
Generalized Domain Adaptation

Yu Mitsuzumi Go Irie Daiki Ikami Takashi Shibata

NTT Communication Science Laboratories, NTT Corporation, Japan

{yu.mitsuzumi.ae, daiki.ikami.ef}@hco.ntt.co.jp, {goirie, t.shibata}@ieee.org

Abstract

Many variants of unsupervised domain adaptation

(UDA) problems have been proposed and solved individ-

ually. Its side effect is that a method that works for one

variant is often ineffective for or not even applicable to an-

other, which has prevented practical applications. In this

paper, we give a general representation of UDA problems,

named Generalized Domain Adaptation (GDA). GDA cov-

ers the major variants as special cases, which allows us

to organize them in a comprehensive framework. Moreover,

this generalization leads to a new challenging setting where

existing methods fail, such as when domain labels are un-

known, and class labels are only partially given to each

domain. We propose a novel approach to the new setting.

The key to our approach is self-supervised class-destructive

learning, which enables the learning of class-invariant rep-

resentations and domain-adversarial classifiers without us-

ing any domain labels. Extensive experiments using three

benchmark datasets demonstrate that our method outper-

forms the state-of-the-art UDA methods in the new setting

and that it is competitive in existing UDA variations as well.

1. Introduction

Deep learning is data-hungry. It performs remarkably

well in a domain that has a sufficient amount of labeled

data, but its performance suffers significantly in one that

does not. Unsupervised domain adaptation (UDA) aims to

resolve this problem by transferring a model learned for a

label-rich source domain to a label-less target domain.

Besides the standard UDA, which assumes a fully la-

beled source domain and a completely unlabeled target do-

main, a number of variants have been proposed to address

more complex and practical problems. Major variants are

illustrated in Fig. 1. One representative example is multi-

source domain adaptation (MSDA) or multi-target domain

adaptation (MTDA), an extension to the case where there

is more than one source or target domain [45, 26, 12, 12].

Open set domain adaptation (OSDA) and partial domain

GDA

Class Labeled

UDA

MSDA

MTDA

PDA

Class Unlabeled

OSDA

Unknown

Figure 1: Schematic overview of Generalized Domain

Adaptation (GDA). GDA covers major existing UDA

problems as its special cases by imposing some constraints

on classes and/or domains (represented in the shapes and

colors of symbols, respectively). Moreover, it provides new

challenging settings where domain labels are unknown, and

class labels are given to only a subset in each domain.

adaptation (PDA) address the case where the class sets of

the source and target do not match, i.e., there exist unknown

classes [25, 32, 16, 2, 3]. Some extensions of these variants

have also been studied [20, 7, 43].

Most of these variants have been proposed independently

and solved individually. A negative side of this history is

that a method that works for one variant may not work for

or even be applicable to another. In reality, it is rarely possi-

ble to identify which variant of the problems one is facing,

which requires a costly trial and error to figure out the type

of problem or find a satisfactory solution. Moreover, a real

problem is often a combination of these variants, in which

case none of the methods will eventually be applicable.

In this work, we aimed to overcome this problem. Our

approach is to first consider giving a new general represen-

tation of the UDA problems that covers all these major UDA

variants and then implement a method for solving them.

Definitions of the most existing UDA problems discussed

above assume a clear distinction between the source and tar-

get domains, and whether or not class labels are available

is determined on a domain-by-domain basis. Instead, in

11084

our generalized representation, which we call Generalized

Domain Adaptation (GDA), everything is determined on a

sample-by-sample basis; each sample is given a class label,

a domain label, and indexes indicating whether or not these

labels are available. In Sec. 3, we will show that this slight

difference in perspective allows us to represent all the major

variants and their combinations as GDA’s special cases.

Moreover, GDA brings a brand new challenge as illus-

trated in Fig. 1, which is not just a straightforward combi-

nation of the existing variants. The key properties of this

setting are that the domain labels are completely unknown

for all the samples, and the class labels are given to only a

subset of the classes of each domain. Indeed, such a set-

ting arises in practice, for example, for data coming from

multiple institutions where the acquisition processes are un-

known. Nonetheless, it has not received much attention so

far. As shown later in our experiments (Sec. 5), the state-

of-the-art UDA methods applicable to this setting, if forced,

suffer from severe performance degradations.

We propose self-supervised class-destructive learning to

accurately estimate the domain of each sample, which is es-

sential missing ingredient to solve the new problem. The

assumptions behind our approach are that (1) class infor-

mation of an image is strongly dependent on its local struc-

tural information (e.g., shape and part connection); and that

(2) domain and class information are independent of each

other. Based on these assumptions, our method first trans-

forms an image into a “class-indistinguishable” form by

randomly shuffling the positions of its pixel blocks to break

its local structure and then performs self-supervised learn-

ing to capture class-independent information. This enables

learning of class-invariant and domain-variant representa-

tions without using any domain labels, making it possible

to train a domain-invariant classifier with a simple domain-

adversarial learning approach. Our method works even for

the case where the class labels are only partially available

for each domain. Furthermore, our method can readily cope

with open set settings by integrating a joint label-network

optimization framework [38]. Thorough experiments on

three datasets demonstrate that our method outperforms the

state-of-the-art methods in the new setting and is highly

competitive in the existing UDA problems.

Our main contributions include: (1) a general representa-

tion of UDA problems named Generalized Domain Adapta-

tion (GDA); (2) new UDA settings where existing methods

fail; and (3) a novel domain label estimation method based

on self-supervised class-destructive learning.

2. Related Work

Given a fully labeled source domain and an unlabeled

target domain, the task of (standard) UDA is to train a clas-

sifier for the target domain by bridging the gap between the

two domains (domain shift). Numerous methods have been

proposed [40, 17, 18, 34, 35, 10, 11, 39], but most of them

are based on strong assumptions that may not be feasible in

practice – the number of domains is always two, which dis-

tribution each data sample comes from (i.e., domain labels)

is known, and class sets of both domains are perfectly con-

sistent. This has led to a growing stream of various UDA

variants and attempts to develop more realistic and flexible

methodologies. The major variants are as follows:

Multi-Source/Target UDA. Multi-source domain adapta-

tion (MSDA) [21, 36, 45, 26] and multi-target domain adap-

tation (MTDA) [44, 12] consider UDA where either the

source or target domain consists of multiple subdomains.

