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Abstract

When people observe events, they are able to abstract key

information and build concise summaries of what is hap-

pening. These summaries include contextual and seman-

tic information describing the important high-level details

(what, where, who and how) of the observed event and ex-

clude background information that is deemed unimportant

to the observer. With this in mind, the descriptions people

generate for videos of different dynamic events can greatly

improve our understanding of the key information of inter-

est in each video. These descriptions can be captured in

captions that provide expanded attributes for video labeling

(e.g. actions/objects/scenes/sentiment/etc.) while allowing

us to gain new insight into what people find important or

necessary to summarize specific events. Existing caption

datasets for video understanding are either small in scale or

restricted to a specific domain. To address this, we present

the Spoken Moments (S-MiT) dataset of 500k spoken cap-

tions each attributed to a unique short video depicting a

broad range of different events. We collect our descriptions

using audio recordings to ensure that they remain as natu-

ral and concise as possible while allowing us to scale the

size of a large classification dataset. In order to utilize our

proposed dataset, we present a novel Adaptive Mean Mar-

gin (AMM) approach to contrastive learning and evaluate

our models on video/caption retrieval on multiple datasets.

We show that our AMM approach consistently improves our

results and that models trained on our Spoken Moments

dataset generalize better than those trained on other video-

caption datasets.

http://moments.csail.mit.edu/spoken.html

*equal contribution

1. Introduction

Video understanding has typically been focused on ac-

tion recognition and object tracking as the temporal as-

pect of videos lends itself strongly to the task of repre-

senting motion, a key component of an action. Breaking

down video analysis to simple tasks, such as action recog-

nition, allows for efficient data annotation for building large

datasets to train deep learning models [31, 45, 21] which

has been extremely successful for images with object an-

notations [34]. A main difficulty is that, in contrast to an

image, a video often captures an interaction between agents

and objects that evolves over time. These interactions can

be as simple as “a person picking up a glass of water”, but

even in this case three different objects (“person”, “glass”

and “water”) are included in the interaction. Additionally,

the video may also continue to depict the “person drink-

ing from a glass” and the “person putting the glass back

down on the table”. These sequential events present ad-

ditional challenges for video datasets where single annota-

tions may not be sufficient to explain the events depicted.

Multi-label approaches to video annotation have attempted

to address this problem by labeling multiple actions in a

video [46, 22, 72]. However, these methods focus on sin-

gle domain annotations, such as actions or objects, and do

not capture additional contextual information, such as “per-

son angrily putting down the dirty glass on a rusted table”,

which can change the interpretation of an event and how it

fits into a sequence of observations.

A solution for capturing more fully the content of video

is to annotate multiple actions or objects in each video

[22, 71, 46, 49]. However labels like “drinking”, “glass”,

only provide a portion of the information needed to inter-

pret the veracity of the event. Additional narratives may

include intuitive descriptions and intentions, such as “an ex-

hausted man picks up a dirty glass of water and drinks from
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it before angrily putting it down on a table” which would

dramatically change the event interpretation. The full lin-

gual description combines these actions with adjectives and

nouns (objects) that contextualize the events depicted lead-

ing to a better understanding of the video. This is our goal

in providing a new large scale dataset for training models

for full video understanding.

We introduce a large scale video caption dataset, Spo-

ken Moments in Time (S-MiT), to allow large deep learn-

ing models for video understanding to learn contextual in-

formation. Most existing video description datasets [70,

59, 32, 20, 79] are limited in size when compared to the

large datasets for action recognition [31, 45, 21]. A likely

cause is the increased cost of collecting full text descrip-

tions for videos compared to single label annotations. Re-

cent work in image captioning [25] addressed this problem

by collecting audio descriptions for a large set of images

from the Places dataset [76]. Collecting spoken captions is

faster and more efficient due to the low overhead of speak-

ing compared to typing. In addition, recording of sponta-

neous speech rather than typed text can produce more nat-

ural descriptions of an event.An automatic speech recogni-

tion (ASR) system was then used to transcribe the spoken

descriptions to text captions. In this work, both audio, text

and video models were jointly trained via contrastive learn-

ing to learn joint cross-modal representations. We build

on this approach and compare models that learn directly

from the spoken captions to models that include a trained

ASR model which feeds generated text transcriptions into

an NLP language model. We then jointly train caption and

visual models (based on concatenated video and image fea-

tures) using a novel Adaptive Mean Margin (AMM) ap-

proach to contrastive learning to align the visual and cap-

tion representations. We evaluate our models on multiple

datasets for video/caption retrieval and show that a model

trained using AMM on S-MiT achieves the best general per-

formance across four datasets.

Altogether, our novel contributions include:

1. The large-scale Spoken Moments in Time dataset (S-

MiT) which includes 500k pairs of video clips and cor-

responding audio descriptions. This new dataset rep-

resents the largest video description dataset available

and will serve as a new benchmark for the community.

2. Benchmark models with aligned spoken caption and

video representations learned via contrastive learning.

We compare approaches that learn directly from the

spoken descriptions as well as approaches that include

ASR transcriptions that feed into different language

models to generate caption representations.

3. An Adaptive Mean Margin (AMM) approach to

cross-entropy based contrastive learning.

