large-scale

image and video datasets. For this task, the approach

that consists of independently mapping text and vision to

a joint embedding space, a.k.a. dual encoders, is attrac-

tive as retrieval scales and is efficient for billions of im-

ages using approximate nearest neighbour search. An al-

ternative approach of using vision-text transformers with

cross-attention gives considerable improvements in accu-

racy over the joint embeddings, but is often inapplicable in

practice for large-scale retrieval given the cost of the cross-

attention mechanisms required for each sample at test time.

This work combines the best of both worlds. We make the

following three contributions. First, we equip transformer-

based models with a new fine-grained cross-attention ar-

chitecture, providing significant improvements in retrieval

accuracy whilst preserving scalability. Second, we intro-

duce a generic approach for combining a Fast dual encoder

model with our Slow but accurate transformer-based model

via distillation and re-ranking. Finally, we validate our ap-

proach on the Flickr30K image dataset where we show an

increase in inference speed by several orders of magnitude

while having results competitive to the state of the art. We

also extend our method to the video domain, improving the

state of the art on the VATEX dataset.

1. Introduction

Imagine yourself looking for an image that best matches

a given textual description among thousands of other im-

ages. One effective way would be to first isolate a few

promising candidates by giving a quick glance at all the

images with a fast process, e.g. by eliminating images that
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Figure 1: On the left, the Fast models, a.k.a dual encoders, inde-

pendently process the input image and text to compute a similarity

score via a single dot product, which can be efficiently indexed

and is thus amenable to large-scale search. On the right, the Slow

models, a.k.a cross-attention models, jointly process the input im-

age and text with cross-modal attention to compute a similarity

score. Fast and indexable models are improved by Slow models via

distillation at training time (offline). Slow models are accelerated

and improved with the distilled Fast approaches using a re-ranking

strategy at query time.

have clearly nothing in common with the description. In the

second phase, you may start paying more attention to im-

age details with a slow process, e.g. by grounding individ-

ual words of a query sentence to make sure the scrutinized

image is the best match.

Analogous to the fast process above, fast retrieval sys-

tems can be implemented by separately encoding visual and

textual inputs into a joint embedding vector space where

similarities can be computed by dot product. Such methods

are regarded as indexable, i.e. they allow application of fast

approximate nearest neighbour search [11, 32, 53, 65] and

enable efficient billion-scale image retrieval. However, the

accuracy of such methods is limited due to the simplicity of

vision-text interaction model defined by the dot product in

the joint embedding space. We refer to these techniques as

Dual Encoders (DE) or Fast approaches.

Vision-text transformers compare each word to all loca-
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tions in the image using cross-attention [12, 29, 46], allow-

ing for grounding, and can be related to the slow process

mentioned earlier. Such methods, referred to here as Cross-

attention (CA) or Slow approaches, significantly boost re-

trieval performance. Modeling text-vision interactions with

attention, however, makes these models slow and imprac-

tical for large-scale image retrieval given the cost of the

cross-attention mechanisms required for each sample at test

time. Hence, the challenge we consider is the following:

How to benefit from accurate cross-attention mechanisms

while preserving the fast and scalable visual search?

Our short answer is: By thinking Fast and Slow [10].

As illustrated in Figure 1, we propose to combine dual en-

coder approaches with cross-attention via two complemen-

tary mechanisms. First, we improve Fast DE models with

a novel distillation objective that transfers knowledge from

accurate but Slow CA models to the Fast and indexable dual

encoders. Second, we propose to combine DE and CA mod-

els with re-ranking where a few most promising candidates

obtained with the Fast model are re-ranked using the Slow

model. Our resulting approach is both fast and accurate.

Since the speed of CA is not a bottleneck anymore, we

further improve performance by enriching the vision-text

cross-attention model with a novel feature map upsampling

mechanism enabling fine-grained attention. Note that our

work can also be applied to vision-to-text retrieval. How-

ever, we focus on text-to-vision retrieval due to its wider

practical application.

Contributions. (i) We first propose a gradual feature up-

sampling architecture for improved and fine-grained vision

and text cross-attention. Our model is trained with a bi-

directional captioning loss which is remarkably competi-

tive for retrieval compared to standard cross-modal match-

ing objectives. (ii) We introduce a generic approach for

scaling-up transformer-based vision-text retrieval using two

core ideas: a method to distill the knowledge of Slow cross-

attention models into Fast dual-encoders, and re-ranking

top results of the Fast models with the Slow ones. (iii) Fi-

nally, we validate our approach on image retrieval with the

COCO [43] and Flickr30K [60] datasets and show we can

reduce the inference time of powerful transformer-based

models by 100× whilst also getting competitive results to

the state of the art. We also successfully extend our ap-

proach to text-to-video retrieval and improve state of the art

on the challenging VATEX [73] dataset.