While these studies assume that the subdomain labels of all

samples are available, some others assumed that they are

unavailable in the source [20] or target domain (Blending-

target domain adaptation: BTDA) [7, 27].

Open Set and Partial UDA. These problems consider

UDAs with “unknown” classes. Open set domain adapta-

tion (OSDA) assumes that private classes exist in the target

domain [32, 16, 2] or both [25]. In partial domain adap-

tation (PDA) [3, 4], the class set of the source is a su-

perset of that of the target. Universal domain adaptation

(UniDA) [43] is an integration of OSDA and PDA. Weakly

supervised OSDA has also been studied [37]. Multi-source

open set domain adaptation (MS-OSDA) is a combination

of MSDA and OSDA [28]. A variant of MS-OSDA has also

been investigated [42].

In this paper, we propose GDA, a general representation that

covers all these major UDA variants. As described in the

next section, GDA allows for a systematic discussion of the

UDA variants that have been studied independently. It also

reveals pivotal settings that have not been considered before

and the missing parts essential to solve them.

3. Generalized Domain Adaptation

We first give the formal definition of our GDA.

Problem 1 (GDA) Suppose we are given a set of tuples

D = {(x, y, d, δy, δd)|x ∈ R
n, y, d ∈ N, δy, δd ∈ {0, 1}},

where x is a sample (e.g., image) of n dimensions, y is a

class label, d is a domain label, and δy and δd are flags in-

dicating whether the class and domain labels are available

(1) or not (0) for training, respectively,

The task is to find a class classifier F that satisfies

F (x) =

{

y (y ∈ L)

UNK (y ∈ C \ L),

where UNK is the symbol for unknown classes, and

C = {y|(x, y, d, δy, δd) ∈ D} ,

L = {y|(x, y, d, δy, δd) ∈ D, δy = 1} .

21085

Table 1: GDA representations of existing and new UDA problems. Problems and corresponding constraints are listed.

Problem d
Class label set condition

δdOpenness Target domain Source domain

UDA d ∈ {1, 2} C1 = C2 = C L2 = ∅, U2 = C2 L1 = C1 = L, U1 = ∅ ∀δd = 1
MSDA d ∈ N ∀i, Ci = C ∃!j, Lj = ∅, Uj = Cj ∀i 6= j, Li = Ci = L, Ui = ∅ ∀δd = 1
OSDA d ∈ {1, 2} C1 ⊂ C2 = C L2 = ∅, U2 = C2 L1 = C1 = L, U1 = ∅ ∀δd = 1

MS-OSDA d ∈ N
∃!j, Cj = C,

∀i 6= j, Ci ⊂ Cj
∃!j, Lj = ∅, Uj = Cj ∀i 6= j, Li = Ci = L, Ui = ∅ ∀δd = 1

BTDA d ∈ N ∀i, Ci = C ∀i 6= j, Li = ∅, Ui = Ci ∃!j, Lj = Cj = L, Uj = ∅ δd =

{

1 (d = j)

0 (d 6= j)

GDA1 d ∈ N (L ⊆ C) ∃ i, j, Li 6= Lj , ∀k, Lk ∩ Uk = ∅ ∀δd = 0
GDA2 d ∈ N (L ⊆ C) ∃ i, j, Li 6= Lj , ∀k, Lk ⊂ Uk ∀δd = 0

Intuitively, C is the set of all classes contained in D, and L
is the “known” (i.e., labeled) subset of C. Given x, F is

required to output its correct class label y iff it is in L, or

to detect it as unknown otherwise. In GDA, the availability

of the class and domain label is controlled on a sample-

by-sample basis. This makes it possible to encompass new

cases, for example, where the class labels are only available

for a part of the classes or samples within the same domain,

or the domain labels are not available at all.

3.1. Representing Existing UDA Problems

We show that GDA (Problem 1) turns into various exist-

ing UDA problems by imposing proper constraints. Repre-

sentative examples are listed in Table 1. For brevity, we use

Ci, Li and Ui for the set of all classes, known classes, and

unknown classes within domain i, respectively.

Ci = {y|(x, y, d, δy, δd) ∈ D, d = i} ,

Li = {y|(x, y, d, δy, δd) ∈ D, d = i, δy = 1} ,

Ui = {y|(x, y, d, δy, δd) ∈ D, d = i, δy = 0} .

The standard UDA can be represented by limiting the

number of domains to two (d ∈ {1, 2}) sharing the same

class set (C1 = C2 = C), with the domain labels avail-

able for all the samples (∀δd = 1) and the class labels

fully available for only those in one of the two domains

(L1 = C1 = L, U1 = ∅, L2 = ∅, U2 = C2). Discarding the

condition on the number of domains (d ∈ N) leads to multi-

domain settings. For example, MSDA is represented by im-

posing constraints so that the class labels are unavailable in

a certain domain (∃!j, Cj = C, Lj = ∅) but fully accessi-

ble in the others (∀i 6= j, Ci = C, Li = Ci = L, Uj = ∅).
OSDA [32, 16, 2] contains unknown classes in the target

domain (C1 ⊂ C2 = C). PDA [3, 4] and UniDA [43] can be

written in the same way. Combinations and extensions of

these problems, such as MS-OSDA [28] and BTDA [7, 27],

can also be represented as in Table 1.

3.2. Deriving New UDA Problems

The systematic representations in Table 1 reveal that

most of the existing UDA problems impose similar con-

straints of only limited types, which suggests a great po-

tential to open up new UDA problems. In particular, all

the UDA problems assume that the domain labels are visi-

ble (∀δd = 1) for at least one domain, which naturally re-

minds us to consider a “blind” domain adaptation problem

where no domain labels are available for any domain, i.e.,

∀δd = 0. This is extremely challenging, especially when

the labeled classes are inconsistent between the domains,

i.e., ∃ i, j, Li 6= Lj , because no explicit information for

disentangling the class and domain features is given.

Depending on whether the class labels are fully assigned

to samples within the same class (i.e., ∀k, Lk ∩ Uk = ∅)
or only given to some of them (i.e., ∀k, Lk ⊂ Uk), we can

define the following two versions of GDA:

Example A (GDA1)

∀δd = 0,

∃ i, j, Li 6= Lj , ∀k, Lk ∩ Uk = ∅.