2. Related work

2.1. Video Understanding

The field of video understanding has recently seen fast

progress partly due to the availability of large scale video

datasets including ActivityNet [6], Kinetics [31], Moments

in Time [45, 46] and YouTube-8M [1]. These large datasets

are used to pretrain models that are fine-tuned on smaller ac-

tion recognition datasets such as UCF101 [61] and HMDB

[35]. With the increased availability of large scale video

datasets, many different models have been proposed to im-

prove performance on a number of video understanding

tasks. Two-stream convolutional neural networks (CNNs)

combine optical flow with RGB frames to capture both tem-

poral and spatial information [60]. I3D models [8] combine

3D CNNs [64], which use a 3D kernel to learn temporal

information from a frame sequence, with optical flow to

form a two-stream 3D network “inflated” from 2D filters

pre-trained on ImageNet [16]. More recently a temporal

shift module has been proposed to integrate temporal in-

formation into 2D models by shifting frame representations

across the temporal dimension [39].

Recently multi-modal visual understanding methods

have received significant attention [25, 63, 43, 66, 29, 4].

The DAVEnet model [25] has been proposed for jointly

learning aligned representations between images and spo-

ken captions, and has been extended to align frame-wise

video representations with synchronized audio narration

for cross-modal audio-visual concept learning [4]. Here,

we build on the motivation from this paper and learn

aligned representations between videos and unsynchro-

nized spoken descriptions using the S-MiT Dataset.

2.2. Caption Datasets

There have been a number of different datasets released

for providing language descriptions of visual information.

Flickr8k [28] and Flickr30k [48] include 8k and 30k im-

ages respectively each sourced from Flickr. Each image is

associated with 5 text captions describing what is in the im-

age. An additional set of 5 audio captions per image in

both sets was recently collected for learning joint embed-

dings between speech and images [25]. The Visual Genome

dataset [33] includes captions for multiple regions of more

than 180k images allowing for fine-grained descriptions of

each image. The Places Audio Caption dataset [26] contains

approximately 400k images from the Places 205 [77] image

dataset with audio captions of people verbally describing

each image. MS COCO [11] is a large image dataset for

object recognition, segmentation, and captioning which in-

cludes roughly 1 million captions for 160k Flickr images.

Conceptual Captions [58] contains 3.3M images with cap-

tions generated from HTML attributes associated with web

based images. The Stock3M dataset [69] includes 3.2 mil-
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Figure 1: Examples from the Spoken Moments Dataset: The dataset is composed of videos and the corresponding spoken captions. We

show some examples of the text transcriptions, automatically generated using the public Google ASR engine.

lion images each with a crowdsourced caption.

Beyond the numerous datasets available or image cap-

tioning [28, 48, 33, 11, 58, 69], including those that pro-

vide spoken descriptions [26, 25], there are a variety of

different video caption datasets available. A number of

these datasets are related to cooking [50, 51, 54, 13, 12]

including YouCook [14] and YouCook II [79] which in-

clude 2k videos from YouTube each with multiple cap-

tions annotated at different segments of each video. MPII-

Movie Description Corpus [52] contains transcribed audio

descriptions from 94 Hollywood movies split into 68k clips

where each clip is paired with a sentence from the movie

scripts and an audio description of the visual content in each

clip. Similarly, Large Scale Movie Description Challenge

(LSMDC) dataset [53] contains 200 movies with 120K sen-

tence descriptions. VideoStory [20] contains 20k social me-

dia videos where each video contains a paragraph length

description. The ActivityNet Captions dataset [32] has 20k

videos with 100k text descriptions. The Microsoft Video

Description (MSVD) dataset [9] contains 2k YouTube clips

with a 10-25 second duration and an average of 41 single

sentence descriptions per clip. MSR-Video to Text (MSR-

VTT) [70] contains 7k videos split into 10k clips with 20

captions per video.

HowTo100M [44] contains 136 million clips sourced

from 1.22 million instructional videos with narrations gen-

erated from subtitles associated with each video. However,

the subtitles are not human verified captions and the content

is constrained to instructional videos. Since the text associ-

ated with the clips in the HowTo100M dataset are transcrip-

tions of a narrator completing a task in the video, the short

text phrases from the subtitles occasionally share noisy as-

sociations with the reference clip. In Section 5, and Table

2, we decided to compare our contributions using strict cap-

tion datasets as we are proposing a large-scale human anno-

tated caption dataset with full human generated descriptions

for each video.

VaTeX [68] contains 41k videos sourced from the

Kinetics-600 dataset [31, 7] annotated with 10 English cap-

tions and 10 Chinese captions for multilingual captioning.

VaTeX is the most similar to our proposed dataset in that it

is sourced from an existing video dataset for action recog-

nition and the captions are directly annotated.

In this work, we present a new dataset, Spoken Moments

in Time (S-MiT), which includes spoken audio captions for

500k unique three second clips each with different source

videos from the Moments in Time dataset [45, 46]. In

addition to vast increase in scale over other video-caption

datasets, a major contribution is that we are using spoken

descriptions rather than text. This allows us to train spoken

caption models to directly align with video models. This

is not possible with the other large video caption datasets

and allows for spoken caption models to be analyzed with

matching video information. We also show that models

trained on our S-MiT dataset generalize much better in re-

trieval to the video-caption pairs in other datasets. This is

due to the large coverage, diversity and scale of our pro-

posed dataset.