2. Related work

Vision and Language models. Driven by the significant

advances in language understanding lead by Transform-

ers [13, 70], recent works have explored the use of these

architectures for vision and language tasks. Many of them

in image [8, 37, 39, 40, 46, 67, 68, 78] or video [79]

rely on pretrained object detectors used for extracting ROIs

that are viewed as individual visual words. A few other

works, such as PixelBERT [29] and VirTex [12] for im-

ages or HERO [38] for video, operate directly over dense

feature maps instead of relying on object detectors. In

these approaches, both vision and text inputs are fed into a

Transformer-based model usually pretrained with multiple

losses such as a cross-modal matching loss, a masked lan-

guage modelling or a masked region modelling loss. Other

non-Transformer based vision and text approaches used re-

current neural networks [14, 15, 36], MLP [71, 72], or bag-

of-words [19, 51] text models. These models are then usu-

ally optimized with objectives such as CCA [19], max mar-

gin triplet loss [15, 71, 72, 74, 75], contrastive loss [23]

and, more related to our work, by maximizing text log-

likelihoods conditioned on the image [14]. In our work,

we focus on the powerful vision-text Transformer models

for retrieval and particularly address their scalability, which

was frequently neglected by prior work.

Language-based visual search. A large number of vi-

sion and language retrieval models [15, 19, 20, 36, 50, 51,

55, 59, 71, 72, 74, 75, 77] use a dual encoder architecture

where the text and vision inputs are separately embedded

into a joint space. These approaches can efficiently ben-

efit from numerous approximate nearest neighbour search

methods such as: product quantization [32], inverted in-

dexes [65], hierarchical clustering [53] or locality sensitive

hashing [11], for fast and scalable visual search. In contrast,

state-of-the-art retrieval models rely on large vision-text

multimodal transformers [8, 29, 37, 39, 46, 47, 67, 68, 78].

In these approaches, both vision and text inputs are fed into

a cross-modal attention branch to compute the similarity be-

tween the two inputs. This scoring mechanism based on

cross-modal attention makes it particularly inadequate for

indexing and thus challenging to deploy at a large scale.

Our work aims at addressing this issue by connecting scal-

able visual search techniques with these powerful yet non-

indexable vision-text cross-attention based models.

Re-ranking. Re-ranking retrieval results is standard in re-

trieval systems. In computer vision, the idea of geometric

verification [31, 57] is used in object retrieval to re-rank ob-

jects that better match the query given spatial consistency

criteria. Query expansion [9] is another re-ranking tech-

nique where the query is reformulated given top retrieved

candidates, and recent work has brought attention mecha-

nisms into deep learning methods for query expansion [21].

Related to language-based visual search, re-ranking by a

video-language temporal alignment model has been used to

improve efficient moment retrieval in video [16]. In con-

trast, we focus on transformer-based cross-attention models

and develop a distillation objective for efficient retrieval.

Distillation. Knowledge distillation [3, 28] has proven to

be effective for improving performance in various com-

puter vision domains such as weakly-supervised learn-
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ing [41, 61], depth estimation [22], action recognition [66],

semantic segmentation [44], self-supervised learning [58]

or self-training [76]. One major application of distillation is

in compressing large and computationally expensive mod-

els in language analysis [63], object detection [5], image

classification or speech recognition [28] into smaller and

computationally less demanding models. In this work, we

describe a distillation mechanism for the compression of

powerful but non-indexable vision-text models into index-

able models suitable for efficient retrieval.

3. Thinking Fast and Slow for Retrieval

This section describes our proposed approach to learn

both fast and accurate model for language-based image re-

trieval. Our goal is to train the model to output a similarity

score between an input image x and a textual description y.

In this work, we focus on two families of models: the Fast

and the Slow models, as illustrated in Figure 1.

The Fast model, referred to as the dual encoder ap-

proach, consists of extracting modality-specific embed-

dings: f(x) ∈ R
d for the image and g(y) ∈ R

d for the

text. The core property of this approach is that the simi-

larity between an image x and a text y can be computed

via a single dot product f(x)⊤g(y). Hence, these methods

can benefit from approximate nearest neighbour search for

efficient large-scale retrieval [32, 53, 65].

The Slow model, referred to as the cross-attention ap-

proach differs by a more complex modality merging strat-

egy based on cross-modal attention. We assume the given

similarity score h(x, y) cannot be decomposed as a dot

product and as such is not indexable. These models al-

low for richer interactions between the visual and textual

representations, which leads to better scoring mechanisms,

though at a higher computational cost.

