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Abstract

Despite advances in feature representation, leveraging

geometric relations is crucial for establishing reliable vi-

sual correspondences under large variations of images. In

this work we introduce a Hough transform perspective on

convolutional matching and propose an effective geometric

matching algorithm, dubbed Convolutional Hough Match-

ing (CHM). The method distributes similarities of candidate

matches over a geometric transformation space and evalu-

ate them in a convolutional manner. We cast it into a train-

able neural layer with a semi-isotropic high-dimensional

kernel, which learns non-rigid matching with a small num-

ber of interpretable parameters. To validate the effect, we

develop the neural network with CHM layers that perform

convolutional matching in the space of translation and scal-

ing. Our method sets a new state of the art on standard

benchmarks for semantic visual correspondence, proving its

strong robustness to challenging intra-class variations.

1. Introduction

Visual correspondence lies at the heart of image under-

standing, being used as a core component for numerous

tasks such as object recognition, image retrieval, motion es-

timation, object tracking, and reconstruction [16]. With re-

cent advances in deep neural networks [21, 23, 25, 36, 57],

there has been substantial progress in learning robust fea-

ture representation for establishing correspondences. De-

spite the effectiveness of deep convolutional features, how-

ever, spatial matching with a geometric constraint is still

essential to handle image pairs with large variations, e.g.,

viewpoint and illumination changes, blur, occlusion, lack

of texture, etc. In particular, the presence of intra-class

variations, i.e., scenes depicting different instances of the

same categories, remains a critical challenge for correspon-

dence [18, 20, 26, 32, 38, 42, 45, 47, 51, 52, 54]. The

process of geometric matching is the de facto solution of

choice, which most recent methods adopt in their models.

Geometric matching commonly relies on exploiting a

geometric consensus of candidate matches to verify rela-
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Figure 1: Convolutional Hough matching (CHM) estab-

lishes reliable correspondences across images by perform-

ing position-aware Hough voting in a high-dimensional ge-

ometric transformation space, e.g., translation and scaling.

tive transformations. In computer vision, RANSAC [15]

and Hough transform [22] have long been used as geomet-

ric verification for wide-baseline correspondence problems

with rigid motion models, while graph matching [5, 7, 14,

55] has played a main role in matching deformable objects

with non-rigid motion. Recent work [6, 20, 45, 47] has ad-

vanced the idea of Hough transform to perform non-rigid

image matching, showing that the Hough voting process in-

corporated in neural networks is effective for challenging

correspondence problems with intra-class variations. How-

ever, their matching modules are neither fully differentiable

nor learnable, and weak to background clutter due to the

position-invariant global Hough space.

In this work we introduce Convolutional Hough Match-

ing (CHM) that distributes similarities of candidate matches

over a geometric transformation space and evaluates them in

a convolutional manner. As illustrated in Fig. 1, the convo-

lutional nature makes the output equivariant to translation

in the transformation space and also attentive to each posi-

tion with its surrounding contexts, thus bringing robustness

to background clutter. We design CHM as a learnable layer

with an semi-isotropic high-dimensional kernel that acts on

top of a correlation tensor. The CHM layer is compati-

ble with any neural networks that use correlation computa-

tion, allowing flexible non-rigid matching and even multiple
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matching surfaces or objects. It naturally generalizes exist-

ing 4D convolutions [26, 40, 61, 54] and provides a new

perspective of Hough transform on convolutional match-

ing. To demonstrate the effect, we propose the neural net-

work with CHM layers that perform convolutional match-

ing in the high-dimensional space of translation and scaling.

Our method clearly outperforms state-of-the-art methods on

standard benchmarks for semantic correspondence, proving

its strong robustness to challenging intra-class variations.

2. Related Work

Hough transformation. The Hough transform [22] is a

classic method developed to identify primitive shapes in

an image via geometric voting in a parameter space. Bal-

lard [1] generalizes the idea to identify positions of arbi-

trary shapes with R-table. Early approaches [4, 8] in com-

puter vision widely adopt Hough transform for its effec-

tiveness in extracting features of a particular shape in an

image. As a representative example, Leibe et al. [39] in-

troduce a Hough-based object segmentation and detection

method by incorporating information about supporting pat-

terns of parts for the target category. The idea of Hough

voting has widely been adopted in diverse tasks including

retrieval [24], object discovery [17, 44, 48, 50], shape re-

covery [59], 3D vision [34, 35], and pose estimation [29]

to name a few. In geometric matching, Cho et al. [6] first

extends it to the Probabilistic Hough Matching (PHM) al-

gorithm for unsupervised object discovery. Recent meth-

ods [18, 19, 20, 37, 42, 45, 47, 58] have demonstrated the

efficacy of the Hough matching with good empirical perfor-

mance. They, however, are all limited in the sense that the

geometric voting is carried out to discover a global offset

consensus rather than a local and individual consensus for

a match, which makes it less accurate and weak to clutter.

