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Figure 1: An example of human-object interaction activity, where a person takes some medicine and interacts with two

objects. Human (circles) and object (triangles) entities have independent lives throughout the video (upper three rows).

Although videos are captured in regular timing (lower rows), the dynamics of human activities and object affordances evolve

sparsely and asynchronously with respect to each other (colored segments). They also affect each other (blue curved arrows).

These characteristics of human-object interactions are the main modeling goals of this work.

Abstract

Human activities can be learned from video. With

effective modeling it is possible to discover not only

the action labels but also the temporal structure

of the activities, such as the progression of the

sub-activities. Automatically recognizing such struc-

ture from raw video signal is a new capability that

promises authentic modeling and successful recognition

of human-object interactions. Toward this goal, we in-

troduce Asynchronous-Sparse Interaction Graph Networks

(ASSIGN), a recurrent graph network that is able to auto-

matically detect the structure of interaction events associ-

ated with entities in a video scene. ASSIGN pioneers learn-

ing of autonomous behavior of video entities including their

dynamic structure and their interaction with the coexisting

neighbors. Entities’ lives in our model are asynchronous to

those of others therefore more flexible in adapting to com-

plex scenarios. Their interactions are sparse in time hence

more faithful to the true underlying nature and more ro-

bust in inference and learning. ASSIGN is tested on human-

object interaction recognition and shows superior perfor-

mance in segmenting and labeling of human sub-activities

and object affordances from raw videos. The native abil-

ity of ASSIGN in discovering temporal structure also elim-

inates the dependence on external segmentation that was

previously mandatory for this task.

1. Introduction

Human activities are strongly connected to the surround-

ing environment and the objects in it. The interactions be-

tween human and object entities observed in videos are a

fundamental clue toward a deep understanding of human

behavior and the surrounding world [8]. This capability is

reflected in the human-object interaction (HOI) recognition

task, in which human sub-activities (such as drinking) and

object affordances (such as drinkable) are segmented and

recognized from a video by analyzing the interactive re-

lations between entities (Fig. 1). These relations naturally

form a spatio-temporal graph where entities (humans or ob-

jects) and their dynamic interactions evolve throughout the

activity. Although entities can be detected and tracked from

video, it is challenging to build a graph model that can au-

tomatically discover the temporal structure of activities and

natively reflect the complex and intricate nature of these in-

teractions.

Currently available approaches applied conditional ran-

dom fields [14, 17, 18] and graph neural networks [6, 30] to

model the spatio-temporal entity interaction graph. These

models assume knowledge of the temporal structure of the

video and are limited to the task of assigning activity and

affordance labels to the segments.

Rather than this cascaded approach, we exploit the fact

that structure and content of events are tightly coupled and

may support each other toward the optimal solution in a
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joint discovery scheme. Such scheme further allows to

break the common assumption that entities in a video are

always active and interact continuously. In reality, unlike

regularly captured video frames, interactions between enti-

ties happen sparsely in time. This suggests that temporal

relations in the interaction graph can be pruned into a more

concise and efficient graph structure. Authentic modeling

of the asynchronous lives of entities allows them to act in-

dependently and only update their state when needed.

In light of that, we introduce Asynchronous-Sparse Inter-

action Graph Networks (ASSIGN), a joint structure-content

discovery framework for sparse and asynchronous human-

object interactions. ASSIGN stands on the principle that

each entity has an independent life in a video, where each

entity behaves and interacts with its coexisting neighbors at

its own pace and timing. The temporal structure and the

labels of events are discovered jointly using a flexible two-

layer dynamic graph network, that can do inference and be

trained end-to-end without dependence on external tempo-

ral segmentation of events.

We demonstrate the segmentation and labeling capabil-

ities of ASSIGN on two major human-object interaction

datasets, where ASSIGN attains superior quantitative per-

formance and more realistic qualitative results when com-

pared to related methods.