Section 3.1 introduces the (Slow) cross-attention model

considered in this work and details our contribution on the

model architecture that leads to a more accurate text-to-

image retrieval system. Section 3.2 describes how we obtain

both a fast and accurate retrieval method by combining the

advantages of the two families of models.

3.1. Thinking Slow with crossattention

Given an image x and a text description y, a Slow cross-

attention retrieval model h computes a similarity score be-

tween the image and text as:

h(x, y) = A(φ(x), y), (1)

where φ is a visual encoder (e.g. a CNN). A is a network

that computes a similarity score between φ(x) and y using

cross-attention [46, 70] mechanisms, i.e. the text attends to

the image or vice versa via multiple non-linear functions in-

volving both the visual and language representations. Such

models emulate a slow process of attention which results in

better text-to-image retrieval.

We propose two important innovations to improve such

models. First, we introduce a novel architecture that en-

ables fine-grained visual-text cross-attention by efficiently

increasing the resolution of the attended high-level image

features. Second, we propose to revisit the use of a cap-

tioning loss [14] to train retrieval models and discuss the

benefits over standard alternatives that use classification or

ranking loss [8, 37, 39, 46, 67, 68, 78].

A novel architecture for fine-grained vision-text

cross-attention. A typical approach to attend to visual fea-

tures produced by a CNN is to consider the last convolu-

tional layer [12, 29]. The feature map is flattened into a set

of feature vectors that are used as input to vision-language

cross-attention modules. For example, a 224 × 224 input

image passed through a ResNet-50 [26] outputs a 7× 7 fea-

ture map that is flattened into 49 vectors. While the last fea-

ture map produces high-level semantic information crucial

for grounding text description into images, this last feature

map is also severely downsampled. As a result, useful fine-

grained visual information for grounding text descriptions

might be lost in this downsampling process.

One solution to the problem is to increase the input im-

age resolution. However, this significantly raises the cost of

running the visual backbone. Inspired by previous work in

segmentation [2, 25, 62] and human pose estimation [54],

we instead propose to gradually upsample the last convo-

lutional feature map conditioned on earlier higher resolu-

tion feature maps, as illustrated in Figure 2. We choose

a lightweight architecture for this upsampling process in-

spired by recent advances in efficient object detection [69].

In Section 4, we show large improvements of this approach

over several baselines and also show its complementarity

to having higher resolution input images, clearly demon-

strating the benefits of the proposed fine-grained vision-

language cross-attention.

Bi-directional captioning objective for retrieval. A ma-

jority of text-vision transformer-based retrieval models [8,

37, 39, 46, 67, 68, 78] rely on a cross-modal image-

text matching loss to discriminate positive image-text pairs

(x, y) from negative ones. In this work, we instead explore

the use of a captioning model for retrieval. Given an input

text query y, retrieval can be done by searching the image

collection for the image x that leads to the highest likeli-

hood of y given x according to the model. In detail, we take

inspiration from VirTex [12] and design the cross-attention

module A as a stack of Transformer decoders [70] taking

the visual feature map φ(x) as an encoding state. Each layer

of the decoder is composed of a masked text self-attention

layer, followed by a cross-attention layer that enables the

text to attend to the visual features and finally a feed forward
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Figure 2: Our Slow retrieval model computes a similarity score h(x, y) between image x and query text description y by estimating the

log-likelihood of y conditioned on x. In other words, given an input text query y, we perform retrieval by searching for an image x that

is the most likely to decode caption y. l(.) denotes the log probability of a word given preceding words and the image. The decoder is a

Transformer that takes as the conditioning signal a high-resolution (here 56× 56) feature map φ(x). In this example, φ(x) is obtained by

gradually upsampling the last convolutional layer of ResNet (7×7) while incorporating features from earlier high-resolution feature maps.

The decoder performs bidirectional captioning but, for the sake of simplicity, we only illustrate here the forward decoding transformer.

layer. One advantage of this architecture compared to stan-

dard multimodal transformers [8, 37, 39, 46, 67, 68, 78] is

the absence of self-attention layers on visual features, which

allows the resolution of the visual feature map φ(x) to be

scaled to thousands of vectors. We write the input text as

y = [y1, . . . , yL] where L is the number of words. For-

mally, the model h scores a pair of image and text (x, y)
as:

h(x, y) = hfwd(x, y) + hbwd(x, y), (2)

where hfwd(x, y) (resp. hbwd(x, y)) is the forward (resp.

backward) log-likelihood of the caption y given the image

x according to the model:

hfwd(x, y) =

L
∑

l=1

log(p(yl|yl−1, . . . , y1, φ(x); θfwd)),

(3)

where p(yl|yl−1, . . . , y1, φ(x); θ) corresponds to the out-

put probability of a decoder model parametrized by θ for

the token yl at position l given the previously fed tokens

yl−1, . . . , y1 and the encoded image φ(x). θfwd is the pa-

rameters of the forward transformer models. hbwd(x, y) is

the same but with the sequence y1, . . . , yL in reverse order.