2.3. Cross Modal Contrastive Learning

Cross modal learning has been used to jointly self-

supervise audio-visual models [3, 47, 75] with synchro-

nized information while NLP approaches have been lever-

aged to align joint representations for both visual and lan-

guage modalities using spoken and text descriptions [2, 78].

This is typically done via Contrastive Learning where the

alignment between positive pairs (language and visual in-

put) is trained to be stronger than those of non-positive pairs

[24]. For visual representations, a triplet based max-margin

loss is commonly used to discriminate representations be-

tween positive and negative pairs [73, 74, 18]. Semi-

hard negative mining [57] and a dot-product based similar-

ity score have been used to jointly learn audio-visual em-

beddings between images and spoken captions [25] while

batch-wise cross-entropy approaches to contrastive learn-

ing have been used to increase the amount of information

utilized in learning by considering all negative examples in

a mini-batch [65, 10]. Work on bidirectional speech/image

retrieval using audio descriptions of images integrated ideas

from max-margin contrastive learning and added a margin

into the cross-entropy loss [29]. SimCLR [10] added a non-

linear projection head that maps paired representations into

a common space allowing for stronger representations.

A pretrained language model has recently been used

to improve cross-modality learning with language and vi-

sual input pairs. VilBERT [42] added a pretrained BERT
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[17] transformer to capture semantic language representa-

tions associated with object detection proposals from a pre-

trained faster RCNN network. VideoBERT [62] extended

BERT to jointly learn the visual and linguistic domain by

generating tokenized visual words. Inspired by this prior

work, we propose adding a pretrained language model

that maps word predictions from a trained ASR model

to semantic language features in order to generate rich

spoken caption representations. We then utilize an MLP

to project these caption representations, and our video rep-

resentations, to an aligned joint representation which can be

used for video/caption retrieval (see Section 5).

2.3.1 Optimization Approaches

A common approach to optimization in contrastive learn-

ing settings is to use a similarity based loss function. We

formulate the contrastive loss as, L = Lvc + Lcv , where

the goal is to maximize the discrimination between positive

and negative paired captions c and videos v. The loss is split

into two tasks where Lvc forms pairs from a fixed video and

each caption in a sampled mini-batch, while Lcv fixes the

caption and forms pairs with each video in the mini-batch.

Below we discuss different approaches of Lxy , where x and

y are interchangeable with v and c.

Semi-hard negative mining (SHN) [57] has been used

for learning aligned cross-modal embeddings using a triplet

loss [25, 30]. This is an improvement over hard nega-

tive mining [19] since a sampled negative example is con-

strained to be less similar to the anchor than the positive

sample while still being within the margin and thus con-

tributing a loss at each step with the margin M = 1,

Lxy = max(S(xi, yj)−S(xi, yi)+M, 0), where S(xi, yj)
is a similarity score for the representations of xi and yj ,

with xi and yi forming a positive pair.

Noise contrastive estimation (NCE) [23] has been ap-

plied to contrastive learning [10, 65] by using a log-

likelihood based loss function that learns to discriminate

between positive and negative pairs of feature embeddings,

Lxy = −
1

B

B
∑

i=1

log
eS(xi,yi)

∑B
j=1 Ii 6=je

S(xi,yj)
, (1)

where Ii 6=j is an indicator function that we only considers

negative pairs in the denominator. This has been shown to

improve feature alignment compared to SHN [10].

Masked Margin Softmax Loss (MMS) [29] and Large

Margin Cosine Loss (LMCL) [67] incorporate a positive

margin into the contrastive learning framework in order to

improve feature discrimination among non-paired embed-

dings. MMS uses a monotonically increasing margin to al-

low for initial learning to begin to converge before a large

alteration to the loss is added. LMCL proposes a theoreti-

cal limit on the maximum margin size of 1 − cos 2π
N

where

N refers to the number of classes being discriminated. For

aligning captions to visual information, the class size can be

considered unbounded as each caption represents a slightly

different representation that we want to discriminate lead-

ing to a max margin size of 1. Concretely, MMS proposes

adding a margin to Equation 1,

Lxy = −
1

B

B
∑

i=1

log
eS(xi,yi)−M

eS(xi,yi)−M +
∑B

j=1 Ii 6=je
S(xi,yj)

, (2)

where the margin, M , starts as 0.001 and is exponentially

increased by a factor of 1.002 every 1000 training steps.

We propose extending the idea of an increasing margin

in MMS to an adaptive setting that does not require setting

the initial value of the margin or the growth rate. We refer to

this approach as an Adaptive Mean Margin (AMM) where

the margin is set as the mean distance between the positive

pair and the set of negative pairs in a batch. We describe

AMM in more detail in Section 4.3.

3. The Spoken Moments Dataset

We begin with the Moments in Time dataset [45] as it in-

cludes over 1 million videos sourced from a number of dif-

ferent video hosting sites with strong inter & intra-varietal

variation in terms of the number of events depicted in each

video. Further, the videos are all cut to 3 seconds allow-

ing for a concise description to effectively capture the lo-

calized information of each event. Here we refer to concise

descriptions as those that focus on key events depicted in

the video and does not imply partial descriptions. In data

collection, annotators may watch a video as many times as

desired. During recording, we block the annotators from

seeing/hearing the video to encourage descriptions of im-

portant memorable events rather than every specific detail.