Semantic visual correspondence. Traditional approaches

to the task of semantic correspondence [3, 6, 18, 19, 30, 41,

60, 63] typically use hand-crafted descriptors [2, 11, 43].

Although the classic methods work satisfactorily for some

applications, they still suffer apparent disadvantages of

such features, e.g., lack of semantic patterns. Recent ap-

proaches [20, 27, 28, 42, 45, 47, 51, 52, 54, 56, 61, 62] build

upon features from convolutional neural network (CNN)

pretrained on classification task [12]. Han et al. [20] intro-

duce a CNN-based matching model that learns to compute a

correlation tensor. Rocco et al. [51] propose to learn a CNN

regressor that computes a series of 2D convolutions on a

dense correlation matrix to predict global geometric trans-

formation parameters, either affine or TPS [13]. Seo et al.

[56] improve the framework with offset-aware correlation

kernels with attention modules. Jeon et al. [27] stack multi-

ple affine transformation networks and compute correspon-

dences in coarse-to-fine manner. Wang et al. [62] adopt the

CNN architecture to estimate translation and rotation pa-

rameters to learn correspondences from raw video. These

methods demonstrate that a series of 2D convolutions act-

ing on correlation tensors is effective in capturing geometric

information by exploiting local patterns of similarity.

4D convolution for visual correspondence. Rocco et al.

[54] introduce the neighbourhood consensus network that

uses 4D convolution for visual correspondence. They view

4D convolution as an extension of 2D convolution, which

learns multiple similarity patterns of local correspondences,

and thus use multiple 4D kernels, requiring a large number

of parameters to learn. Following the work, recent meth-

ods [26, 40, 54, 61] also adopt 4D convolution in a sim-

ilar manner. They commonly consume a high computa-

tional cost with a large number of parameters in the kernels

and only consider translation in space. In contrast, we ex-

tends the idea of Hough matching [6] for high-dimensional

convolution and propose an interpretable and light-weight

(semi-isotropic) high-dimensional kernel for visual corre-

spondence. In doing so, it naturally generalizes the existing

4D convolution to higher-dimensional ones and achieves su-

perior performance using only a single kernel per layer with

a small number of parameters. The results reveal that the

role of high-dimensional convolution on a correlation ten-

sor for matching is to learn a reliable voting strategy rather

than to capture diverse patterns in the correlation tensor.

Our contributions can be summarized as follows:

• We introduce a Hough transform perspective on con-

volutional matching and propose an effective geomet-

ric matching algorithm, CHM, which performs high-

dimensional Hough voting in a convolutional manner.

• We develop CHM into a trainable neural layer with a

semi-isotropic high-dimensional kernel, which learns

non-rigid matching with a small number of inter-

pretable parameters.

• We propose the convolutional Hough matching net-

work (CHMNet) that performs geometric matching in

a translation and scaling space using 6D convolution.

• The proposed method sets a new state of the art on

standard benchmarks for semantic visual correspon-

dence, proving its robustness to challenging intra-class

variations across images to match.

3. Convolutional Hough Matching

In this section, we revisit the Hough matching method

for visual correspondence and then propose its convolu-

tional version as a high-dimension convolutional layer,

which is readily trainable in neural networks.

3.1. Hough matching & its convolutional extension

The Hough transform is a powerful detection method for

a geometric object, which exploits the duality between parts
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and parameters of the object [1, 22]. It performs voting in

a parameter space of the target object, called the Hough

space, where votes from the object parts are accumulated

to form local maxima in the space. The objects are then de-

tected simply by identifying the positions of local maxima.

The Hough matching method [6], inspired by the Hough

transform, detects reliable correspondences by geometric

voting from candidate matches. Given two images, it con-

structs the Hough space of parameters of geometric trans-

formation between the two images and then accumulates

votes of candidate matches for plausible transformation.

Let us assume a local region x on an image, that is rep-

resented by its geometric attributes, i.e., pose and shape. In

principle x can be a form of any parameterization, but in

this work we simply describe the region x by its center and

scale. Now let us consider two images, I and I ′, and two

sets of local regions, X and X ′, obtained from the two im-

ages, respectively. For any two regions (x,x′) ∈ X × X ′,

a correlation function c computes a non-negative similar-

ity c(x,x′) using appearance features of the regions. The

main idea of Hough matching is to create the Hough space

H, that is the space of all possible offsets h between two

regions, i.e., translation and scaling, and accumulate votes

from candidate matches onto the Hough space as

v(h) =
∑

(x,x′)∈X×X ′

c(x,x′)kiso(‖(x′ − x)− h‖g), (1)