The parameters of the visual backbone, the forward and

backward transformer models are obtained by minimizing

LCA = −
∑n

i=1 h(xi, yi) where n is the number of anno-

tated pairs of images and text descriptions {(xi, yi)}i∈[1,n].

We show in Section 4 that models trained for captioning

can perform on-par with models trained with the usual con-

trastive image-text matching loss. At first sight this may ap-

pear surprising as the image-text matching loss seems more

suited for retrieval, notably because it explicitly integrates

negative examples. However, when looked at more closely,

the captioning loss actually shares similarities with a con-

trastive loss: for each ground truth token of the sequence a

cross entropy loss is taken (see Eq. (3)) which effectively

means that all other tokens in the vocabulary are considered

as negatives.

In this section, we have described the architecture

and the chosen loss for training our accurate Slow cross-

attention model for retrieval. One key remaining challenge

is in the scaling of h(x, y) using Eq. (1) to large image

datasets as: (i) the network A is expensive to run and (ii) the

resulting intermediate encoded image, φ(x), is too large to

fit the entire encoded dataset in memory. Next, we intro-

duce a generic method, effective beyond the scope of our

proposed Slow model, for efficiently running such cross-

modal attention-based models at a large scale.

3.2. Thinking Faster and better for retrieval

In this section, we introduce an approach to scale-up the

Slow transformer-based cross-attention model, described in

the previous section, using two complementary ideas. First,

we distill the knowledge of the Slow cross-attention model

into a Fast dual-encoder model that can be efficiently in-

dexed. Second, we combine the Fast dual-encoder model

with the Slow cross-attention model via a re-ranking mech-

anism. The outcome is more than 100× speed-up and, in-

terestingly, an improved retrieval accuracy of the combined

Fast and Slow model. Next, we give details of the Fast

dual encoder model, then explain the distillation of the Slow

model into the Fast model using a teacher-student approach,

and finally describe the re-ranking mechanism to combine

the outputs of the two models. Because our approach is

model agnostic, the Slow model can refer to any vision-text

transformer and the Fast to any dual-encoder model. An

overview of the approach is illustrated in Figure 1.
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Fast indexable dual encoder models. We consider Fast

dual encoder models, that extract modality specific embed-

dings: f(x) ∈ R
d from image x, and g(y) ∈ R

d from text

y. The core property of this approach is that the similar-

ity between the embedded image x and text y is measured

with a dot product, f(x)⊤g(y). The objective is to learn

embeddings f(x) and g(y) so that semantically related im-

ages and text have high similarity and the similarity of unre-

lated images and text is low. To achieve that we train these

embeddings by minimizing the standard noise contrastive

estimation (NCE) [24, 33] objective:

LDE = −
n
∑

i=1

log







ef(xi)
⊤g(yi)

ef(xi)⊤g(yi) +
∑

(x′,y′)∈Ni

ef(x′)⊤g(y′)






,

(4)

which contrasts the score of the positive pair (xi, yi) to a

set of negative pairs sampled from a negative set Ni. In our

case, the image encoder f is a globally pooled output of a

CNN while the text encoder g is either a bag-of-words [51]

representation or a more sophisticated BERT [13] encoder.

Implementation details are provided in Section 4.1.

Distilling the Slow model into the Fast model. Given the

superiority of cross-attention models over dual encoders for

retrieval, we investigate how to distill [28] the knowledge

of the cross-attention model to a dual encoder. To achieve

that we introduce a novel loss. In detail, the key challenge is

that, as opposed to standard distillation used for classifica-

tion models, here we do not have a small finite set of classes

but potentially an infinite set of possible sequences of words

describing an image. Therefore, we cannot directly apply

the standard formulation of distillation proposed in [28].