This approach does not preclude the annotators from de-

scribing sequential or simultaneous events as shown in our

qualitative examples (see Figure 1). We describe our anno-

tation approach in more detail in the supplementary mate-

rial.

3.1. Dataset Statistics

Our proposed Spoken Moments dataset contains 500k

videos randomly chosen from the Multi-Moments in Time

(M-MiT) training set and all of the 10k videos from the val-

idation set. Each video in the training set contains at least

one audio description. We transcribed each audio record-

ing using the public Google Automatic Speech Recogni-

tion (ASR) engine to generate text captions for each video.

When analyzing these transcriptions, we build a picture of

the coverage and diversity of our captions. Table 2 (left)

shows that our captions have an average length of 18 words

with a unique vocabulary of 50,570 words consisting of

20,645 nouns, 12,523 adjectives and 7,436 verbs with a
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Type Total Average Unique

Words 5,618,064 18.01 50,570

Verbs 492,941 1.58 7,436

Nouns 1,365,305 4.37 20,645

Adjectives 386,039 1.24 12,523

Type Dataset Coverage

Objects
ImageNet 69.2%

MS-COCO 100%

Actions
Kinetics 85.1%

Moments in Time 96.2%

Scenes Places365 47.4%

Dataset Clips Videos Captions Words Vocab Domain Spoken

TACoS [50] 7,206 127 18,227 146,771 28,292 Cooking

YouCook II [79] 15,400 2,000 15,400 121,418 2,583 Cooking

MSVD [9] 1,970 1,970 70,028 607,339 13,010 General

Charades [59] 10,000 10,000 27,800 645,636 32,804 General

MPII-MD [52] 68,337 94 68,375 653,467 24,549 General

MSR-VTT [70] 10,000 7,180 200,000 1,856,523 29,316 General

ActivityNet Captions [32] 100,000 20,000 100,000 1,348,000 15,564 General

VideoStory [20] 123,000 20,000 123,000 1,633,226 - General

Epic-Kitchens [13, 12] 76,885 633 76,885 227,974 1,737 Cooking

Vatex-en [68] 41,300 41,300 413,000 4,994,768 44,103 General

Spoken Moments 515,912 459,742 515,912 5,618,064 50,570 General X

Figure 2: Dataset Statistics: On the top-left we show the total and average number of words, verbs, nouns and adjectives in our captions as

well as the number of unique examples of each. On the bottom-left we show the percentage of the class vocabulary from different datasets

that occur in our captions. On the right we compare our proposed Spoken Moments dataset to existing video caption datasets. The word

count and vocabulary for S-MiT are generated using ASR transcriptions.

total word count of 5.6 million. Table 2 (right) shows a

comparison of our Spoken Moments dataset to other exist-

ing datasets for video captioning. Our dataset will be the

largest public dataset in terms of video clips, source videos,

total number of captions, total words in the captions and

the vocabulary set of unique words occurring in the cap-

tions. The increase in vocabulary size is important as it

shows that our increase in the number of videos over pre-

vious datasets does not simply include repeated events but

covers a novel breadth of information. We can see the op-

posite effect of this in YouCook II [79] where the restricted

domain of cooking videos results in a limited vocabulary

used in the descriptions.

To understand how this vocabulary covers the class la-

bels typically used for training computer vision models, we

examined whether these labels exist in our vocabulary. Ta-

ble 2 (right) shows that we have strong coverage of the two

largest action recognition datasets for video understanding

(Kinetics [31] and M-MiT [46]). We expected a large cover-

age of the events in M-MiT as we sourced our videos from

this dataset and the action labels themselves are fairly gen-

eral (e.g. “running” and “cooking”). For Kinetics, the la-

bels are commonly tied to a noun preceded by a verb (e.g.

“brushing hair”). For these labels we consider them to ex-

ist in our dataset if both the verb and noun are in the same

caption. For example, “A boy is in a bathroom brushing his

teeth” would cover the class “brushing teeth”. With this ap-

proach we see a 85.1% coverage of the classes in Kinetics

and a 96.2% coverage of the classes in M-MiT showing a

strong level of event diversity. Similarly we see a strong

overlap of the object classes in MS-COCO [40] (100%) and

ImageNet [16] (69.2%) in our captions. ImageNet coverage

is likely lower due to the specific labels used for many of

its classes (e.g. “coucal”). Still, 69.2% coverage means

692 ImageNet classes appear in our captions. Similarly,

Places [77] scene labels are very specific and don’t neces-

sarily match the language used in our descriptions. For ex-

ample, an “abbey” will typically be described as a “church”

or “monastery” in our captions. We did not account for all

of the synonyms possible and are only considering direct

Figure 3: Architecture: Videos and captions are fed into the

video/caption models where the outputs are used to compute a

similarity matrix, S, which is used to compute a loss, L.

matches in our captions. Even so we are able to find a 47.4%

coverage of the scene labels in Places365 in our dataset.

Here we provide information on some additional charac-

teristics of our data that may be of interest. While we do

not release demographic info of our annotators or captions,

about 57% of the spoken captions were recorded by male

voices and 43% female. For the audio streams of the videos,

roughly 51% include natural sound, 5% have music as the

audio and 44% have no audio. This is consistent with the

M-MiT dataset [46] from which we source our videos. Ad-

ditionally, we found that less than 3% of the videos contain

captions that describe non-visible events (e.g. a car horn

when no car is visible in the video frames). For this reason

we have chosen to focus our approach on learning a strong

visual model in Section 4.