where ‖ · ‖g represents a group-wise distance function that

computes the distances separately for two groups, center

and scale, i.e., ‖x‖g = [‖xxy‖; ‖xs‖] (subscripts xy for

center and s for scale) and kiso is a kernel function that

computes similarity between the observed offset, x′ − x,

and the given offset h in the Hough space.1 The kernel

kiso is designed to assign a voting weight for each candi-

date match according to how close the offset induced by

the match (x,x′) is to h; we use the group-wise distance

to differentiate the effects of center and scale in the ker-

nel. The resultant voting map v(h) over the Hough space

H can be used to find reliable matches (x,x′) by sup-

pressing spurious ones corresponding to relatively low vot-

ing scores v(x′ − x), e.g., updating the match score via

c(x,x′)v(x′ − x) [20]. Despite its good empirical perfor-

mance [6, 18, 19, 20, 37, 42, 45, 47, 58], the global vot-

ing map v(h), which is shared for all candidate matches, is

limited in the sense that it cannot capture the reliability of

a specific candidate match. This global position-invariant

Hough space makes the output less accurate and weak to

background clutter, e.g., increasing the score of distant out-

liers that has a similar offset to that of dominant inliers.

As illustrated in Fig. 2, in order to address the issue, we

create a local and individual voting space for each candidate

1For the kernel function, previous work uses a form of discretized

Gaussian [6] or Dirac delta [20] without learning the kernel parameters.

(𝐱, 𝐱′): candidate match 

between 𝐼 and 𝐼′
(𝐩, 𝐩′): offset in 𝒫 𝐱 and 𝒫′(𝐱′)

𝑐HM 𝐱, 𝐱′ = (𝐩,𝐩′)∈𝒫(𝐱)×𝒫′(𝐱′) 𝑐 𝐩, 𝐩′ 𝑘 (𝐩 − 𝐱, 𝐩′ − 𝐱′)
𝒫′(𝐱′)𝒫 𝐱

Image 𝐼′Image 𝐼

Figure 2: Convolutional Hough matching that carries out

geometric voting in 6D space, e.g., translation and scale.

match (x,x′) by introducing local windows around the re-

gions, x and x′:

v(x,x′,h) =
∑

(p,p′)∈P(x)×P′(x′)

c(p,p′)kiso(‖(p′ − p)− h‖g),

(2)

where P(x) denotes the set of neighbor regions within the

local window centered on x. Since this local voting space

is now dedicated to (x,x′), we can simply assign a match

score v for the candidate match by taking the vote value at

the bin with offset zero:

v(x,x′) =
∑

(p,p′)∈P(x)×P′(x′)

c(p,p′)kiso(‖p′ − p‖g).

(3)

With a slight abuse of notation, let us use k(z, z′) to repre-

sent the kernel value corresponding to two positions, z and

z′, each representing a local region in the parameter space

of regions, i.e., 3D space of center and scale in our case.

The equation above then can be generalized to a form of 6D

convolution with an arbitrary kernel k:

cHM(x,x′) =
∑

(p,p′)∈P(x)×P′(x′)

c(p,p′)k(p− x,p′ − x′)

= (c ∗ k)(x,x′), (4)

which becomes equivalent to Eq. 3 when the group-wise

isotropic kernel kiso is used.

Note that this convolutional extension of Hough match-

ing has a generic form; it reduces to a similar form of 4D

convolutions in [26, 40, 54, 61] when the Hough space is

restricted to center translation, and generalizes to higher

dimensions beyond 6D when additional transformation di-

mensions is introduced such as rotation, shear, and others.
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3.2. Convolutional Hough matching layer

We design the convolutional Hough matching (CHM) as

a learnable convolution layer:

cHM(x,x′; k, b) = b+ (c ∗ k)(x,x′), (5)

where b is a bias term for the layer and k represents a ker-

nel with a specific type of weight sharing. The group-wise

isotropic kernel kiso, which is directly derived from Hough

matching, can be implemented by weight sharing among

parameters with the same offset |z − z′| in k(z, z′). While

it is a reasonable choice, the fully isotropic kernel assigns

the same importance to the matches of the same offset re-

gardless of their distances from the kernel position (x,x′).
It may be an excessive constraint in the sense that the dis-

tance of an object from the center of focus is likely to be

relevant to the importance.

We thus relax the isotropy and propose the position-

sensitive isotropic kernel kpsi(‖p′ − p‖g; ‖p − x‖g, ‖p′ −
x′‖g) that differentiates the distances from the kernel po-

sition, ‖p − x‖g and ‖p′ − x′‖g. The kernel kpsi is im-

plemented by sharing parameters whose triplets, (‖p′ −
p‖g, ‖p− x‖g, ‖p′ − x′‖g), are the same.