To address this issue, we introduce the following ex-

tension of distillation for our image-text setup. Given an

image-text pair (xi, yi), we sample a finite subset of image-

text pairs Bi = {(xi, yi)} ∪ {(x, yi)| x 6= xi}, where

we construct additional image-text pairs with the same text

query yi but different images x. Note that this is similar to

the setup that would be used to perform retrieval of images

x given a text query yi. In practice, we sample different

images x within the same training batch. We can write a

probability distribution measuring the likelihood of the pair

(x, y) ∈ Bi according to the Slow teacher model h(x, y)
(given by eq. (1)) over subset Bi as:

p(Bi)(x, y) =
exp(h(x, y)/τ)

∑

(x′,y′)∈Bi
exp(h(x′, y′)/τ)

, (5)

where τ > 0 is a temperature parameter controlling the

smoothness of the distribution. We can obtain a similar dis-

tribution from the Fast student model, by replacing h(x, y)

from Eq. (5) by f(x)⊤g(y):

q(Bi)(x, y) =
exp(f(x)⊤g(y)/τ)

∑

(x′,y′)∈Bi
exp(f(x′)⊤g(y′)/τ)

. (6)

Given the above definition of the sampled distributions,

we use the following distillation loss that measures the simi-

larity between the teacher distribution p(Bi) and the student

distribution q(Bi) as :

Ldistill =

n
∑

i=1

H(p(Bi), q(Bi)), (7)

where H is the cross entropy between the two distributions.

The intuition is that the teacher model provides soft tar-

gets over the sampled image-text pairs as opposed to binary

targets in the case of a single positive pair and the rest of

the pairs being negative. Similarly to the standard distilla-

tion [28], we combine the distillation loss (7) with the DE

loss (4) weighted with α > 0 to get our final objective as:

min
f,g

Ldistill + αLDE. (8)

Re-ranking the Fast results with the Slow model. The

distillation alone is usually not sufficient to recover the full

accuracy of the Slow model using the Fast model. To ad-

dress this issue, we use the Slow model at inference time to

re-rank a few of the top retrieved candidates obtained us-

ing the Fast model. First, the entire dataset is ranked by

the (Distilled) Fast model that can be done efficiently us-

ing approximate nearest neighbour search, which often has

only sub-linear complexity in the dataset size. Then the top

K (e.g. 10 or 50) results are re-ranked by the Slow model.

As the Slow model is applied only to the top K results its

application does not depend on the size of the database.

More precisely, given an input text query y and an image

database X containing a large number of m images, we first

obtain a subset of K images XK (where K ≪ m) that have

the highest score according to the Fast dual encoder model.

We then retrieve the final top ranked image by re-ranking

the candidates using the Slow model:

argmax
x∈XK

h(x, y) + βf(x)⊤g(y), (9)

where β is a positive hyper-parameter that weights the out-

put scores of the two models. In the experimental Sec-

tion 4, we show that combined with distillation, re-ranking

less than ten examples out of thousands can be sufficient to

recover the performance of the Slow model.

4. Experiments

In this section, we evaluate the benefits of our approach

on the task of text-to-vision retrieval. We describe the
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datasets and baselines used for evaluation in Section 4.1.

In Section 4.2 we validate the advantages of cross-attention

models with captioning objectives as well as our use of

gradually upsampled features for retrieval. Section 4.3 eval-

uates the benefit of the distillation and re-ranking. In Sec-

tion 4.4, we compare our approach to other published state-

of-the-art retrieval methods in the image domain and show

state of the art results in the video domain.

4.1. Datasets and models

MS-COCO [43]. We use this image-caption dataset for

training and validating our approach. We use the splits

of [7] (118K/5K images for train/validation with 5 captions

per image). We only use the first caption of each image to

make validation faster for slow models. C-R@1 (resp. C-

R@5) refers to recall at 1 (resp. 5) on the validation set.

Conceptual Captions (CC) [64]. We use this dataset for

training our models (2.7M training images (out of the 3.2M)

at the time of submission). CC contains images and cap-

tions automatically scraped from the web which shows our

method can work in a weakly-supervised training regime.

Flickr30K [60]. We use this dataset for zero-shot evalu-

ation (i.e. we train on COCO or CC and test on Flickr) in

the ablation study, as well as fine-tuning when comparing to

the state of the art. We use the splits of [34] (29K/1014/1K

for train/validation/test with 5 captions per image). We re-

port results on the validation set except in Section 4.4 where

we report on the test split. We abbreviate F-R@1 (resp. F-

R@5) as the R@1 (resp. R@5) scores on Flickr.

VATEX [73]. VATEX contains around 40K short 10 sec-

onds clip from the Kinetics-600 dataset [4] annotated with

multiple descriptions. In this work, we only use the 10 En-

glish captions per video clip and ignore the additional Chi-

nese captions. We use the retrieval setup and splits from [6].

Models. For each model, the visual backbone is a ResNet-

50 v2 CNN [27] trained from scratch. Inputs are 224 × 224

crops for most of the validation experiments unless spec-

ified otherwise. Models are optimized with ADAM [35],

and a cosine learning rate decay [45] with linear warm-up

is employed for the learning rate. The four main models

used in this work are described next.