In summary, this paper makes three major contributions:

• Constructs the first end-to-end graph model that jointly

learns temporal structure and content label of human-

object interaction activities;

• Effectively models the sparse and asynchronous enti-

ties lives in the context of a social activity; and

• Permits efficient relational inference that can skip un-

necessary operations, which results in increased ro-

bustness to a wide variety of event structures.

2. Related Work

2.1. Human­object interaction in videos

Traditional approaches to HOI modeling in videos sur-

round on variations of Markov Random Fields (MRF). Kop-

pula et al. [17] used an MRF to model entities in videos

with fully connected spatial and temporal edges. It also

starts a trend to use sub-activity segments as temporal

time units. The work of Koppula et al. [17] is extended

into the ATCRF model [18], which anticipates future sub-

activity/affordances and gathers features from frame-level

nodes. ATCRF is further advanced into GP-LCRF [14] to

reduce the dimensionality of the frame-level human repre-

sentation. Another extension of ATCRF is the Recursive

CRF [33], in which the CRF is placed under a Bayesian fil-

tering with an efficient belief computation. With the recent

advancement of spatio-temporal relation modules, MRF-

like models advanced into more efficient implementations

with recurrent neural networks (RNNs) and graph neural

networks (GNNs). Jain et al. [12] proposed to factorize the

dynamic relationships in HOI and model the factors with a

mixture of RNNs. Qi et al. [30] proposed Graph Parsing

Neural Network (GPNN), which allows spatial graph topol-

ogy to be inferred adaptively. Ghosh et al. [6] extended

GNNs with a stacked hourglass network [27] for label pre-

diction. The MRF and GNN families of models are reliable

in predicting HOI labels but they cannot perform temporal

segmentation themselves and need to resort to an external

segmentation method (such as dynamic programming) ei-

ther before or during inference. ASSIGN, on the other hand,

learns the segmentation in tandem with the labeling directly

from frame-level features.

This joint capability is also the goal of several efforts to

constrain HOIs with activity grammars borrowed from nat-

ural language processing, namely Stochastic grammar [28]

and Earley tree parser [29]. These constraints improve the

ability to learn relationships between the entities via an ex-

plicit regulating grammar but at the same time limits their

flexibility in the process. ASSIGN is less regulated than

grammar-based approaches, but is less sensitive to noise and

more scalable to the size of the problem. We view ASSIGN

as a complementary approach that can also be further inte-

grated with grammars.

Shared between all previous works is the assumption that

entities are synchronous and constantly update their states.

This oversimplification is unnatural and a source of practi-

cal issues such as over-segmentation. In this work, we di-

rectly challenge this assumption by modeling the indepen-

dent behavior and sparse interactions between the entities.

2.2. Action segmentation

Action segmentation is another line of work that shares

with us the goal of finding temporal structure of activities

in video. Notable works include semi-Markov model [35],

multi-class SVM on spatial bag-of-words [9], and segmen-

tal RNNs [16]. More recently, CNN methods dominate the

action segmentation literature [20, 21, 22]. Farha and Gall

[5], for instance, proposed a multi-stage CNN (MS-TCN)

with and a truncated MSE loss to handle over-segmentation.

TransParser [34] learns the temporal segmentation without

supervision from sub-action labels with local and global

losses. Unlike this line of work where activities are singu-

larly modeled, we explore the interactions between human

and objects and consider the relations between human sub-

activities and object affordances throughout the video.

2.3. Sparse and asynchronous event modeling

The sparsity and asynchronicity of events have been a

modeling goal of the signal processing community. Neil
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Figure 2: Asynchronous-Sparse Interaction Graph Networks (ASSIGN) architecture contains two layers of spatio-temporal

graph networks. At each layer, graph nodes represent human (circle) or object (triangle) entities. Spatial edges are modeled

with message passing (blue curved arrows), and temporal edges are modeled with recurrent networks (horizontal lines). The

frame level of ASSIGN updates at every time step, for every entity, and decides at each step (upward arrows) whether the

corresponding segment-level entity changes state (solid diamond) or skips an update (hollow diamond)—details in Sec. 3.3.