The CHM layer is compatible with any neural network

layer that computes correlations between images, and can

be stacked multiple times to improve the performance. As a

result of substantial parameter sharing, the 6D kernels, k6Diso

and k6Dpsi in R
Hk×Wk×Sk×Hk×Wk×Sk , contain only a small

number of parameters, thus making CHM resistant to over-

fitting in training; e.g., the kernels with Hk = Wk = 5 and

Sk = 3 contains only 45 and 220 parameters, respectively,

while the full kernel has 5,625. More importantly, the per-

spective of Hough matching on convolution provides the in-

terpretability of the learned kernel: each element in the ker-

nel is a voting weight of the corresponding neighbor match

in the local offset space. Based on this perspective, Fig-

ure 3 visualizes the kernel k6Dpsi ∈ R
Hk×Wk×Sk×Hk×Wk×Sk

of size Hk = Wk = 5 and Sk = 3 trained in our experi-

ment. For the ease of visualizing 6D tensor, we decompose

it into multiple (four in case of k6Dpsi ) 4D tensors in which

each of the map shows parameter values of the kernel with

the same offset, where the arrows represent the offset vec-

tors relative to the kernel position (x,x′), and the circles

mean zero offset. The maps reveal that weights for matches

with smaller offsets and closer distance are learned to be

higher (darker), which appears to be a reasonable voting

strategy. For more information, refer to our supplementary.

4. Convolutional Hough Matching Networks

Based on CHM, we develop a family of image match-

ing models, dubbed Convolutional Hough Matching Net-

works (CHMNet), which consists of three parts: (1) high-

dimensional correlation computation, (2) convolutional

Offset length 0 Offset length 2Offset length 1 Offset length 4 2
𝑘psi6D ∈ ℝ𝐻k×𝑊k×𝑆k×𝐻k×𝑊k×𝑆k

(𝐻k = 𝑊k = 5 and 𝑆k = 3)

Figure 3: Visualization of learned CHM kernel (k6Dpsi ). See

our supplementary material for the visualization method.

Hough matching, and (3) flow formation (and keypoint

transfer). Figure 4 illustrates the overall architecture.

4.1. Highdimensional correlation computation

Following other recent methods [26, 40, 45, 47, 54], we

also use as a CNN feature extractor pretrained on ImageNet

classification [12]. Given an input image I , the feature ex-

tractor outputs a feature map in R
C×H×W . We construct

feature maps of multiple scales {Fs}Ss=1 by resizing the

output for S−1 times by the scaling factor of
√
2, followed

by 3 × 3 conv layers with parameters {θs}Ss=1, reducing

channel dimensions of input feature map by 1/ρ. The S
different conv layers learn to capture effective semantic in-

formation of receptive fields with different scales for the

subsequent multi-scale (6D) correlation computation. The

same is done for {F′
s}Ss=1 given image I ′. We set S = 3,

i.e., {1/
√
2, 1,

√
2}, and ρ = 4 in our experiments.

Given a set of feature pairs from multiple scales

{(Fs,F
′
s)}Ss=1, we compute all possible 4D correlation ten-

sors placed on the S × S grid:

C(0)
mn(xm,x′

n) = ReLU

(

Fm(xm) · F′
n(x

′
n)

‖Fm(xn)‖ ‖F′
n(x

′
n)‖

)

, (6)

where xm ∈ Xm and x′
n ∈ X ′

n are spatial positions of

feature map at scale m and n, respectively, and ReLU

clamps negative correlation scores to zero. To process it

in the subsequent 6D CHM layer, we interpolate each 4D

correlation C
(0)
ij to have the same spatial size to build 6D

correlation tensor C(1) ∈ R
H×W×S×H×W×S such that

C
(1)
::i::j = ζ1(C

(0)
ij ) where ζ1(·) is a function that interpo-

lates input 4D tensor to the size H ×W ×H ×W .

4.2. Convolutional Hough Matching

A CHM layer takes the 6D correlation tensor C(1)

to perform convolutional Hough voting in the space of

translation and scaling: C(2) = CHM(C(1); k6Dpsi), where

k6Dpsi ∈ R
Hk×Wk×Sk×Hk×Wk×Sk is a 6D position-sensitive
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Figure 4: Overall architecture of the proposed method that performs (learnable) geometric voting in high-dimensional spaces.

isotropic kernel. In our experiments, we set Hk = Wk = 5
and Sk = 3 with stride 1 for all dimensions and use

zero-padding to the input to retain the same size at the

output. We then perform max-pooling on C(2) to select

the most dominant vote among candidate match scores

in the scale space, reducing the tensor dimension down

to 4D: C
(3)
ijkl = maxm,n C

(2)
ijmkln. We proceed another

CHM with a 4D kernel k4Dpsi ∈ R
Hk×Wk×Hk×Wk : C =

CHM(ζ2(σ(C
(3))); k4Dpsi), where σ(·) is the sigmoid activa-

tion function and ζ2(·) is the upsampling function that re-

sizes input 4D tensor to the size of H̄ × W̄ × H̄ × W̄ for

fine-grained localization. We set H̄ = 2H and W̄ = 2W in

our experiment.