NCE BoW is a dual-encoder (DE) approach where the text

encoder is a bag-of-words [51] on top of word2vec [52] pre-

trained embeddings. The model is trained with the NCE

loss given in Eq. (4) where the negative set Ni is constructed

as in [49]. We refer to NCE BoW as the Fast approach.

NCE BERT is a DE approach where the text encoder is

a pretrained BERT base model [13]. We take the [CLS]

output for aggregating the text representation. The model is

also trained with the NCE loss given in Eq. (4).

VirTex [12] is a cross-attention (CA) based approach that

originally aims at learning visual representations from text

data using a captioning pretext task. We chose this visual

Model Type Train F-R@1 F-R@5 C-R@1 C-R@5

Fast NCE BoW
DE COCO

27.2 54.1 24.8 53.7

NCE BERT 24.4 48.0 24.2 52.0

PixelBERT

CA COCO

30.0 55.1 25.1 52.5

VirTex Fwd only 33.4 58.1 31.8 61.2

VirTex 38.1 62.8 35.1 64.6

Fast NCE BoW
DE CC

32.4 59.6 14.9 35.0

NCE BERT 25.8 50.7 12.2 29.8

PixelBERT

CA CC

30.4 57.7 14.1 33.6

VirTex Fwd only 32.2 58.4 14.7 32.9

VirTex 35.0 60.7 16.1 36.4

Table 1: Dual encoder (DE) and Cross-attention (CA) compar-

ison. F-R@K corresponds to the recall at K on Flickr while C-

R@K is the recall at K on COCO.

Feature map Size F-R@1 F-R@5 C-R@1 C-R@5

Slow 96x96 384 44.8 70.5 39.0 67.7

Slow 56x56

224

42.2 66.8 38.5 65.2

Slow 28x28 40.4 66.3 37.4 66.8

Slow 14x14 39.2 63.8 36.8 64.9

VirTex conv5 (7x7)

224

38.1 62.8 35.1 64.6

VirTex conv4 (14x14) 38.9 64.4 34.9 63.5

VirTex conv3 (28x28) 32.4 57.9 30.4 58.3

VirTex conv2 (56x56) 20.6 41.1 18.3 43.0

Table 2: Gradual upsampling with different feature map size.

Size denotes the input image size. Models are trained on COCO.

captioning model as another point of comparison for the

effectiveness of Transformer-based captioning models for

text-to-vision retrieval.

PixelBERT [29] is a CA approach trained with the standard

masked language modelling (MLM) and image-text match-

ing (ITM) losses for retrieval. One difference between our

implementation and the original PixelBERT is the use of

224 × 224 images for a fair comparison with other models.

Note that the main difference with VirTex is in the vision-

text Transformer architecture: PixelBERT uses a deep 12-

layer Transformer encoder while VirTex uses a shallow 3-

layer Transformer decoder to merge vision and language.

We chose PixelBERT and VirTex for their complemen-

tarity and their simplicity since they do not rely on ob-

ject detectors. We reimplemented both methods so that we

could ensure that they were comparable. Next, we describe

the details of our proposed CA approach.

Slow model architecture. For the upsampling, we follow

a similar strategy as used in BiFPN [69]. For the decoder,

we use a stack of 3 Transformer decoders with hidden di-

mension 512 and 8 attention heads. Full details about the

architecture are provided in our arXiv preprint [48].

4.2. Improving crossattention for retrieval

In this section, we provide an experimental study on the

use of cross-attention models for retrieval. All our results

are validated on the COCO and the Flickr30K validation
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Student Teacher Train F-R@1 F-R@5 C-R@1 C-R@5

Fast
None

COCO

27.2 54.1 24.8 53.7

Slow 37.7 64.7 32.5 62.1

Slow upper bound 42.2 66.8 38.5 65.2

Fast
None

CC

32.4 59.6 14.9 35.0

Slow 33.4 60.1 17.2 38.1

Slow upper bound 41.7 67.5 19.8 40.9

Table 3: Distillation experiment with our proposed Slow approach

as teacher and the Fast NCE BoW as student.

sets with models pretrained on COCO and CC training sets.

Our main findings are summarized below.

Cross-attention models are better than Dual Encoders.

Table 1 compares various approaches for retrieval. We ob-

serve that cross-attention models (PixelBERT and the Vir-

Tex variants), overall, outperform the dual encoders (NCE

BoW and BERT). Interestingly, using a simple BoW text

encoder performs better than using a BERT text encoder for

the DE models. This suggests that the complexity of the lan-

guage model is not the key factor for good performance but

instead that complex merging strategy obtained from text-

vision cross-attention may matter most for retrieval.

Captioning models are surprisingly good for retrieval.