4. Learning Audio-Visual Representations

In order to learn from the large set of spoken captions in

the proposed S-MiT dataset, we adopt a cross-modal archi-

tecture used in prior work [44, 25, 55] which is composed

of a video model and a caption model as depicted in Fig-

ure 3. Specifically, we take N video-caption pairs as input

and encode each modality into a 4096-D feature vector. We

do this by adding a multilayer perceptron (MLP) as a pro-

jection head on top of both the video and the caption model.

This projection head is composed of two linear layers fol-

lowed by gated linear units (GLU) [15]. We then compute

the dot product between the video and caption representa-
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tions to produce an NxN similarity matrix, S , which is

used to compute our contrastive loss for training. In Sec-

tion 4.3, we describe our modified approach to margined

contrastive learning which uses an Adaptive Mean Margin

(AMM) which automatically adjusts itself during learning

to improve the optimization signal during training.

4.1. Video Model

Following prior work [44], we use two encoders to rep-

resent input videos: image & video encoders. Specifically,

we use a ResNet-152 [27] pretrained on ImageNet [34] and

a temporal shift module (TSM) ResNet-50 model [39] pre-

trained on M-MiT [46]. Each encoder outputs a 2048-D fea-

ture vector after max-pooling over the temporal dimension

(8 frames for the TSM (∼3 fps) and 3 frames for the image

model (1 fps)). We concatenate the two 2048-D vectors and

feed the concatenated vector into an MLP projection head

to get the final 4096-D visual representation. We examine

the effect of using the image and video encoders as well as

different pretrained models in the supplementary material.

4.2. Caption Model

4.2.1 Language Caption Model

Prior work in learning joint representations between audio

captions and visual models has shown that utilizing ASR

transcriptions greatly improves results [25]. We build on

this idea and use the predicted words from a pretrained

ASR model (e.g. Google’s public ASR engine) to train our

models. Concretely, we examine the effect of using differ-

ent pretrained language models stacked on top of the ASR

model predictions. We begin by comparing the results of

using Fasttext [5], BART [36] and BERT [17] models to

generate semantic and contextual word representations for

our captions. During training, we randomly select 10 words

from each caption to be included in training. In the case of

the BART and BERT models, this selection happens after

the full transformer model has been applied to avoid altering

the results from the self-attention mechanisms. If less than

10 words occur in a caption then we allow words to be sam-

pled multiple times in the random selection. This training

augmentation allows different words in each caption to be

represented differently at different training iterations. We

examine the effect of this approach in the supplementary

material. In test, we use the full transcription as input into

the language model. We average the word representations

from the output of the language model to generate a single

representation for each caption which we align to the video

representations described in the previous section.

4.2.2 Spoken Caption Model

We also train caption models with raw spoken captions in-

stead of the corresponding transcription. For each caption,

we randomly sample 10 seconds of speech for training and

compute the 40-dimensional log Mel spectrogram to serve

as the input of spoken caption model. The input is fed into a

spoken caption model where we consider ResDavenet [25]

(which is designed specifically for speech) and two Ima-

geNet ResNet [27] models (ResNet-34, ResNet-50). For

the ResNet models, we modify the first convolutional layer

to take the 1-channel input so that spectrogram can be pro-

cessed. In addition, the wav2vec [56] model, which takes

raw waveform as the input, is also involved in our exper-

iments. Spoken captions are first fed into the pre-trained

wav2vec model, which produces 512-D vectors per 210 ms.

We then feed them into a learnable ResStack, taken from

ResDavenet, to learn representations of spoken captions.

4.3. Adaptive Mean Margin

We train our model using the contrastive loss with a simi-

lar setting to MMS (Equation 2). The only difference is that

we replace the margin, M , with an adaptive margin based

on the difference between the similarity of the positive pair

and the set of negative pairs in each batch.

The challenge in using the MMS margin for mini-batch

sampled contrastive learning is that the initial margin and

growth schedule are difficult to tune for a specific dataset

and similarity metric. Additionally, depending on the sam-

pled pairs in a mini-batch, the margin calculated may be too

weak if the positive pair is much more similar than the sam-

pled negative pairs and too strong if it is very similar to the

negative pairs. The approach to monotonically increase the

margin during training is meant to address this as the posi-

tive and negative pairs will share similar alignment early in

training and begin to diverge closer to convergence. How-

ever, variable rates of convergence of different models on

different datasets make this growth rate difficult to tune and

this approach does not account for differences in the nega-

tive samples that appear in different mini-batches. To ad-

dress this, we propose an adaptive margin based on relative

batch-wise similarity scores.