Example B (GDA2)

∀δd = 0,

∃ i, j, Li 6= Lj , ∀k, Lk ⊂ Uk.

Note that these problems do not make any assumptions on

“openness”; they can be either a case where all the classes

are known (L = C) or some of them are unknown (L ⊂ C).

None of the existing methods are directly applicable to

these problems, as they all assume that the domain labels

are known for at least one domain. They can be applied,

if forced, by considering the labeled and unlabeled data

(across multiple domains) as the “source” and “target”, re-

spectively. However, as shown later in Sec. 5, the perfor-

mance is far from satisfactory.

4. Method

We propose an approach to solving the new problems.

An overview is shown in Fig. 2. Our method comprises

two major steps: estimating the domain labels for all sam-

ples and learning a domain-invariant classifier using the es-

timated domain labels.

31086

(∘ ∘)

Clustering Estimated
Domain Label

Class
Label

Pseudo
Class
Label

GRL

Label Update
Domain Label Estimation

Class-destructive
Transformation

different image Classifier Learning

Self-supervised Learning

Domain Classifier

Class Classifier

Domain
Classification

Loss

Class
Classification

Loss

Class Labeled Class Unlabeled

Doman-adversarial
Learning

Figure 2: Overview of our approach to GDA. We first apply class-destructive transformation to images of unknown domains

and then perform self-supervised learning on them to estimate their domain labels. We then perform domain-adversarial

learning with the estimated domain labels to learn a domain-invariant classifier.

4.1. Domain Label Estimation

One primary source of the difficulty of these problems is

that the domain labels are unknown for all images. The first

step, which is the core of our proposed method, estimates

the domain labels in a self-supervised learning manner.

Self-supervised Class-destructive Learning. A straight-

forward approach to estimating the domain labels would be

to assume that images belonging to the same domain form

a tight cluster in their feature space and to estimate their

domain labels by feature clustering. In fact, an existing ap-

proach to BTDA [7] is based on a similar assumption to es-

timate the (sub)domain labels hidden in the target domain.

Unfortunately, the results are not as expected; the classes

and domains are easily confused in the new problems where

the class labels are only given to a subset of images, result-

ing in the formation of class-dependent clusters.

We aim to prevent the formation of such class-dependent

clusters by applying image transformation that aggressively

disrupts the class-dependent information of images and

using the transformed images for self-supervised feature

learning. Specifically, we focus on local structural informa-

tion of images which is an important clue representing the

class of images, such as the shape of an object or the con-

nections between its parts, and destroy it by using a trans-

formation that divides the original image into several pixel

blocks and randomly shuffles their positions. Fig. 3 shows

examples of transformed images at different pixel block

sizes. When the partition is coarse, the shape of the object

and its parts are still recognizable. However, as the number

of partitions is increased, even the parts are fragmented and

become unrecognizable; meanwhile, it is relatively easy to

identify which domain each image comes from owing to the

remaining global information of the pixels.

This idea is supported by a quick analysis. We measure

the consistency between the clusters of the features learned

on the transformed images (by the self-supervised learning

algorithm described in the next paragraph) and the ground

truth class/domain labels by normalized mutual information

(NMI). The results are shown in Fig 4. As the number of

grid partitions increases, NMI to the domain labels becomes

high within a certain range, while that to the class labels

sharply decreases. These results show that by taking an ap-

propriate number of grid partitions, domain-variant features

that are invariant to the class information can be learned.

Algorithm. Our algorithm is simple. We first apply

the class-destructive transformation to the training im-

ages to obtain the transformed images and then perform

self-supervised learning on these images to obtain class-

invariant features. Finally, we apply clustering to the

learned features to assign a domain label to each cluster.

We use [6] for self-supervised learning. A feature extrac-

tor f is learned by minimizing the normalized temperature-

scaled cross-entropy loss [6] (with the temperature of 0.5)

between the features of two images augmented from the

same image. The two images are generated as t(ts(x)) and

t′(ts(x)), where t and t′ are two random augmentation op-

erations (e.g., random crop) and ts is the class-destructive

transformation. After training, we estimate the domain la-

bels for all the images by applying clustering to their fea-

tures. We use a Gaussian mixture for clustering.

Discussion. A relevant idea to our approach is “jigsaw”,

a popular pretext task for self-supervised learning [24],

which has also been applied to UDA and domain general-

ization [1, 5]. Our work differs from them in both method

and purpose. These methods aim to learn class-dependent

features like object shape and part connections by letting

the network solve the task of undoing shuffled images in

pixel blocks. Our method, in contrast, aims to learn class-

independent features and therefore does not solve the jig-

saw task. Technically, this is a slight difference, but it has

the exact opposite effect. More recently, a self-supervised

learning method for learning pretext invariant features has

been proposed [22]. Although it does not address UDA,

our approach is somewhat similar to it. In this work,

41087

2x2 3x3 4x4Original (1x1)

Figure 3: Examples of transformed images. Two “mug”

images of different domains in Office-31. The object class

is harder to recognize as the number of grid partitions is

increased, but their domains are still identifiable.

we show that the class-dependent information is corrupted

more quickly than the domain-dependent information as the

pixel block size is decreased, and, based on this finding, we

propose a simple self-supervised approach to learning class-

independent and domain-sensitive features to solve UDA

with unknown domain labels. To the best of our knowledge,

these points have never been explored before. Another re-

cent work uses self-supervised clustering for UniDA [30].

Unlike ours, it assumes that the domain labels are known.

4.2. Classifier Learning

The second step trains our class classifier network. Once

the domain labels are estimated, we can train the classifier

through domain-adversarial classifier learning.

Domain-adversarial Classifier Learning. We follow a

standard domain-adversarial learning approach [10] to train

our classifier network. The network consists of three major

parts: a (shared) feature extractor Gf , a class label predic-

tor Fy , and a domain classifier Fd. Our class classifier is

defined as F = Gf ◦Fy . An image x is fed to Gf to extract

the feature and then mapped by Fy to the class label y and

by Fd to the domain label d. With the aim of learning fea-

tures discriminative to the classes but domain-invariant, the

entire network is trained by solving the following problems:

min
Gf ,Fy

Ly − λLd,

min
Fd

Ld,
(1)

where Ly is a class classification loss and Ld is a domain

classification loss. We use softmax cross-entropy for both,

with the ground truth class labels and the domain labels es-

timated by our domain label estimation method. The two

problems can be efficiently minimized at the same time by

using the gradient reversal layer (GRL) [10].