4.3. Flow formation & keypoint transfer

Flow formation. The output C can easily be transformed

into a dense flow field by applying kernel soft-argmax [38].

We first normalize the raw correlation scores with softmax:

Ĉ =
exp (Gp

klCijkl)
∑

(k′,l′)∈H̄×W̄ exp (Gp

k′l′Cijk′l′)
, (7)

where and Gp ∈ R
H̄×W̄ is 2-dimensional Gaussian ker-

nel centered on p = argmaxk,l Cijkl. Using the estimated

probability map Ĉ, we then transfer all the coordinates on

dense regular grid P ∈ R
H̄×W̄×2 of image I to obtain their

corresponding coordinates P̂′ ∈ R
H̄×W̄×2 on image I ′:

P̂′
ij: =

∑

(k,l)∈H̄×W̄ ĈijklPkl:. We now can construct a

dense flow field at sub-pixel level using the set of estimated

matches (P, P̂′).

Keypoint transfer. As in [38], one simplest way of assign-

ing a match k̂ to some keypoint k = (xk, yk) is to pick a

single, discrete sample of a transferred coordinate such that

k̂ = P̂′
ykxk

. However, this may cause mis-localized key-

points as the discrete sampling under sub-pixel level hin-

ders fine-grained localization. To this end, we define a soft

sampler W(k) ∈ R
H̄×W̄ for given keypoint k = (xk, yk)

as follows

W
(k)
ij =

max (0, τ −
√

(xk − j)2 + (yk − i)2)
∑

i′j′ max (0, τ −
√

(xk − j′)2 + (yk − i′)2)
,

(8)

such that
∑

ij W
(k)
ij = 1 where τ is a distance thresh-

old. We assign a match to the keypoint k by k̂ =
∑

(i,j)∈H̄×W̄ P̂ij:W
(k)
ij . The soft sampler W(k) effectively

samples each transferred keypoint P̂ij by giving weights in-

versely proportional to the distance to k.

4.4. Training objective

We assume that keypoint match annotations are given

for each training image pair, as in [9, 20, 40, 45, 47];

each image pair is annotated with a set of coordinate pairs

M = {(km,k′
m)}Mm=1, where M is the number of an-

notations. Following the aforementioned keypoint transfer

scheme, we obtain a set of predicted and ground-truth key-

point pairs on image I ′: {(k̂′
m,k′

m)}Mm=1 by assigning a

match k̂′
m to each km. Our objective in training is formu-

lated as L = 1
M

∑M

m=1 ‖k̂′
m − k′

m‖, which minimizes the

average Euclidean distance between the predicted keypoints

and the ground-truth ones.

5. Experimental Evaluation

In this section we evaluate the proposed method, com-

pare it with recent state of the arts, and discuss the results.

Implementation detail. For the feature extractor network,

we employ ResNet-101 [21], truncated after the conv4 23

layer, pre-trained on ImageNet [12]. Both input and output

channel sizes of all the CHM layers are set to 1. We set

spatial size of the input image to 240 × 240, thus having

H = W = 15 and H̄ = W̄ = 30. Due to parameter shar-

ing structure of k∗psi and k∗iso, magnitudes of the loss gra-

dient with respect to the shared weights are unevenly dis-

tributed during training time. To resolve the numerical in-

stability, the shared weights are normalized before the con-
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Sup. Methods

SPair-71k PF-PASCAL PF-WILLOW
uses

nD conv?
FLOPs

(G)
time
(ms)

memory

(GB)PCK @ αbbox PCK @ αimg PCK @ αbbox

0.1 (F) 0.1 (T) 0.05 0.1 0.05 0.1

I

NC-Netres101 [54] 20.1 26.4 54.3 78.9 33.8 67.0 4D 44.9 222 1.2

DCC-Netres101 [26] - 26.7 55.6 82.3 43.6 73.8 4D 47.1 567 2.7

DHPFres101 [47] 27.7 28.5 56.1 82.1 50.2 80.2 ✗ 2.0 58 1.6

K

UCNres101 [9] - 17.7 - 75.1 - - ✗ - - -

HPFres101 [45] 28.2 - 60.1 84.8 45.9 74.4 ✗ - 63 -

SCOTres101 [42] 35.6 - 63.1 85.4 47.8 76.0 ✗ 6.2 151 4.6

DHPFres101 [47] 37.3 27.4 75.7 90.7 49.5 77.6 ✗ 2.0 58 1.6

NC-Net*res101 [54] - - - 81.9 - - 4D 44.9 222 1.2

DCC-Net*res101 [26] - - - 83.7 - - 4D 47.1 567 2.7

ANC-Netres101 [40] - 28.7 - 86.1 - - 4D 44.9 216 0.9

CHMNetres101 (ours) 46.3 30.1 80.1 91.6 52.7 79.4 6D 19.6 54† (248) 1.6

Table 1: Performance on standard benchmarks in accuracy, FLOPs, per-pair inference