The sparse change signals lead to asynchronous and sparse updates (solid shapes) and interactions (blue curved arrows) at

the segment level of ASSIGN—details in Sec. 3.4. Segment labels are generated by the second layer at the update operators.

et al. [26] extended the long short-term memory (LSTM)

cell [10] formulation with a “time” gate, which introduces

“open” and “close” cycles, to allow sparsity in the state up-

dates. Similarly, Campos et al. [2] introduced sparsity into

RNN updates by learning binary decisions regularized by a

budget loss to skip redundant state updates. In contrast to

these works, we skip state updates not only to reduce the

computational complexity but also to match the semantics

of the human activities. Furthermore, ASSIGN is more ad-

vanced in fully using the dense input signal for the sparse

activity decisions.

In processing naturally sparse signals, Sekikawa et al.

[32] proposed EventNet for real-time asynchronous event

streams from event-based cameras. EventNet process

events via a two-module architecture timed by the input

events and output predictions. Asynchronous data from

event-based cameras are also handled by an extended ver-

sion [24] of the Submanifold Sparse Convolutions (SSC)

[7], which extend the spatial sparsity modeling of SSC

with localized updates throughout the convolutional maps

by keeping track of a rulebook per layer. The key differ-

ence between this line of work and our formulation is that

we explore sparse information from dense signals instead of

assuming the signal is already sparse.

3. Method

3.1. Problem formulation

We are interested in learning the spatio-temporal struc-

ture of human-object interactions (HOI) in videos. Previous

works consider special cases of a single human [18, 30] or

two human hands interacting with multiple objects [4]. We

approach this problem in a generic way, where we model

an arbitrary number of humans and objects in a video. The

problem is defined on a video of T frames with N entities

(humans and objects) in it. These entities have their fea-

tures extracted by detecting and tracking them throughout

the video. The e-th entity is represented by a temporal se-

quence of frame-level features Xe = {xe
t}t=1...T together

with a class label ce. In human-object interaction, this label

holds the value of either human or object.

A HOI recognition problem is defined to use the in-

put {Xe, ce}e=1...N to generate a temporal segmentation

for each entity. For the e-th entity, the segmentation is of

the form Se =
{

se1, s
e
2, . . . , s

e
ne

}

, where the k-th mem-

ber segment is represented by its start time and end time

(which is the start time of next segment) sek =
[

tek, t
e
k+1

)

.

The output also includes the prediction of segment labels

ye =
{

ye1, . . . , y
e
ne

}

which effectively are sub-activity la-

bels for humans and affordance labels for objects.

For a human entity, a segment label is the name of a sub-

activity, and for an object entity it is the name of an affor-

dance. These labels are interlinked with each other; for ex-

ample, a human sub-activity drinking usually overlaps with

affordance drinkable of a cup. But, they do not need to be

perfectly aligned. An object can remain in the same state

during all human activities not involving it. Modeling these

sparse and asynchronous relations is the goal of this work.

3.2. Asynchronous­Sparse Interaction Graph Net­
work

We aim at learning the temporal segmentation and label

of sparse events associated with asynchronous entities in a

video. To this end, we design a two-layer asynchronous re-

current graph network named Asynchronous-Sparse Inter-

action Graph Network (ASSIGN). ASSIGN is specialized
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Figure 3: Frame-level node (only detailed for human node

e1) with BiRNN unit (rectangle) and segment boundary de-

tector (diamond shape). The detector considers the current

recurrent state and messages from neighboring nodes (blue

curved arrows) weighted by an attention mechanism (thick-

ness of arrows). It then makes a decision ue
t , for each entity,

on whether frame t is the final frame of a segment or not. If

it is a positive signal (ue
t = 1), the summarized context h1

t,f

is sent up to the segment-level node to predict the label of

the finished segment and start a new one.

in modeling each entity in a video with two spatio-temporal

graphs, one at frame level and one at segment level (Fig. 2).