Handling Unknown Classes and Unlabeled Samples. So

far, we considered the case where neither unknown classes

1x1 2x2 3x3 4x4 6x6 9x9
Grid size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NM
I

(a) Domain NMI

1x1 2x2 3x3 4x4 6x6 9x9
Grid size

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

NM
I

(b) Class NMI

Figure 4: Impact of class-destructive transformation.

NMI between the clusters of the features learned on the

transformed images at different grid partitions and the

ground truth domain labels (a) and class labels (b). SVHN

and SynDigits are used.

nor unlabeled samples of known classes exist. In our new

problems, however, both exist. Let us assume that all the

unlabeled samples are of unknown classes, and ‘UNK’ (the

class label for unknown classes) is assigned to all. In reality,

some of them are truly of unknown classes, while others are

actually of known ones. We treat this problem as “learn-

ing with noisy labels” and solve it by estimating the true

class labels of all the unlabeled samples and optimizing the

network parameters simultaneously.

Our approach is based on the idea of joint label-network

optimization [38]. We first train an initial class classifier F

by solving the problem Eq. (1) using only the labeled sam-

ples and then assign an initial pseudo class label to each un-

labeled sample x using the initial classifier. Our assumption

is that if an unlabeled sample x belongs to a known class

y ∈ L, the class probability of the corresponding class pre-

dicted by the initial classifier is high, and if it belongs to an

unknown class y ∈ C \ L, the probabilities are comparable

between the classes. With this assumption, we determine

the initial pseudo class label y of x based on the entropy of

the class probability. Specifically,

y =







UNK (H(y|x) > σ),

argmax
k

F (x)[k] (otherwise),
(2)

where F (x)[k] gives the class probability of the k-

th class. H(y|x) is the entropy, i.e., H(y|x) =
∑

k F (x)[k] logF (x)[k], and σ is a threshold. Given the

initial pseudo class labels, we update the network pa-

rameters on both labeled and unlabeled samples by solv-

ing Eq. (1) with the additional regularization termLp in [38]

used to prevent the assignment of all labels to a single class.

Note that we add one extra output node so that the network

can directly output the probability of UNK. Following [38],

we update the estimated class labels for unlabeled samples

as y = argmaxk F (x)[k] during training.

51088

Table 2: Results for Digits in GDA1. The best and second-best are highlighted in bold and underlined, respectively.

sv(0-3), sy(4-7) sv(0-3), mt(4-7) sv(0-2), sy(3-5), mt(6-8)
sv(0,1), sy(2,3),

mt(4,5), mm(6,7)
sv(0-5), sy(2-7) sv(0-5), mt(2-7) Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

Labeled Only 69.50 - - 20.82 - - 42.95 - - 42.31 - - 71.32 - - 25.71 - - 45.44 - -

MCD [31] 84.12 - - 23.17 - - 48.07 - - 41.07 - - 79.61 - - 24.77 - - 50.14 - -

OSBP [32] 64.33 84.91 73.20 7.37 79.32 13.49 33.95 60.84 43.58 19.48 66.47 30.13 33.15 70.53 45.10 10.93 80.33 19.24 28.20 73.73 37.46

ROS [2] 43.62 86.98 58.10 5.10 60.23 9.40 18.15 67.07 28.57 15.36 79.40 25.74 50.90 80.37 62.33 0.67 56.04 1.32 22.30 71.68 30.91

UAN [43] 61.50 0.00 0.00 14.50 0.70 1.34 39.96 0.92 1.80 33.89 0.00 0.00 65.72 6.55 11.91 24.90 2.21 4.06 40.08 1.73 3.18

Ours 86.18 91.19 88.61 70.50 85.31 77.20 79.76 84.08 81.86 66.02 79.97 72.33 84.83 85.75 85.29 73.46 76.92 75.15 76.79 83.87 80.07

Table 3: Results for Office-31 in GDA1. The best and

second-best are highlighted in bold and underlined, respec-

tively.
D(0-9), W(10-19) A(0-9), D(10-19) W(0-9), A(10-19) Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

Labeled Only 93.25 - - 30.91 - - 41.35 - - 55.17 - -

MCD [31] 86.15 - - 39.55 - - 23.43 - - 49.71 - -

OSBP [32] 95.56 87.91 91.58 0.42 99.91 0.84 3.56 99.84 6.87 33.18 95.89 33.10

ROS [2] 93.95 91.65 92.79 38.57 74.92 50.92 36.82 74.20 49.22 56.45 80.26 64.31

UAN [43] 98.03 42.64 59.43 6.42 28.17 10.46 51.72 32.13 39.64 52.06 34.31 36.51

Ours 91.71 82.19 86.69 76.64 75.33 75.98 76.87 84.28 80.40 81.74 80.60 81.02

0 1 2 3 4 5 6 7 UNK
Prediction

0

1

2

3

4

5

6

7

UNK

Gr
ou

nd
 T

ru
th

0.0 0.0 0.0 0.0 0.0 0.6 49.6 0.0 49.9

0.0 55.9 40.2 0.0 0.2 0.3 0.1 1.0 2.3

0.0 0.1 0.6 0.0 0.2 0.1 1.2 1.4 96.4

0.0 0.0 0.0 0.0 0.0 34.8 0.1 0.6 64.5

1.3 26.8 1.9 1.2 0.3 0.0 1.7 0.0 66.7

1.6 0.5 0.6 65.6 0.0 0.5 0.0 0.0 31.2

30.9 2.7 0.7 7.4 0.0 0.0 0.5 0.0 57.8

1.7 6.1 29.9 1.6 0.0 0.0 0.0 1.1 59.6

3.0 0.7 0.9 3.1 11.3 0.6 0.5 0.5 79.3

OSBP

0

20

40

60

80

100

(a) OSBP

0 1 2 3 4 5 6 7 UNK
Prediction

0

1

2

3

4

5

6

7

UNK

Gr
ou

nd
 T

ru
th

97.2 0.0 0.1 0.1 0.2 0.4 1.1 0.0 0.8

0.1 97.4 0.7 0.1 0.7 0.0 0.4 0.5 0.2

0.6 0.2 42.4 1.9 0.8 0.1 0.2 0.8 53.0

0.7 0.0 1.1 81.3 0.3 1.5 0.1 1.5 13.5

3.1 4.1 1.9 1.9 70.7 1.6 13.6 0.3 2.7

1.7 0.8 0.8 9.0 1.1 75.2 2.3 2.1 7.0

8.5 1.9 1.4 4.1 1.4 49.3 15.7 1.2 16.5

1.3 5.2 3.8 0.9 0.8 1.1 0.5 84.1 2.4

2.6 0.8 1.5 2.8 2.5 2.3 1.3 0.8 85.3

Ours

0

20

40

60

80

100

(b) Ours

Figure 5: Confusion matrices. The results of OSBP and

Ours in “sv(0-3), mt(4-7)” are reported.