time, and memory footprint. Subscripts denote backbone networks. Some results

are from [27, 31, 40, 42, 45, 47]. Numbers in bold indicate the best performance

and underlined ones are the second best. Models with an asterisk (∗) are retrained

using keypoint annotations (strong supervision) from [40]. The first column shows

supervisory signals used in training: image-level labels (I), and keypoint matches (K).

Superscript † denotes inference time using our implementation of nD conv.
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Figure 5: PR curves on SPair-71k

(top) and PF-PASCAL (bottom).

volution by dividing by the number of times being shared.

The network is implemented in PyTorch [49] and optimized

using Adam [33] with a learning rate of 1e-3. We finetune

the backbone network by setting its learning rate 100 times

smaller than CHM layers, e.g., 1e-5.

Datasets. We evaluate the proposed network on three

standard benchmark datasets of semantic correspondence:

SPair-71k [46], PF-PASCAL [19], and PF-WILLOW [18].

SPair-71k [46] is a highly challenging, large-scale dataset,

which contains 70,958 pairs from 18 categories with large

variations in view-point and scale. PF-PASCAL [19] and

PF-WILLOW [18] respectively contain 1,351 pairs from 20

categories and 900 pairs from 4 categories with small vari-

ations in view-point and scale. Each pair in the datasets

consists of keypoint match annotations for semantic parts.

Evaluation metric. We adopt the standard evaluation met-

ric, percentage of correct keypoints (PCK), for the eval-

uation. Given a set of predicted and ground-truth key-

point pairs K = {(k̂′
m, k′

m)}Mm=1, PCK is measured by

PCK(K) = 1
M

∑M

m=1 ✶[‖k̂′
m−k′

m‖ ≤ ατ ·max (wτ , hτ )]
where wτ and hτ are the width and height of either an entire

image or an object bounding box, e.g., τ ∈ {img, bbox},

and ατ is a tolerance factor.

5.1. Results and analysis

On the SPair-71k dataset, following [45, 47], we eval-

uate two versions for each model: a finetuned model (F),

which is trained on SPair-71k, and a transferred model

(T), which is trained on PF-PASCAL. On PF-PASCAL

and PF-WILLOW, following the common evaluation pro-

tocol [9, 20, 26, 31, 40, 45, 47, 52, 54], our network is

trained on the training split of PF-PASCAL [19] and eval-

uated on the test splits of PF-PASCAL and PF-WILLOW.

We use the same training, validation, and test splits of PF-

PASCAL used in [20]. The quantitative results are sum-

marized in Tab. 1; we note different levels of supervision

for each method in the first column to ensure fair compari-

son. The proposed model finetuned on SPair-71k (F) clearly

surpass current state of the art by a significant margin, out-

performing [47] by 9%p of PCK (αbbox = 0.1), i.e., 24.1%

relative improvement. On PF-PASCAL, our model achieves

4.4%p and 0.9%p improvement with αimg ∈ {0.05, 0.1}.

Robust performance on SPair-71k (T) and PF-WILLOW

verifies reliable transferability of our model. Figure 6 vi-

sualizes example qualitative results on SPair-71k.

FLOPs, running time, and memory. We collect publicly

available codes of some recent methods [26, 40, 42, 47, 54]

to measure their FLOPs, inference time2, and memory foot-

print and compare them with ours in Tab. 1. Although the

proposed method demands larger memory than some 4D

conv based models [40, 54], smaller channel sizes of CHM

(6D) layers ({1,1} vs. {16,16,1}) provide noticeable effi-

ciency in terms of GFLOPs (19.6 vs. 44.9). To achieve

faster inference time, we further improve the original imple-

mentation of 4D conv [54] and develop an efficient nD conv

which enables real-time inference (54ms) without increas-

ing FLOPs and memory. See the supplementary material

for details on our implementation of nD convolution.

Robustness to background clutter. Recent methods for

semantic correspondence [18, 20, 26, 31, 32, 38, 45, 47, 51,

52, 54] predict matching scores for all candidate matches

but rarely evaluate their robustness to background clutters.