The frame-level graph nodes process video frames and up-

date their states at every time step, whereas the segment-

level graph nodes update sparsely—only when signaled by

the frame-level partner to do so. Each entity decides its own

pace asynchronously with consideration to its neighbors.

3.3. Segmenting the entity life

The primary task for ASSIGN is to learn the temporal

segmentation of every entity in a video. This translates into

making a binary decision at each time step of whether the

current segment ends and a new segment starts or not. The

segment change of a sub-activity, or affordance, depends on

the internal state of the entity in question and its relation

with its neighbors. For example, a human that gets close to

a cup makes it a drinkable object. This insight is realized

into the design of the frame-level layer of ASSIGN (Fig. 3).

The frame-level layer of ASSIGN takes as input

{Xe, ce}e=1...N and builds a spatio-temporal graph. Spatial

edges represent interactions between entities, and temporal

edges connect instances of the same entity throughout time

and represent the internal progression of such an entity. We

implement temporal edges as Bidirectional RNNs (BiRNN)

and generate the hidden state of the e-th entity at the t-th

frame by

he
t,f = BiRNNf

(

xe
t ,
−→
h e

t−1,f ,
←−
h e

t+1,f

)

, (1)

where
−→
h e

t−1,f and
←−
h e

t+1,f are forward and backward RNN

states, and he
t,f is the concatenated output of the two RNNs:

he
t,f =

[−→
h e

t,f ,
←−
h e

t,f

]

.

The spatial edges connect different entities at the same

time step and reflect the dynamic relations of neighbor-

ing entities. It is implemented by pair-wise messaging be-

tween entities, and we distinguish between two types of

spatial messages: (1) intra-class messages from entities of

the same class and (2) inter-class messages from entities of

different classes. This distinction is important because the

nature of the relations are different. The collaboration be-

tween two human entities, for example, must be modeled

differently than the effect of an object on a human.

The frame-level inter-class message to entity e at time t

is calculated by:

minter→ e
t,f = Att

([

xe
t , h

e
t,f

]

,
{[

xk
t , h

k
t,f

]}

ck 6=ce

)

. (2)

Here, Att is the attention operator that calculates a

weighted average of the contributions from the neighbor-

ing entities. In ASSIGN, it is implemented by a variant

of scaled dot-product attention [36] with identical keys and

values

Att (q, {vi}i=1...n) =

n
∑

i=1

softmax

(

qT vi√
d

)

vi, (3)

where q is a query vector, {vi} is a set of keys/values vectors

of size n and, and d is the feature dimension.

Effectively, this operation combines the hidden states

h∗
t,f and inputs x∗

t of the entities and use them as both

keys/values and queries in weighing the relevance of the in-

teracted neighboring nodes (blue arrows in Fig. 3).

Similarly, the intra-class message is calculated on the set

of entities from the same class:

mintra→ e
t,f = Att

([

xe
t , h

e
t,f

]

,
{[

xk
t , h

k
t,f

]}

k 6=e,ck=ce

)

.

(4)

These spatial edges resemble a graph attention network

[37], except that they dynamically evolve through time.

Finally, we gather the current temporal recurrent state

together with the spatial relation messages to make the seg-

menting decision. This is done by the segment boundary

detector (diamond shape in Fig. 3). It contains an MLP

γ and a differentiable discrete valued estimator using the

Gumbel-Softmax (GSM) operator [13, 23]:

ue
t = GSM

{

γ
([

xe
t , h

e
t,f ,m

intra
t,f ,minter

t,f

])}

. (5)

The binary output ue
t = 1 indicates that t is the last frame

of the current segment for the e-th entity and ue
t = 0 oth-

erwise. This segmenting signal controls the behavior of the

segment-level nodes, which we describe next.
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3.4. Labeling the learned segments

The segment layer of ASSIGN manages the spatio-

temporal dynamics of the segments whose boundaries are

provided by the frame layer via the segmenting signal ue
t

and frame-level state he
t,f . This layer is also modeled as a

spatio-temporal graph with BiRNN for temporal edges and

attentional message passing for spatial connections, simi-

larly to the frame layer.