5. Experiments

We first show the results on the new problems, GDA1

and GDA2, in Sec. 5.1 and then those on the three exist-

ing problems covered by GDA, i.e., OSDA, MS-OSDA and

BTDA, in Sec. 5.2.

5.1. Experiments on New UDA Problems

We show the results in GDA1 and GDA2. In summary,

our method outperforms existing methods.

Datasets. We use Digits and Office-31. Digits is composed

of four digit datasets: SVHN (sv) [23], SynDigits (sy) [10],

MNIST (mt) [15], and MNIST-M (mm) [10]. Following

[7], we use 25,000 samples in sv, sy, and mt for training and

9,000 samples for testing. For mm, we use 21,661 samples

for training and 7,854 samples for testing. Office-31 [29] is

composed of three domains: Amazon (A), DSLR (D), and

Webcam (W) having 4,110 samples of 31 object classes.

We use several different settings of the combinations of

domains and splits of labeled, unlabeled (known), and un-

known classes. An example is “sv(0-3), sy(4-7)” which

means that only the sv and sy domains are used, where {“0”,

“1”, “2”, “3”} in sv and {“4”, “5”, “6”, “7”} in sy are la-

beled and the rest remain unlabeled; {“8”, “9”}, which are

Table 4: Results for Digits in GDA2. The best and second-

best are highlighted in bold and underlined, respectively.

sv(0-3), mt(4-7) sv(0-2), sy(3-5), mt(6-8)
sv(0,1), sy(2,3),

mt(4,5), mm(6,7)
Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP [32] 52.45 86.32 65.25 55.29 26.24 35.59 41.33 79.41 54.37 49.69 63.99 51.74

ROS [2] 0.20 68.95 0.40 12.45 89.34 21.85 8.15 81.15 14.81 6.93 79.81 12.36

UAN [43] 56.96 0.17 0.34 59.86 0.96 1.89 48.99 0.00 0.00 55.27 0.38 0.74

Ours 76.95 84.54 80.57 77.26 74.51 75.86 69.67 78.18 73.68 74.63 79.08 76.70

Table 5: Results for Office-31 in GDA2. The best and

second-best are highlighted in bold and underlined, respec-

tively.
D(0-9), W(10-19) A(0-9), D(10-19) W(0-9), A(10-19) Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP [32] 93.57 92.96 93.26 46.20 77.75 57.96 51.63 78.66 62.34 63.80 83.12 71.19

ROS [2] 92.35 90.77 91.55 40.32 71.16 51.47 27.69 76.85 40.71 53.45 79.59 61.25

UAN [43] 97.24 46.81 63.20 65.96 23.58 34.74 65.83 28.15 39.44 76.34 32.85 45.79

Ours 90.33 93.41 91.84 72.44 65.08 68.56 72.99 83.89 78.06 78.59 80.79 79.49

not labeled in either domain, are treated as unknown. For

GDA2, we follow the same settings as GDA1 but leave half

of the samples in each labeled class unlabeled.

Evaluation Metrics and Baselines. We use three evalua-

tion metrics: OS* and UNK, which are the average accu-

racy on the known and unknown classes, respectively; and

HOS, which is the harmonic mean of OS* and UNK. Al-

though no existing methods are directly applicable to GDA1

and GDA2, we forcibly applied the following methods as

baselines by considering the labeled data as the source do-

main and the unlabeled data as the target domain: La-

beled Only (trained with the labeled data only), MCD [31],

OSBP [32], ROS [2], and UAN [43].

Implementation Details. For domain label estimation, we

use a two-layer MLP followed by a four-layer CNN for our

feature extractor f (see supplementary material for details).

We use the 3 × 3 grid for our class-destructive transfor-

mation unless otherwise noted. We use random crop and

grayscale for our data augmentation. We also use Gaussian

blur and the operations used in [8] for Digits. The network

is optimized by using Adam [14] with the learning rate of

1.0 × 10−3 for 300 epochs on Office-31 and 80 epochs on

Digits with the batch size of 512.

We use a different classifier for each dataset. For Digits,

we use a four-layer CNN for our feature extractor Gf and

two-layer MLPs for our class label predictor Fy and do-

main classifier Fd (see supplementary material for detail).

For Office-31, we use ResNet-50 [13] pretrained on Ima-

geNet with the top classification layers discarded for Gf ,

one fully connected layer for Fy , and a three-layer MLP

(1024→ 1024→ #domains) for Fd. The network is trained

61089

Table 6: Results for Office-31 in OSDA. The best and second-best are highlighted in bold and underlined, respectively.
A→W A→D D→W W→D D→A W→A Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum [16] 92.1 58.0 71.0 95.4 45.5 61.6 97.1 49.7 65.5 96.6 48.5 64.4 94.1 55.0 69.4 92.1 46.2 60.9 94.6 50.5 65.5

STAmax [16] 86.7 67.6 75.9 91.0 63.9 75.0 94.1 55.5 69.8 84.9 67.8 75.2 83.1 65.9 73.2 66.2 68.0 66.1 84.3 64.8 72.5