Class labels have been proposed to be used for gener-

ating adaptive margins based on class similarity between

positive and negative pairs [37, 41]. Likewise, prior work

explored a non-class dependant approach for an adaptive

similarity-based margin for human pose estimation [38]

where the mean joint error between a positive pose and a

hard sampled negative pose was used as a margin with the

triplet loss. This adaptively increases the margin when the

sampled negative pair is dissimilar to the positive pair in or-

der to maximize the learning signal on less aligned negative

samples. We follow a similar intuition and simply replace

M in Equation 2 with

Mxy = α
(

S(xi, yi)−
1

B − 1

B
∑

j=1

Ii 6=jS(xi, yj)
)

, (3)
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Language Caption to Video Video to Caption Mean

Caption Model R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

Fasttext [5] 17.1±0.8 44.0±0.6 57.2±0.5 30.2±0.5 24.1±0.5 49.9±0.6 61.8±1.3 36.6±0.3 20.6±0.5 46.9±0.6 59.5±0.8 33.4±0.4

BERT [17] 25.9±0.6 55.5±1.2 67.0±1.1 39.7±0.7 33.3±1.4 62.1±1.0 72.0±0.6 46.5±1.2 29.6±0.8 58.8±1.0 69.5±0.8 43.1±0.8

BART [36] 33.1±0.9 65.5±1.5 76.6±1.3 47.8±1.1 43.8±0.7 71.5±1.2 80.9±1.6 56.4±0.7 38.4±0.4 68.5±1.3 78.7±1.4 52.1±0.8

Table 1: Language Caption Model Comparison on Video/Caption Retrieval: Here we compare the video/caption retrieval results on

the test set of the Spoken Moments dataset using models trained with three different language models.

Dataset Loss
Caption to Video Video to Caption Mean

R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

Vatex [68]

NCE 43.6±1.4 77.4±1.4 86.5±1.4 58.4±1.2 39.4±1.3 74.3±1.0 84.7±0.8 54.7±1.0 41.5±1.2 75.8±1.1 85.6±1.1 56.5±1.0

SHN 19.6±1.4 50.2±1.5 63.9±0.6 33.8±1.1 22.9±1.0 54.0±0.9 68.8±1.2 37.6±0.9 21.3±0.9 52.1±0.8 66.3±0.8 35.7±0.7

MMS 46.2±1.5 79.7±0.8 88.1±0.8 60.7±1.0 42.0±0.7 77.7±0.7 86.8±0.3 57.5±0.6 44.1±1.1 78.7±0.7 87.4±0.5 59.1±0.7

AMM 48.7±1.4 82.0±0.9 89.3±1.1 63.0±1.0 43.0±0.7 77.4±1.1 85.8±0.7 58.3±0.6 45.9±1.0 79.7±0.4 87.5±0.8 60.7±0.6

ActivityNet [32]

NCE 11.8±0.6 35.4±1.0 50.6±0.8 23.8±0.4 16.7±0.8 43.0±1.2 57.1±1.2 29.5±0.8 14.3±0.6 39.2±0.8 53.8±1.0 26.7±0.5

SHN 9.9±0.9 31.2±1.3 45.2±0.9 20.9±0.9 13.7±1.1 38.5±0.9 53.4±0.9 25.9±1.0 11.8±0.9 34.9±0.8 49.3±0.7 23.4±0.9

MMS 12.0±0.7 35.5±1.0 49.2±0.8 23.9±0.6 16.2±0.4 42.4±0.9 56.5±1.6 28.8±0.6 14.1±0.4 39.0±0.2 52.8±1.2 26.4±0.2

AMM 17.2±1.1 46.1±1.4 60.0±0.8 30.6±0.6 20.9±1.1 50.1±1.3 62.4±0.8 34.3±0.6 19.1±1.0 48.1±1.2 61.2±0.6 32.5±0.6

MSR-VTT [70]

NCE 20.7±0.9 51.0±0.7 66.6±1.2 35.0±0.4 30.7±1.4 65.1±0.7 78.2±1.3 46.1±1.2 25.7±1.0 58.1±0.6 72.4±1.2 40.6±0.7

SHN 11.3±0.2 32.0±1.0 44.9±1.4 21.9±0.3 22.1±0.9 54.5±1.6 68.9±1.4 37.0±1.1 16.7±0.5 43.3±0.5 56.9±0.9 29.5±0.5

MMS 17.6±1.1 46.5±0.9 61.6±0.9 31.5±0.6 28.3±1.1 63.1±1.4 76.1±0.9 43.8±1.1 23.0±0.9 54.8±0.6 68.9±0.7 37.6±0.6

AMM 25.7±0.8 61.0±0.8 75.6±0.7 41.6±0.6 32.5±1.5 67.5±1.7 80.1±1.4 48.0±1.2 29.1±0.8 64.2±1.0 77.9±1.0 44.8±0.8

S-MiT

NCE 33.1±0.9 66.9±1.9 77.6±1.2 47.9±0.7 43.0±0.8 71.8±0.9 80.7±1.2 55.8±0.7 38.0±0.5 69.3±1.4 79.1±1.1 51.8±0.6

SHN 23.1±1.3 55.4±1.6 69.3±1.3 37.7±1.1 41.4±1.1 70.8±0.9 79.5±1.0 54.5±0.7 32.3±0.9 63.1±1.1 74.4±1.1 46.1±0.8

MMS 26.5±1.3 58.3±1.4 72.0±0.9 41.1±1.1 43.3±1.3 71.2±1.4 79.9±0.8 55.8±1.2 34.9±1.2 64.8±1.2 76.0±0.8 48.5±1.1

AMM 33.1±0.9 65.5±1.5 76.6±1.3 47.8±1.1 43.8±0.7 71.5±1.2 80.9±1.6 56.4±0.7 38.4±0.4 68.5±1.3 78.7±1.4 52.1±0.8

Table 2: Loss Function Comparison for Video/Caption Retrieval: Models trained on four datasets with different loss functions are

compared. The proposed AMM loss function consistently achieves the best performance.