The key specialty of this graph layer is that its opera-

tions are not dense and regular as in the frame layer. Each

entity can either update or copy its state, depending on the

provided signal ue
t . This adaptive operation constitutes the

asynchronous and sparse behavior of ASSIGN.

At each time step t, if ue
t = 1, the node gathers informa-

tion from the context and update its state using its recurrent

operator (blue arrows in the upper half of Fig. 2). This in-

cludes the segment-level inter-class message

minter→e
t,s = Att

(

he
t−1,s,

{

hk
t−1,s

}

ck 6=ce

)

, (6)

and intra-class message

mintra→e
t,s = Att

(

he
t−1,s,

{

hk
t−1,s

}

k 6=e,ck=ce

)

, (7)

where Att is defined in Eq. 3, and these messages are cal-

culated similarly to frame-level counterparts in Eqs. 2 and

4. The main distinction is that they are calculated sparsely,

only when needed.

We combine these segment-level messages with the

frame-level state he
t,f and messages minter→e

t,f and mintra→e
t,f ,

previously calculated by the frame layer, to form the

segment-level feature zet :

zet =
[

he
t,f ,m

inter→e
t,f ,mintra→e

t,f ,minter→e
t,s ,mintra→e

t,s

]

. (8)

This input is fed to the segment-level BiRNN units

(BiRNNs) to update their states:

he
t,s = BiRNNs

(

zet ,
−→
h e

t−1,s,
←−
h e

t+1,s

)

. (9)

The updated state is then used to recognize the label of the

finished segment

ŷet = Softmax
(

σ(he
t,s)

)

, (10)

where σ is an MLP and the Softmax is calculated over the

appropriate label set, either human sub-activities or object

affordances.

In the other case where ue
t = 0 , the node skips a BiRNN

update and maintain its current state. This contextualized

skipping not only creates sparsity in the state updates but

also in the interactions. The inward messages are skipped

while the outward messages to other updating neighbors can

still happen.

This is a better reflection of the world where at-rest en-

tities (e.g. objects far from humans) can avoid unnecessary

state updates and over-segment predictions. It also prevents

the short-term memory of the RNNs from fading quickly.

Furthermore, operating at the segment-level separates se-

mantic progress (activity) from raw signals (frames), thus

it is more robust to varied video sampling rates. The so-

phisticated architecture of ASSIGN requires a customized

training procedure, which we describe in the next section.

3.5. Model training

ASSIGN is effectively a multi-task learning framework

where segmentation and labeling tasks are trained together

in an end-to-end fashion. It is therefore trained by an en-

semble of two losses for the two tasks.

For segmentation, we minimize the binary cross-entropy

between a smoothed version of the ground-truth segmenta-

tion and the soft output of the boundary detector in Eq. 5

LSeg =
1

T

T
∑

t=1

[

1

N

N
∑

e=1

BCE
(

ˆ̃ue
t , ũ

e
t

)

]

, (11)

where ˆ̃ue
t is the real value of ue

t before binary thresholding,

and ũe
t is the smoothed version (with Gaussian filter of σ =

4) of the binary pulse ground-truth segmentation.

For labeling, we minimize the negative log-likelihood of

the predicted sub-activities and affordance labels:

LLabel =
1

T

T
∑

t=1

[

1

N

N
∑

n=1

NLL (ŷnt , y
n
t )

]

. (12)

Even though the label is predicted per segment, this loss is

calculated per frame so that long segments contribute more

than short ones. The overall loss is the weighted sum of the

two losses

L = LLabel + λLSeg, (13)

where λ is a tunable parameter.