Comparing ‘PixelBERT’ against the ‘VirTex Fwd only’ in

Table 1 with the exact same input dimensions and visual

backbones, we see that using a captioning loss leads to bet-

ter results than using an image-text matching loss coupled

with a masked language modelling loss. Backward cap-

tioning further improves retrieval performance. This result

demonstrates that captioning can be a strong alternative to

the usual image-text matching losses for retrieval.

Benefits of our gradual upsampling architecture design.

In Table 2, we provide the results using the proposed up-

sampling strategy for our Slow model presented in Sec-

tion 3.1 and illustrated in Figure 2. We observe signifi-

cant improvements over the VirTex baseline, denoted with

conv5 (7x7), (more than 4% for R@1 on Flickr and more

than 3% on COCO) for the largest upsampling 56× 56. We

also confirm that the performance gap does not just come

from having a larger input feature map to attend to as the

baseline with the output of ResNet conv2, which has a

resolution of 56× 56, performs poorly. We believe it is im-

portant to keep high-level abstraction in the feature maps

while having high resolution which our proposed architec-

ture allows. It is also important to highlight that the pro-

posed architecture leads to our best performing model and

can be combined with higher input resolution for further im-

provements. However, our proposed changes increase the

inference time. Next, we explore how to recover the speed.

4.3. Thinking Fast and Slow

This section focuses on getting both a fast and accurate

model for retrieval. First, we evaluate the benefit of the dis-

Model Top K Dist. Train F-R@1 F-R@5 C-R@1 C-R@5 F-Qt C-Qt

Slow ✗ ✗

COCO

44.8 70.4 39.0 67.7 4 s 19 s

Fast & Slow

10 ✗ 44.0 63.0 38.6 61.5 0.12 s 0.12 s

10 ✓ 47.2 70.1 40.5 67.8 0.12 s 0.12 s

50 ✗ 46.7 65.6 40.2 68.2 0.60 s 0.60 s

50 ✓ 47.6 73.2 40.9 70.0 0.60 s 0.60 s

Slow ✗ ✗

CC

46.9 71.5 21.0 43.3 4 s 19 s

Fast & Slow

10 ✗ 47.7 66.6 22.6 41.1 0.12 s 0.12 s

10 ✓ 48.4 67.4 22.7 43.4 0.12 s 0.12 s

50 ✗ 50.2 73.4 23.8 46.9 0.60 s 0.60 s

50 ✓ 50.5 73.6 23.8 46.9 0.60 s 0.60 s

Table 4: Combination of re-ranking and distillation. Dist.: dis-

tillation. F-Qt (resp. C-Qt) is the query time in seconds on Flickr

with 1k images (resp. COCO with 5k images) using 1x V100 GPU.

tillation from the Slow to the Fast model. Next, we evaluate

the benefit of the re-ranking strategy and validate our com-

bined approach on a large-scale retrieval experiment.

Distillation improves dual encoder models. In Table 3,

we use our approach, denoted as Slow, to distill the knowl-

edge to a Fast NCE BoW student dual encoder. The distil-

lation improves the performance of the Fast model with im-

provements of over 10% on R@1 when training on COCO,

significantly reducing the gap between the Slow and Fast

models. On the other hand, the improvements when training

on CC are moderate, but we believe the gap can be further

reduced by training longer on CC as we found the distilla-

tion often takes significantly longer to converge.

Benefits of re-ranking. Table 4 provides the results from

re-ranking. We see that with K as low as 10, we are able to

recover or outperform the performance of the Slow model in

terms of R@1 while significantly decreasing the query time.

Combining re-ranking with distillation leads to further im-

provements: on COCO, we can significantly decrease from

K = 50 to K = 10 the number of examples to re-rank to

outperform the Slow model thanks to the distillation. In par-

ticular, we see a 100× reduction in retrieval time on COCO

from our Slow to our Fast & Slow (K=10) model. Note that

for the rest of the experimental section, the Slow model runs

with an increased image resolution of 384 × 384 for better

results, albeit with slower inference.

Figure 3 provides a more detailed visualization of the

effect of re-ranking with respect to the number of top K

examples returned from the Fast distilled model. Notably,

we see on COCO that re-ranking as few as five images out

of five thousand from the distilled Fast model is enough to

reach the Slow model R@1 performance. More quantitative

and qualitative results are given in our arXiv preprint [48].

Discussion of scalability. We would like to emphasize that

the combination of the distillation and re-ranking would be

even more appealing in the large-scale retrieval regime as

our method allows application of fast approximate near-

est neighbour search [11, 32, 53, 65] and hence can po-

tentially scale to billion-scale image retrieval. As a result,

our method scales sub-linearly with the number of test im-

ages and the time complexity mostly depends on the top K,
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Figure 3: Retrieval result when varying the top-K retrieved ex-

amples from the distilled Fast model with varying β (See Eq. (9)).

which is the number of calls to the Slow model.