OSBP [32] 86.8 79.2 82.7 90.5 75.5 82.4 97.7 96.7 97.2 99.1 84.2 91.1 76.1 72.3 75.1 73.0 74.4 73.7 87.2 80.4 83.7

UAN [43] 95.5 31.0 46.8 95.6 24.4 38.9 99.8 52.5 68.8 81.5 41.4 53.0 93.5 53.4 68.0 94.1 38.8 54.9 93.4 40.3 55.1

ROS [2] 88.4 76.7 82.1 87.5 77.8 82.4 99.3 93.0 96.0 100.0 99.4 99.7 74.8 81.2 77.9 69.7 86.6 77.2 86.6 85.8 85.9

Ours 82.5 84.0 83.2 73.8 83.2 77.9 96.7 98.0 97.4 99.1 96.1 97.6 67.8 92.4 78.2 70.8 85.1 77.3 81.8 89.8 85.3

Table 7: Results for Office-Home in OSDA. The best and second-best are highlighted in bold and underlined, respectively.
Pr→Rw Pr→Cl Pr→Ar Ar→Pr Ar→Rw Ar→Cl

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum [16] 78.1 66.3 69.7 44.7 71.5 55.0 55.4 73.7 63.1 68.7 59.7 63.7 81.1 50.5 62.1 50.8 63.4 56.3

STAmax [16] 76.2 64.3 69.5 44.2 67.1 53.2 54.2 72.4 61.9 68.0 48.4 54.0 78.6 60.4 68.3 46.0 72.3 55.8

OSBP [32] 76.2 71.7 73.9 44.5 66.3 53.2 59.1 68.1 63.2 71.8 59.8 65.2 79.3 67.5 72.9 50.2 61.1 55.1

UAN [43] 84.0 0.1 0.2 59.1 0.0 0.0 73.7 0.0 0.0 81.1 0.0 0.0 88.2 0.1 0.2 62.4 0.0 0.0

ROS [2] 70.8 78.4 74.4 46.5 71.2 56.3 57.3 64.3 60.6 68.4 70.3 69.3 75.8 77.2 76.5 50.6 74.1 60.1

Ours 65.0 78.1 70.9 49.3 71.7 58.4 49.6 78.2 60.7 61.5 74.5 67.4 69.5 80.3 74.5 50.1 74.7 59.9

Rw→Ar Rw→Pr Rw→Cl Cl→Rw Cl→Ar Cl→Pr Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum [16] 67.9 62.3 65.0 77.9 58.0 66.4 51.4 57.9 54.2 69.8 63.2 66.3 53.0 63.9 57.9 61.4 63.5 62.5 63.4 62.6 61.9

STAmax [16] 67.5 66.7 67.1 77.1 55.4 64.5 49.9 61.1 54.5 67.0 66.7 66.8 51.4 65.0 57.4 61.8 59.1 60.4 61.8 63.3 61.1

OSBP [32] 66.1 67.3 66.7 76.3 68.6 72.3 48.0 63.0 54.5 72.0 69.2 70.6 59.4 70.3 64.3 67.0 62.7 64.7 64.1 66.3 64.7

UAN [43] 77.5 0.0 0.2 85.0 0.1 0.1 66.2 0.0 0.0 80.6 0.1 0.2 70.5 0.0 0.0 74.0 0.1 0.2 75.2 0.0 0.1

ROS [2] 67.0 70.8 68.8 72.0 80.0 75.7 51.5 73.0 60.4 65.3 72.2 68.6 53.6 65.5 58.9 59.8 71.6 65.2 61.6 72.4 66.2

Ours 54.8 81.6 65.6 69.5 78.9 73.8 53.0 72.7 61.3 64.3 78.9 70.8 47.1 80.8 59.5 60.5 74.5 66.8 57.8 77.1 65.8

Table 8: Results for Office-31 in MS-OSDA. The best and

second-best are highlighted in bold and underlined, respec-

tively.
A, D → W A, W → D W, D → A Avg.

OS* OS OS* OS OS* OS OS* OS

OSVM [33] 71.2 51.2 84.9 56.2 58.2 61.4 71.4 56.3

OSVM+DANN [10] 65.0 83.3 68.0 91.9 51.2 37.5 61.4 70.9

OSBP [32] 94.0 90.0 93.0 89.0 79.0 75.0 88.7 84.7

IOSBP [9] 91.1 88.0 87.8 87.1 75.0 74.5 84.6 83.2

MOSDANET [28] 99.0 98.2 99.4 98.3 81.0 79.3 93.1 91.9

Ours 94.7 94.1 94.1 94.5 76.1 75.6 88.3 88.1

for 1000 epochs using SGD with the initial learning rate of

1.0 × 10−3, a momentum of 0.9, and a weight decay of

5.0 × 10−4. The batch size is 256 for Digits and 16 for

Office-31. The learning rate is changed to 1.0 × 10−1 at

the 100th epoch for Digits. The pseudo class labels are ini-

tialized at the 100th epoch and updated at the 200th epoch

(see Sec. 4.2). As in [11], λ in Eq. 1 is scheduled as

λ = 2
1+exp[−γṗ] − 1, where p increases linearly from 0 to 1

during training. We set γ = 1000 for Digits and γ = 10 for

Office-31. We set σ in Eq. (2) to the median of the entropy

within the mini-batch. We use the true class distribution

as the prior for the regularization term Lp as done in [38].

Note that performance degradation is not severe if the true

distribution is unknown (see supplementary material).

Results. Tables 2 and 3 show the results in GDA1. First,

all the baselines fail to achieve adequate performance in

many cases. We found noticeable decreases in performance

for the domains with large domain gaps. For example, the

HOS values of all the baselines cannot be better than 15%

in “sv(0-3), mt(4-7)”. In “W(0-9), A(10-19)”, even the

best-performing method, ROS, achieves only 49% in HOS.

These results suggest the difficulty of this new problem.

Our method yields adequate performance in all the cases

Table 9: Results for Office-31 in BTDA. The best and

second-best are highlighted in bold and underlined, respec-

tively.
Models A → D, W D → W, A W → A, D Avg.

Labeled only 68.6 70.0 66.5 68.4

DAN [17] 78.0 64.4 66.7 69.7

RTN [18] 84.3 67.5 64.8 72.2

JAN [19] 84.2 74.4 72.0 76.9

RevGrad [10] 78.2 72.2 69.8 73.4

AMEAN [7] 90.1 77.0 73.4 80.2

Ours 88.8 74.5 73.2 78.8

and outperforms all the baselines in most cases; the HOS

values of our method exceed 77% in “sv(0-3), mt(4-7)” and

80% in “W(0-9), A(10-19)”. These results show the excep-

tional effectiveness of our method in this problem.