While the sparsity of ASSIGN’s operations provide a

strong advantage in authentic modeling, it creates a subtle

obstacle in training where informative gradients from the

labeling loss in the segment layer rarely reaches the frame

layer. To overcome this issue, we use a two-stage training

procedure. In stage 1, we switch offLSeg and set ue
t := 1 ev-

erywhere so that the frame layer receives a constant stream

of directive signals. In stage 2, we turn on the full model

and continue to train on top of parameters learned in stage

1. We observed in our experiments that this two-stage train-

ing leads to faster convergence and improved final results.

3.6. Implementation details

For entity features, we use 2048-dimensional ROI pool-

ing features extracted from the 2D bounding boxes of hu-

mans and objects in the video detected by a Faster R-CNN
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[31] module pre-trained [1] on the Visual Genome dataset

[19]. We optimize model parameters using the ADAM op-

timizer [15], with a learning rate of 10−3. All recurrent

networks are built with Gated Recurrent Units (GRU) [3].

The videos are resampled to a uniform 10 FPS frame rate

before feeding to the frame-level network. For model selec-

tion, we use 10% of the training data as validation data and

select the model with the lowest validation loss.

4. Experiments

4.1. Datasets

We evaluate ASSIGN on the CAD-120 [17] and on the

Bimanual Actions [4] datasets. CAD-120 is the most pop-

ular dataset for HOI recognition. It contains 120 RGB-D

videos of 4 subjects executing 10 different activities, each

activity repeated 3 times. Each video depicts a single person

interacting with 1–5 objects. In total, there are 10 human

sub-activities and 12 object affordances, and each entity is

annotated frame-wise.

We also experiment on the Bimanual Actions, the first

HOI dataset of activities featuring a subject using both

hands to interact with objects (e.g. left hand holds a nail

while right hand hits the nail). It has 540 RGB-D videos of

6 subjects conducting 9 different tasks, each task repeated

10 times. The actions of each hand are annotated frame-

wise as one of 14 possible actions. For both datasets, we

only use the RGB channels to extract frame features.

4.2. Experimental settings

We evaluate ASSIGN on two tasks: joint segmentation

and label recognition, and label recognition with known

segmentation. The first task requires models to segment the

time line for each entity in a video and label those segments.

The second task is a special case of the first one where the

ground-truth segmentation is known and models only need

to label the provided segments.

To evaluate how well ASSIGN generalizes to unseen

subjects, we do leave-one-subject out cross-validation on

both datasets. Previous works focused on recognition of

labels and usually report frame-level F1 scores. These

metrics, however, are not optimal for tasks involving seg-

mentation because a method might heavily over- or under-

segment a video and still attain reasonable frame-level

scores. To amend that, we use the F1@k metric [20] for the

commonly used values of k = 0.10, 0.25, and 0.50. The

F1@k metric considers a predicted segment correct if its

IoU with the ground-truth segment is at least k. Wrong pre-

dictions and missed ground-truth segments count as false

positives and false negatives, respectively. The F1@k is

a superior choice over frame-based metrics for joint seg-

mentation and labeling problems and is widely used in pre-

vious segmentation works [5, 20, 25]. Note that for the

label recognition with known segmentation task, F1@k is

constant for any k and reduces to segment-level micro and

macro F1 scores. We report these metrics, in line with other

reported results in the literature.

4.3. Quantitative results

4.3.1 Joint segmentation and label recognition

In this main experiment, we compare the performance

of ASSIGN with related state-of-the-art methods and two

BiRNN-based baselines on the joint segmentation and label

recognition task on the CAD-120 dataset. For this task, the

input must be raw video features, with no trace of prepro-

duced segmentation.

Two previous works fully qualify for this task: ATCRF

[18] and rCRF [33]. Other major related works used the

preproduced segmentation information in either explicit or

implicit ways. Stochastic grammar [28] used the statistics

of segmentation from test portion in training. Earley tree

parser [29] repeats the preproduced segment-level features

as frame-level features hence implicitly acknowledging the

true segment boundaries. More concrete details about these

uses are included in the Supplementary material.