Spoken
Loss

Caption to Video Video to Caption Mean

Caption Model R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

ResDavenet [25]

NCE 30.7±0.6 57.1±0.6 67.6±1.0 42.9±0.8 29.3±1.0 55.8±1.2 66.2±1.4 41.8±0.9 30.0±0.8 56.4±0.9 66.9±1.2 42.3±0.8

SHN 30.2±1.1 56.9±0.8 66.8±0.5 42.6±1.0 31.0±1.2 57.2±0.8 67.1±0.9 43.2±1.0 30.6±1.1 57.0±0.8 67.0±0.7 42.9±1.0

MMS 32.1±1.1 58.9±1.0 68.6±1.5 44.4±0.8 32.3±1.3 57.9±1.1 68.1±1.5 44.3±1.2 32.2±1.2 58.4±1.0 68.4±1.5 44.3±1.0

AMM 34.8±1.1 62.0±1.1 70.4±1.2 47.0±1.1 34.6±1.5 60.8±1.6 70.0±0.9 46.8±1.2 34.7±1.2 61.4±1.4 70.2±1.1 46.9±1.1

Wav2Vec [56]

NCE 32.6±0.7 60.4±0.8 70.3±1.6 45.3±0.8 30.9±1.0 59.6±0.9 69.8±1.1 43.9±0.8 31.8±0.7 60.0±0.8 70.0±1.3 44.6±0.8

SHN 27.8±1.0 54.2±1.7 64.9±1.8 40.1±1.0 28.4±0.7 53.7±1.6 64.2±1.7 40.4±0.8 28.1±0.8 53.9±1.6 64.6±1.7 40.2±0.9

MMS 33.6±0.6 60.5±1.2 71.4±1.1 46.1±0.7 33.4±1.0 60.5±1.7 70.3±1.1 45.7±0.8 33.5±0.6 60.5±1.4 70.8±1.1 45.9±0.7

AMM 35.0±0.4 61.7±0.9 71.0±0.9 47.1±0.6 34.7±1.5 61.1±0.9 70.2±0.9 46.8±1.2 34.8±0.9 61.4±0.9 70.6±0.8 47.0±0.9

ResNet-34

NCE 32.2±1.3 59.7±1.4 70.3±1.3 44.8±1.1 32.8±1.8 58.8±1.3 69.2±1.9 45.1±1.4 32.5±1.4 59.2±1.3 69.7±1.5 45.0±1.2

SHN 32.7±1.1 60.3±1.3 71.0±1.1 45.5±1.0 33.1±1.0 60.1±1.5 70.1±1.3 45.6±0.9 32.9±1.0 60.2±1.4 70.6±1.2 45.6±0.9

MMS 35.3±1.0 62.5±1.2 72.8±1.8 47.7±0.6 36.7±0.9 62.2±0.8 72.1±1.6 48.6±0.9 36.0±0.7 62.3±1.0 72.5±1.6 48.2±0.7

AMM 36.3±0.5 63.9±1.7 73.7±1.6 48.9±0.8 37.5±1.7 63.5±1.9 73.7±1.6 49.6±1.5 36.9±1.1 63.7±1.7 73.7±1.5 49.2±1.2

ResNet-50

NCE 32.7±0.6 60.8±1.9 70.6±1.6 45.6±0.8 33.1±1.0 59.4±1.5 69.6±1.4 45.5±0.9 32.9±0.5 60.1±1.7 70.1±1.4 45.5±0.8

SHN 33.9±0.6 60.1±1.4 70.9±1.3 45.8±0.7 34.0±1.2 60.6±1.8 70.1±1.4 46.0±1.1 34.0±0.8 60.3±1.5 70.5±1.3 45.9±0.8

MMS 37.2±0.9 65.4±0.6 75.1±1.3 50.0±0.7 37.8±1.3 64.6±1.1 74.2±0.9 50.1±1.1 37.5±1.0 65.0±0.8 74.7±1.1 50.0±0.9

AMM 39.5±1.3 65.7±1.5 75.5±1.3 51.6±1.1 40.1±0.7 66.3±1.1 74.5±1.2 52.0±0.7 39.8±0.9 66.0±1.2 75.0±1.1 51.8±0.8

Table 3: Spoken Caption Model Comparison: Models trained with different spoken caption architectures and different loss functions are

compared for video/caption retrieval on the S-MiT test set. The proposed AMM loss function consistently achieves the highest performance

while ResNet-50 is found to be significantly stronger than the other architectures.

Trained On

Evaluated On

Vatex ActivityNet MSR-VTT S-MiT Mean

R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP R@1 R@5 R@10 mAP

Vatex 45.9 79.7 87.5 60.7 15.6 39.4 51.7 27.1 22.6 49.8 63.2 35.6 13.1 33.0 45.8 23.5 24.3 50.5 62.1 36.7

ActivityNet 25.0 56.0 68.4 39.1 19.1 48.1 61.2 32.5 15.1 37.1 50.4 26.4 9.8 28.7 40.6 19.7 17.3 42.5 55.2 29.4

MSR-VTT 21.0 51.3 64.8 35.1 9.9 28.3 39.7 19.6 29.1 64.2 77.9 44.8 14.6 39.3 53.4 26.9 18.7 45.8 59.0 31.6

S-MiT 42.7 75.4 84.2 57.1 17.6 41.6 53.8 29.2 33.1 64.8 77.4 47.6 38.4 68.5 78.7 52.1 33.0 62.6 73.5 46.5