4.4. Comparison to the state of the art

We compare to the state of the art on Flickr30K in Ta-

ble 5 for the zero-shot and fine-tuning setting. The Fast

model is distilled from the Slow model on the pretrain-

ing dataset (COCO or CC). The Fast model and the Slow

384 × 384 models are then fine tuned on the Flickr30K

training set. When pretraining on CC, we significantly out-

perform the VilBERT [46] approach despite not using ex-

tra information contained in object detectors. On COCO,

we outperform PixelBERT [29] with the same ResNet-50

backbone while neither training on Visual Genome (VG)

annotations nor using high image resolution. Finally, we

are still below the performance reported in UNITER [8]

and OSCAR [40]. We believe this remaining gap can be at-

tributed to (i) not using the same amount of pretraining data

(UNITER was trained on the combination of four datasets:

COCO, CC but also Visual Genome (VG) and SBU and OS-

CAR is trained on Flickr, CC, SBU and GQA [30]), (ii) not

using the same high input image resolution, (iii) not relying

on pre-trained object detectors, and (iv) having a smaller

model (3 layers transformer with hidden dimension 512 vs.

24 layers with dimension 1024 for UNITER). However our

proposed approach enables fast retrieval at scale which is

not possible out of the box with any of the previously men-

tioned methods. More importantly, our scaling approach

(distillation and re-ranking) can also be applied to other

multimodal transformers including UNITER and OSCAR.

Extension to video. Our approach can also be applied to

video. To do so, we extend the architecture introduced in

Section 3.1 to a TSM ResNet50 model [42] with the fol-

lowing modifications. The input of the network is now

a sequence of 32 frames at resolution 224 × 224. Due

to memory constraints, we only upsample the last fea-

ture map to a 14 × 14 grid and allow the decoder to at-

tend to the resulting spatio-temporal volume representing

the video of shape 32 × 14 × 14 (details in our arXiv

Method Object Det. Size Train Zero-shot F-R@1 F-R@5 F-R@10

VILBERT [46] ✓ Full

CC

✓
31.9 61.1 72.8

Fast and Slow (K=100) ✗ 384 48.7 74.2 82.4

VILBERT [46] ✓ Full
✗

58.2 84.9 91.5

Fast and Slow (K=100) ✗ 384 68.2 89.7 93.9

PixelBERT (R50) [29]
✗

800 COCO

+VG
✗

59.8 85.5 91.6

Fast and Slow (R50, K=100) 384 COCO ✗ 62.9 85.8 91.3

Unicoder-VL [37] ✓ Full CC + SBU ✗ 71.5 90.9 94.9

UNITER [8] ✓ Full COCO

+CC

+SBU

+VG

✗ 75.6 94.1 96.8

OSCAR [40] ✓ Full COCO

+CC

+SBU

+GQA

✗ 75.9 93.3 96.6

Fast and Slow (K=100) ✗ 384 COCO

+CC

✗ 72.1 91.5 95.2

Table 5: Comparison to state of the art for text-to-image retrieval.

OSCAR results were reproduced from recent work [17].

Method R@1 R@5 R@10

Dual [15] 31.1 67.4 78.9

HGR [6] 35.1 73.5 83.5

Support-set [56] 45.9 82.4 90.4

Fast NCE BoW 42.3 79.1 88.0

Fast and Slow (7 × 7) (K=10) 47.5 81.4 88.0

Fast and Slow (14 × 14) (K=10) 50.5 83.4 88.0

Fast and Slow (14 × 14) (K=50) 50.5 84.6 91.7

Table 6: Comparison to state of the art retrieval on VATEX.

preprint [48]). We use a pretrained TSM ResNet-50 net-

work [1] on HowTo100M [49] and AudioSet [18] datasets.

Results are given in Table 6. We observe that: (i) the up-

sampling architecture is also beneficial for video, and (ii)

our Fast and Slow model sets a new state of the art on this

benchmark.

5. Conclusion

We have shown how to scale-up powerful vision-

text transformer-based models for retrieval. In particu-

lar, we have introduced an accurate but Slow text-vision

transformer-based architecture with fine-grained cross-

attention for retrieval. To make it scalable for text-to-visual

search, we have augmented this Slow model with a Fast dual

encoder model through a combination of distillation and re-

ranking. As a result, the combined Fast & Slow approach

achieves better results than the Slow model while signifi-

cantly reducing the inference time by several orders of mag-

nitude on large datasets. We emphasize that our approach is

model agnostic and can be applied to any vision-text Trans-

former Slow model and dual-encoder Fast retrieval model.
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