The baselines are two variations of BiRNN GRU: The

Independent BiRNN models each entity independently (i.e.

no spatial messages), and the Relational BiRNN adds dense

spatial interactions between entities. Further details are in

the Supplementary material.

We show the F1@k results in Table 1 and the frame-

level F1 in the Supplementary material. ASSIGN outper-

forms both the state-of-the-art methods and baselines in ev-

ery configuration of the F1@k measure for both human sub-

activities and object affordances.

These results showcase the advantages of jointly seg-

menting and labeling. Other methods employ separate seg-

mentation and labeling steps, and generate their final result

by voting on many different segmentation options. This

strategy has a weakness of increasing the over-segmentation

when voters disagree and inability to correct if they make

the same mistakes.

The BiRNN baselines make frame-wise predictions and

lack relational modeling, thus they do not fully leverage the

human-object interactions. Despite being simpler, the Inde-

pendent BiRNN is superior to the Relational BiRNN with

respect to object affordances. This can be explained by the

infrequent changes of object affordances that were mistaken

by the presence of dense messages from the human nodes in

the Relational BiRNN. In contrast, ASSIGN allows sparse

messaging and effectively overcomes these problems.

4.3.2 Label recognition only

To examine the sole capability of predicting labels, and to

match with the task done by more previous works, we set
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Table 1: Joint segmentation and label recognition task with no pre-segmentation. Performance on the CAD-120 dataset.

Model
Sub-activity Object Affordance

F1@0.10 F1@0.25 F1@0.50 F1@0.10 F1@0.25 F1@0.50

rCRF [33] 65.6 ± 3.2 61.5 ± 4.1 47.1 ± 4.3 72.1 ± 2.5 69.1 ± 3.3 57.0 ± 3.5

Ind. BiRNN 70.2 ± 5.5 64.1 ± 5.3 48.9 ± 6.8 84.6 ± 2.1 81.5 ± 2.7 71.4 ± 4.9

ATCRF [18] 72.0 ± 2.8 68.9 ± 3.6 53.5 ± 4.3 79.9 ± 3.1 77.0 ± 4.1 63.3 ± 4.9

Rel. BiRNN 79.2 ± 2.5 75.2 ± 3.5 62.5 ± 5.5 82.3 ± 2.3 78.5 ± 2.7 68.9 ± 4.9

ASSIGN 88.0 ± 1.8 84.8 ± 3.0 73.8 ± 5.8 92.0 ± 1.1 90.2 ± 1.8 82.4 ± 3.5

Table 2: Label recognition only task with ground-truth seg-

mentation. Performance on the CAD-120 dataset. Unre-

ported results are marked as “-”. An “*” means we repro-

duced results to match our leave-one-subject out protocol.

Model
Sub-activity F1 (%) Object Aff. F1 (%)

Micro Macro Micro Macro

GPNN* [30] 76.6 72.7 74.6 54.1

S-RNN [12] 82.4 - 91.1 -

KGS [17] 86.0 80.4 91.8 81.5

Lat. Linear-CRF [11] 87.0 86.0 - -

ATCRF [18] 89.3 86.4 93.9 85.7

STGCN [6] - 87.2 - -

ASSIGN 89.9 87.8 95.9 91.9

Table 3: Joint segmentation and label recognition task with

multiple human entities. Performance on Bimanual Actions

dataset.

Model
Sub-activity

F1@0.10 F1@0.25 F1@0.50

Dreher et al. [4] 40.6 ± 7.2 34.8 ± 7.1 22.2 ± 5.7

Ind. BiRNN 74.8 ± 7.0 72.0 ± 7.0 61.8 ± 7.3

Rel. BiRNN 77.7 ± 3.9 75.0 ± 4.2 64.8 ± 5.3

ASSIGN 84.0 ± 2.0 81.2 ± 2.0 68.5 ± 3.3

up a simpler experiment where the true segmentation is pro-

vided to all methods. This skips the segmentation function-

ality of ASSIGN and put it in fair comparison with all pre-

vious works in their common experimental protocol.