Here, we compare some recent methods [40, 45, 47, 54]

and ours in terms of robustness to background clutter based

2Some inference time results are retrieved from [47], which is measured

on a machine with an Intel i7-7820X and an NVIDIA Titan-XP. For fair

comparison, inference time and memory footprint of all the methods are

measured on a machine with the same CPU and GPU and includes all the

pipelines of a model: from feature extraction to keypoint prediction.
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Figure 6: Qualitative results on SPair-71k dataset. Our

model predicts reliable matches under deformations, and

large changes in view-point and scale.

on the predicted matching scores. Each method, however,

exploits its correlation tensor differently from others with

its own flow formation (keypoint transfer) scheme. There-

fore, given all possible candidate matches in correlation ten-

sor, simply defining matches with top-k scores as positive

matches may yield biased estimates. To ensure fair com-

parison, for each model, we define a set of coordinates on

a regular grid on the input pair of images and assign their

best matches using its own keypoint transfer method, thus

providing the same number of (fairly collected) candidate

matches to every model that we compare. For each can-

didate match, we define its match score as a score near-

est to spatial position in the correlation tensor. Given top-

k matches according to their matching scores, we define

true positives (TPs) as matches falling inside object seg-

mentation masks (bounding box)3 and false positives (FPs)

as those lying outside object masks (boxes). Precision and

recall are measured by NTP

NTP+NFP

and NTP

Nmask

, respectively,

where NTP and NFP are respectively the number of TPs

and FPs while Nmask is the number of all candidate matches

that fall in the object segmentation masks. In defining TPs

and FPs, we use masks and boxes only due to the absence

of dense flow annotation in SPair-71k and PF-PASCAL, but

we find that they are good approximation enough to distin-

guish inliers from outliers in our experimental setup.

Figure 5 plots precision-recall curves for the recent

methods [40, 45, 47, 54] and ours. The proposed method

clearly outperforms other methods, indicating our model

effectively discriminates between semantic parts and back-

ground clutters as seen in the last row of Fig. 8 which visu-

alizes sample pairs with top 300 confident matches. When

CHM is either removed (w/o CHM) or replaced with global

matching module (CHM −→ RHM), predicted matches be-

come unreliable, being mostly scattered on the background

and even hardly regularized. For our model evaluated on

SPair-71k, precision and recall have inverse relationship in

most cases. Although initial growth in our PR curves on

3We use object seg. masks and bounding boxes for SPair-71k and PF-

PASCAL respectively due to absence of mask annotation in PF-PASCAL.
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Figure 7: Frequencies over the maxpooled positions in

scale-space on SPair-71k, PF-PASCAL, and PF-WILLOW.

Kernel
type

SPair-71k PCK (αbbox) PF-PAS. PCK (αimg) # params. FLOPs time

0.05 0.1 0.05 0.1 in CHM (G) (ms)

k6D-4D
psi 27.4±0.16 46.4±0.34 80.4±0.28 91.6±0.23 275 19.6 54

k6D-4D
full 25.9±0.74 44.8±0.65 79.8±0.67 90.7±0.19 6,250 19.6 43

k6D-4D
iso 24.5±0.28 44.9±0.16 76.5±0.29 90.2±0.40 60 19.6 46

k4D-4D
psi 26.4±0.25 44.5±0.34 79.3±0.25 91.1±0.32 110 15.9 32

k4D-4D
full 26.1±0.33 43.9±0.53 78.4±0.82 90.3±0.43 1,250 15.9 26

k4D-4D
iso 21.0±0.54 39.7±0.73 71.8±0.99 88.0±0.49 30 15.9 27

k6D-4D
psi;sparse 26.3±0.18 45.2±0.41 80.3±0.86 91.1±0.05 275 - 55

Table 2: Ablation study of CHM kernels over multiple runs.

SPair-71k indicates that some true matches have in fact low

match scores, it still surpasses the other models, revealing

the reliability of our approach under large variations.

5.2. Ablation study and analysis

Analyses on CHM kernel. We conduct ablation study on

CHM kernel by replacing position-sensitive isotropic ker-

nels with knDfull
4 and full isotropic ones knDiso . For the ease

of notation, we denote by k6D-4D
psi a model with two CHM

layers whose kernels are k6Dpsi and k4Dpsi . Table 2 shows aver-

age PCK, its standard deviations, parameter sizes, FLOPs,

and average inference time of our model with different ker-

nels over five runs. Despite a huge difference in the number

of parameters (110 vs. 1,250), the proposed semi-isotropic

kernel k4D-4D
psi outperforms k4D-4D

full on Spair-71k (44.5 vs.

43.9) and extending its voting space to 6D, e.g., k6D-4D
psi ,

further improves PCK to 46.4 on SPair-71k, which clearly

shows efficacy of 6D convolution in scale-space5. The com-

parable performance of k6D-4D
iso to k6D-4D

full reveals that full

isotropic parameter sharing can also be a reasonable choice

for reducing the large capacity of k6D-4D
full .

In Figure 7, we also plot frequencies over the maxpooled

positions in scale-space after 6D CHM layer (k6D-4D
psi ). The

maximum votes on both PF-PASCAL and PF-WILLOW

are mostly concentrated on the center scale whereas they

are distributed over different scales on SPair-71k; this is a

4Note k
nD
full is a n-dimensional kernel without any parameter sharing.