Table 4: Cross Dataset Evaluation on Video/Caption Retrieval: Here we compare the generalization performance of models trained

on four different datasets for video/caption retrieval. Each model is trained on a single dataset and we average the evaluation on five 1k

video-caption samples from the test set of each other dataset. We additionally show the mean performance accross datasets. The S-MiT

model shows it generalizes very strongly to the other datasets even beating the MSR-VTT model on its own test set.

where α is a dampening parameter to weight the strength

of the margin. When Mxy in Equation 3 is applied to Equa-

tion 2 with α = 1, the margin removes the positive pair sim-

ilarity from the optimization. Ablation studies on different

alpha values can be found in the supplementary material. In

practice we use α = 0.5 in our experiments.

This has the effect of increasing the margin as the dif-

ference between the true pair similarity and the similarity

of the negative pairs increases. As the training progresses,

and the learning approaches convergence, the margin gen-

erally increases with the increased separation between pos-

itive and negative pair-wise similarities. This also removes

the need to tune the margin and growth rate which may

have different optimal values for different similarity met-
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rics, batch sizes and datasets.

We refer to this as an Adaptive Mean Margin (AMM)

for contrastive learning and show in Section 5 the effect of

applying this adaptive margin.

5. Results

5.1. Video/Caption Retrieval

In Tables 1, 2 and 3 we show results of R@k recall scores

(for k = 1, 5, 10) and mean average precision (mAP) on

both caption to video and video to caption retrieval. Results

are averaged over five random sets of 1k video-caption pairs

from the test set. Each model in Tables 1 and 2 uses the

output of a pretrained ASR model, the Google Cloud ASR

engine, as input into a trained language model to generate

a feature representation for each caption. Alternatively, the

spoken caption models align visual representations directly

from the audio signal without pretrained modules.

Table 1 shows the result of using different language mod-

els to generate our caption representations from ASR text

transcriptions. Each of these models was trained using the

proposed AMM loss function described in Section 4.3. We

evaluate the AMM loss in Table 2 where we compare the re-

sults on the NCE, SHN, MMS and AMM loss functions de-

scribed in Sections 2.3.1 and 4.3 on four different datasets

(the proposed Spoken Moments in Time dataset (S-MiT) as

well as Vatex-en [68], MSR-VTT [70] and ActivityNet Cap-

tions1 [32]). The proposed AMM loss function consistently

achieves the best results across each dataset in Table 2 and

the BART language model provides the strongest represen-

tations for the retrieval task in Table 1.

Table 2 shows a comparison of our AMM approach to

other methods for cross-modal contrastive learning. We

use the BART language model [36] to generate representa-

tions of words transcribed from the audio captions via a pre-

trained ASR model. Replacing the monotonically increas-

ing margin used in MMS [29] with an adaptive margin that

scales with the samples in a batch achieves the strongest re-

sults. We observed that as training continues and the margin

in MMS continues to grow the training performance begins

to degrade. This is likely due to the margin becoming too

large for stable training as described in prior work [67].

In Table 3, we show a comparison of different spoken

caption models with different loss functions. The proposed

AMM approach beats the other loss functions consistently.

5.2. Cross Dataset Evaluation

To further examine the strength of our proposed Spoken

Moments in Time (S-MiT) dataset, we compare the gener-

alization performance of models trained on four different

datasets (S-MiT as well as Vatex-en [68], MSR-VTT [70]

and ActivityNet Captions [32]) for video/caption retrieval

1We used the groundtruth timestamps to get corresponding video clips.

(see Table 2 (right) for comparisons of these datasets). We

train each model on a single dataset using the approach de-

scribed in Section 4.3 and evaluate on the test set from each

other dataset. For example, a model trained on Vatex is

evaluated on, in addition to its own, the test sets of Ac-

tivityNet Captions, MSR-VTT and S-MiT. We sample five

sets of 1k video-caption pairs from each test set. This al-

lows us to fairly compare results across test sets of different

sizes (see supplementary material for full test set results).

Each model in this evaluation was trained using the BART

[36] language model and the proposed AMM loss function

which was found to give the best results (see Tables 1, 2).

We evaluate the models using the mean between the video-

to-caption and caption-to-video retrieval tasks. We are not

able to compare the spoken caption models from Table 3

here as the other datasets only include text captions.

In Table 4, we can see that the S-MiT model generalizes

better than the other models in spite of the additional noise

introduced by the ASR model. Additionally, the restriction

to 3-second videos in S-MiT does not hinder it’s ability to

generalize to the much longer videos of the other datasets.

6. Conclusions

In this paper, we have introduced the Spoken Moments in

Time dataset which includes 500k pairs of video clips and

corresponding spoken descriptions. This new dataset rep-

resents the largest video caption dataset available and will

serve as a new benchmark for the community. We com-

pared various benchmark models for learning joint repre-

sentations between captions and videos, and evaluated our

approaches on multiple datasets to highlight the strength

of the models as well as the ability of models trained on

our proposed dataset to generalize to tasks in other datasets.

With these results we are confident that the presented Spo-

ken Moments dataset will have a positive impact on the

fields of video understanding and cross-modal learning.
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