Fig. 5 shows confusion matrices for “sv(0-3), mt(4-7)”

of OSBP (the best competitor in this case) and Ours. OSBP

tends to misclassify {“0”, “1”, “2”, “3”} to {“4”, “5”, “6”,

“7”}, and vice versa (other baselines also show the same

tendency). This implies that the baselines fail to disentangle

the class and domain information, which is the reason for

their poor performance. Our method does not suffer from

this problem, which emphasizes its effectiveness.

Tables 4 and 5 show the results for GDA2. Similar to

GDA1, the performance of the baselines is unsatisfactory.

Ours outperforms all of them in all the settings except for

“D(0-9), W(10-19)”, which proves that Ours is effective

even when the class labels are given to only a subset of the

samples in the same class.

5.2. Experiments on Existing UDA Problems

We show the results in OSDA, MS-OSDA, and BTDA

for the protocols used in [2, 28, 7], respectively. Overall,

ours is competitive with the state-of-the-art methods, which

confirms that it is applicable even when the type of UDA

71090

2 3 4 5 6
Number of clusters

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

NM
I

(a)

2 3 4 5 6
Number of clusters

45

50

55

60

65

70

75

80

HO
S

[%
]

(b)

2x2 3x3 4x4 6x6 9x9
Grid size

82

83

84

85

86

87

88

89

HO
S

[%
]

(c)

Figure 6: Sensitivity to hyperparameters. (a) NMI and (b)

HOS vs. the number of clusters in “sv(0,1), sy(2,3), mt(4,5),

mm(6,7)”. (c) HOS vs. the grid size of class-destractive

transformations in “sv(0-4), sy(4-7)”.

problem cannot be identified in advance.

Datasets. We use Office-31 and Office-Home. The details

of Office-31 are given in Sec. 5.1. Office-Home [41] con-

tains 15,500 samples of 65 object classes of four domains:

Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw).

For OSDA, we follow the protocol used in [2]. For

Office-31, the first 10 and the last 11 classes in alphabetical

order are used as known and unknown classes, respectively.

For Office-Home, the first 25 and the other 40 are used as

known and unknown classes, respectively. We use Office-

31 for MS-OSDA [28] and BTDA [7]. For MS-OSDA, we

consider all possible combinations of two source domains

and one target domain. The first 20 and the other 11 classes

in alphabetical order are used as shared and open set classes,

respectively. For BTDA, we consider all possible combina-

tions of one source domain and two target domains.

Evaluation Metrics and Baselines. We use OS*, UNK,

and HOS for OSDA as done in [2]. For MS-OSDA, we

use OS* and OS [28]; OS is the average accuracy both on

known and unknown classes. For BTDA, we use classifica-

tion accuracy [7]. Here, we compare our method with the

methods used in the corresponding papers [2, 28, 7].

Implementation Details. We use the same networks as in

Sec 5.1 for both domain label estimation and classification.

We train the classifier for 200 epochs using SGD with the

mini-batch size of 32, momentum of 0.9, and weight decay

of 5.0× 10−4. The learning rate is initialized to 1.0× 10−2

for Fy , Fd and the last layer of Gf and to 1.0×10−3 for the

rest of Gf . It is updated at every iteration as lr ← lrinit ×
(1 + 0.001 × i)−0.75, where i is the number of iterations.

The pseudo class labels are initialized at the 40th epoch and

updated at the 80th epoch. We use the same scheduling

policy for λ as in Sec. 5.1 but increase p linearly from 0 to

1 until the 1000th iteration with γ = 1.0.

Results for OSDA. Tables 6 and 7 show the comparative

results for OSDA. Despite the fact that our method is not

designed specifically for OSDA, it is highly competitive

with the state-of-the-art methods. Compared with ROS, our

best competitor, the differences in HOS are only 0.6% for

Office-31 and 0.4% for Office-Home on average.

3x3 6x6 9x9

Figure 7: t-SNE visualization. The features learned by our

domain label estimation method in “sv(0-4), sy(4-7)” are vi-

sualized. The points are color-coded by their domain labels

(top) and class labels (bottom).

Results for MS-OSDA. Table 8 shows the results. Al-

though Ours is worse than MOSDANET [28], the state-of-

the-art in MS-OSDA, it is the second-best in most cases.

Results for BTDA. Table 9 shows the results. Similar

to the results in MS-OSDA, Ours is slightly worse than

AMEAN [7] but clearly better than the others.

5.3. Analysis

Number of Clusters for Domain Label Estimation. We

evaluate the sensitivity to the number of clusters for do-

main label estimation. We use “sv(0,1), sy(2,3), mt(4,5),

mm(6,7)”, where the true number of domains is four. The

domain label estimation quality in NMI and HOS are shown

in Figs. 6a and 6b, respectively. Both reach a maximum at

four (the true number of domains), and the HOS value is

stable for higher numbers, suggesting that it is not severely

sensitive to the number of clusters.

Grid Size for Class-destructive Transformation. Fig. 6c

reports the performance of our method for various grid sizes

in “sv(0-4), sy(4-7)”. The accuracy is satisfactory when the

partition is coarse but decreases as it becomes finer. This is

not surprising because the domain information is destroyed

by over-partitioning, as discussed in Sec. 4.1. We show a

t-SNE visualization of the features learned by our domain

label estimation in Fig 7, which supports the results.

6. Conclusion

We proposed Generalized Domain Adaptation (GDA), a

general representation of UDA that covers the major UDA

variants as well as new challenging settings where existing

UDA methods fail. To solve the new settings, we proposed

a novel self-supervised class-destructive learning approach,

which estimates domain labels without using any supervi-

sion. Experiments demonstrated that our method outper-

forms the state-of-the-art methods in the new settings and

that it is highly competitive on existing UDA variants.

81091

References

[1] Silvia Bucci, Antonio D’Innocente, and Tatiana Tommasi.

Tackling partial domain adaptation with self-supervision. In

Proc. ICIAP, 2019. 4

[2] Silvia Bucci, Mohammad Reza Loghmani, and Tatiana Tom-

masi. On the effectiveness of image rotation for open set

domain adaptation. In Proc. ECCV, 2020. 1, 2, 3, 6, 7, 8

[3] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin

Wang. Partial adversarial domain adaptation. In Proc.