The number of parameters in k
nD
full is proportional to k

n.
5To verify the efficacy of the proposed kernel even with sparse match

information, we further limit the set of potential matches in C(0) using K

nearest neighbors without using MinkowskiEngine [10] as it does not pro-

vide high-dim. kernel customization. As seen in shaded row in Tab. 2, our

model with the sparse correlation is comparably effective to k
6D-4D
psi , which

is consistent to the results of [53]. We set K = 10 in our experiment.
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Figure 8: Ablation study on matching modules.

Method

SPair-71k PF-PASCAL

PCK (αbbox) PCK (αimg)

0.05 0.1 0.05 0.1

CHMNetres101 27.2 46.3 80.1 91.6

CHM −→ RHM 21.8 38.2 77.1 89.6

w/o last CHM layer (k4Dpsi) 24.9 43.1 79.5 89.7

w/o CHM 10.1 21.6 61.6 78.5

w/o kernel G 26.6 45.5 79.5 91.3

w/o soft sampler A(k) 23.1 43.8 78.9 89.6

Table 3: Ablation study of core modules in our model.

reasonable voting strategy as objects in PF-PASCAL and

PF-WILLOW hardly vary in scale while those in SPair-71k

show large variations in both scale and view-point.

Ablation study on matching modules. We analyze the ef-

fect of CHM, by either removing or replacing them with the

matching module of [45]. Figure 8 and Table 3 summarize

qualitative and quantitative results, respectively. The out-

put of global offset voting (CHM −→ RHM) includes many

outliers from the background, showing its weakness to the

background clutter. Without the last CHM layer (w/o last

CHM), the model fails to effectively refine upsampled cor-

relation scores. The model prediction is severely damaged

without any matching modules (w/o CHM) as seen in sec-

ond row of Fig. 8. For keypoint transfer, kernel G and soft

sampler A(k) help our model find reliable matches by sup-

pressing noisy match scores in C and effectively aggregat-

ing neighborhood transfers, respectively.

Effect of channel size. To study the effect of channel size,

we train our model6 using three different kinds of kernels

(k4D-4D
psi , k4D-4D

iso , and k4D-4D
full ) with different channel sizes,

i.e., different number of kernels. Table 9 summarizes the re-

sults, showing that increasing the channel size rarely brings

performance gain and typically harms the quality of pre-

diction for kernels k4D-4D
psi and k4D-4D

full . We train the models

on the training split of PF-PASCAL and evaluate on test

splits of PF-PASCAL and SPair-71k. For k4D-4D
iso , although

increasing channel size improves performance up to certain

amount due to its small capacity, it eventually exhibits sim-

6We use the models in the middle section of Tab. 2, e.g., k4D-4D
∗
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Figure 9: PCK performance on SPair-71k and PF-PASCAL

with different channel sizes of 1, 2, 4, 8, and 16.

ilar patterns to other kernels after all.

These experiments imply that the high-dimensional con-

volution on a correlation tensor may play a different role

from 2D convolution on an image feature tensor; the role of

convolutional matching is to learn a reliable voting strategy

rather than to capture diverse patterns in the correlation ten-

sor. This is consistent with the Hough matching perspective,

but previous 4D convolution methods [26, 40, 54, 61] with

a different perspective commonly use multiple full kernels

(k4Dfull) for layers. To verify our result, we have conducted

a similar experiment using the model of [54] and obtained

the consistent result; the original model, which uses chan-

nel sizes of {16, 16, 1} for three layers of 4D convolution,

achieves 76.2% PCK on our machine while the model with

reduced channels of {1, 1, 1} achieves 76.4% PCK. Note

that in terms of the number of parameters in a layer, our

CHM layers (k6D-4D
psi ) have 247 ∼ 654 times smaller num-

ber of parameters than the 4D convolution layers used in

previous methods [26, 40, 54, 61]. This light-weight layer

design is particularly important in practice, since the use

of multiple channels, i.e. kernels, for high-dim convolution

quickly increases the cost both in computation and memory.

For additional results and analyses, we refer the readers

to the supplementary material.

6. Conclusion

We have introduced the convolutional Hough matching

(CHM) and proposed the powerful matching model, CHM-

Net, that leverages CHM in a high-dimensional geometric

transformation space for establishing reliable visual corre-

spondence. The extensive experiments on several standard

benchmarks for semantic visual correspondence demon-

strate the benefits of our approach. In particular, our method

generalizes existing 4D convolutions and also provides the

perspective of Hough transform for geometric matching

with interpretable high-dimension kernels. We believe fur-

ther research on this direction can benefit a wide range of

other problems related to correspondence.
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