ECCV, 2018. 1, 2, 3

[4] Zhangjie Cao, Kaichao You, Mingsheng Long, Jianmin

Wang, and Qiang Yang. Learning to transfer examples for

partial domain adaptation. In Proc. CVPR, 2019. 2, 3

[5] Fabio M. Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-

bara Caputo, and Tatiana Tommasi. Domain generalization

by solving jigsaw puzzles. In Proc. CVPR, 2019. 4

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020. 4

[7] Ziliang Chen, Jingyu Zhuang, Xiaodan Liang, and Liang

Lin. Blending-target domain adaptation by adversarial meta-

adaptation networks. In Proc. CVPR, 2019. 1, 2, 3, 4, 6, 7,

8

[8] Geoff French, Michal Mackiewicz, and Mark Fisher. Self-

ensembling for visual domain adaptation. In Proc. ICLR,

2018. 6

[9] Jiahui Fu, Xiaofu Wu, Suofei Zhang, and Jun Yan. Improved

open set domain adaptation with backpropagation. In Proc.

ICIP, 2019. 7

[10] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. Proc. ICML, 2015. 2, 5, 6, 7

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-

ing of neural networks. JMLR, 17(1):2096–2030, 2016. 2,

7

[12] Behnam Gholami, Pritish Sahu, Ognjen Rudovic, Konstanti-

nos Bousmalis, and Vladimir Pavlovic. Unsupervised multi-

target domain adaptation: An information theoretic ap-

proach. IEEE TIP, 29:3993–4002, 2020. 1, 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc.

CVPR, 2016. 6

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[15] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proc. IEEE, 86(11):2278–2324, 1998. 6

[16] Hong Liu, Zhangjie Cao, Mingsheng Long, Jianmin Wang,

and Qiang Yang. Separate to adapt: Open set domain adap-

tation via progressive separation. In Proc. CVPR, 2019. 1, 2,

3, 7

[17] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I.

Jordan. Learning transferable features with deep adaptation

networks. Proc. ICML, 2015. 2, 7

[18] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.

Jordan. Unsupervised domain adaptation with residual trans-

fer networks. In Proc. NeurIPS, 2016. 2, 7

[19] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.

Jordan. Deep transfer learning with joint adaptation net-

works. In Proc. ICML, 2017. 7

[20] Massimiliano Mancini, Lorenzo Porzi, Samuel Rota Bulò,

Barbara Caputo, and Elisa Ricci. Boosting domain adapta-

tion by discovering latent domains. In Proc. CVPR, 2018. 1,

2

[21] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.

Domain adaptation with multiple sources. In Proc. NeurIPS,

2009. 2

[22] Ishan Misra and Laurens van der Maaten. Self-supervised

learning of pretext-invariant representations. In Proc. CVPR,

2020. 4

[23] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in nat-

ural images with unsupervised feature learning. In Proc.

NeurIPS, 2011. 6

[24] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of

visual representations by solving jigsaw puzzles. In Proc.

ECCV, 2016. 4

[25] Pau Panareda Busto and Juergen Gall. Open set domain

adaptation. In Proc. ICCV, 2017. 1, 2

[26] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate

Saenko, and Bo Wang. Moment matching for multi-source

domain adaptation. In Proc. ICCV, 2019. 1, 2

[27] Xingchao Peng, Zijun Huang, Ximeng Sun, and Kate

Saenko. Domain agnostic learning with disentangled rep-

resentations. In Proc. ICML, 2019. 2, 3

[28] Sayan Rakshit, Dipesh Tamboli, Pragati Shuddhodhan, Bi-

plab Banerjee Meshram, Gemma Roig, and Subhasis Chaud-

huri. Multi-source open-set deep adversarial domain adapta-

tion. In Proc. ECCV, 2020. 2, 3, 7, 8

[29] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell.

Adapting visual category models to new domains. In Proc.

ECCV, 2010. 6

[30] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate

Saenko. Universal domain adaptation through self-

supervision. In Proc. NeurIPS, 2020. 5

[31] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In Proc. CVPR, 2018. 6

[32] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and

Tatsuya Harada. Open set domain adaptation by backpropa-

gation. In Proc. ECCV, 2018. 1, 2, 3, 6, 7

[33] Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult.

Probability models for open set recognition. IEEE TPAMI,

36(11):2317–2324, 2014. 7

[34] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frus-

tratingly easy domain adaptation. In Proc. AAAI, 2016. 2

[35] Baochen Sun and Kate Saenko. Deep CORAL: Correlation

alignment for deep domain adaptation. In Proc. ECCV, 2016.

2

[36] Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan,

and Jieping Ye. A two-stage weighting framework for multi-

source domain adaptation. In Proc. NeurIPS, 2011. 2

91092

[37] Shuhan Tan, Jiening Jiao, and Wei-Shi Zheng. Weakly su-

pervised open-set domain adaptation by dual-domain collab-

oration. In Proc. CVPR, 2019. 2

[38] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiy-

oharu Aizawa. Joint optimization framework for learning

with noisy labels. In Proc. CVPR, 2018. 2, 5, 7

[39] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-

rell. Adversarial discriminative domain adaptation. In Proc.

CVPR, 2017. 2

[40] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and

Trevor Darrell. Deep domain confusion: Maximizing for

domain invariance. arXiv preprint arXiv:1412.3474, 2014. 2

[41] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,

and Sethuraman Panchanathan. Deep hashing network for

unsupervised domain adaptation. In Proc. CVPR, 2017. 8

[42] Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and

Liang Lin. Deep cocktail network: Multi-source unsuper-

vised domain adaptation with category shift. In Proc. CVPR,

2018. 2

[43] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin

Wang, and Michael I Jordan. Universal domain adaptation.

In Proc. CVPR, 2019. 1, 2, 3, 6, 7

[44] Huanhuan Yu, Menglei Hu, and Songcan Chen. Multi-target

unsupervised domain adaptation without exactly shared cat-

egories. arXiv preprint arXiv:1809.00852, 2018. 2

[45] Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F.

Moura, Joao P. Costeira, and Geoffrey J. Gordon. Adver-

sarial multiple source domain adaptation. In Proc. NeurIPS,

2018. 1, 2

101093