Table 2 shows the micro and macro F1 accuracy on

CAD-120 dataset. For both metrics and for both sub-

activity and object affordance, ASSIGN outperforms all

other methods. This further demonstrates that our model-

ing of entities with asynchronous and sparse interactions is

a more correct way to label the segments, agnostic to the

segmentation quality.

4.3.3 Multiple human entities

The generic formulation of ASSIGN allows it to be eas-

ily applied to a wide range of scenarios. Thus, we trial

ASSIGN in the case where multiple humans jointly do a

task. This experiment is done on the Bimanual Actions

dataset, which contains activities where a person’s hands

interact with many objects (we treat the hands as the multi-

ple humans). We compare ASSIGN to the BiRNN baselines

(Sec. 4.3.1) and the method of Dreher et al. [4], which is the

only previous work proposed for this multi-human setting.

Table 3 compares the performance of these methods on

the joint segmentation and labeling task. Dreher et al. [4]

has the weakest performance, and this can be attributed to

their over-simplistic graph network, which ignores the in-

teractions between the hands and does not take long-term

temporal context into account. The BiRNN baselines im-

prove over Dreher et al. [4] by considering longer temporal

context but fall short in reaching high accuracy for not mod-

eling human-human interactions. ASSIGN makes major

improvements over these methods by incorporating cross-

hand spatial interaction and asynchronous long-term tem-

poral context. Our higher performance is also attributed to

the segment-level label decisions in contrast to frame-based

decisions of the baselines.

Through the quantitative experiments, it is clear that joint

structure-content exploration with consideration to the tem-

poral life of entities are key features of ASSIGN that makes

it excel in recognition performance. Next, we examine qual-

itative results and internal operations of ASSIGN.

4.4. Qualitative analysis

We compare the outputs of ASSIGN and related meth-

ods on examples from CAD-120 and Bimanual Actions

datasets. Figure 4 shows an example in CAD-120 where

ATCRF over-segments human sub-activities. Also, because

segments are synchronized between entities, these errors

spread to objects and hurt the accuracy on affordance recog-

nition. ASSIGN, on the other hand, successfully overcomes

the over-segmentation and the error propagation by support-

ing sparse and asynchronous processing.

Figure 5 shows an example of a cooking task on the

Bimanual dataset. Dreher et al. [4] take limited tempo-

ral context into account and creates many short segments.

Relational BiRNN improves on short segments but fails to

handle long ones (e.g. long stir action of the right hand).

ASSIGN, with more advanced modeling, is well equipped

to reliably handle both short- and long-term interactions.
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Figure 4: Segmentation and labeling results for the

ASSIGN and ATCRF methods compared to ground-truth on

the CAD-120 dataset for a taking medicine activity. In this

example, ATCRF over-segments the long opening ( ) sub-

activity for the human. Because objects are synchronized

with human in ATCRF, these over-segmentations creates a

domino effect that leads to the incoherent structure of the

Bottle timeline. In contrast, ASSIGN allows asynchronous

state changes of human and objects and avoids this type of

mistake. Legend: Sub-activities - reaching, opening,

moving, eating, drinking, placing, and null;

Affordances - reachable, openable, stationary,

movable, drinkable, and placeable.

Figure 5: Segmentation and labeling results on the Biman-

ual dataset for a cooking task. In this example, Dreher

et al. [4] create many spurious short segments due to their

model’s limited temporal context. The Relational BiRNN

baseline improves on short sub-activities but fails to han-

dle longer events such as the long stir ( ) action because

the recurrent memory forgets quickly. On the other hand,

ASSIGN handles long actions well by appropriately skip-

ping redundant updates. Legend: idle, approach,

lift, stir, hold, retreat, pour, and place.

In Figure 6, we analyze the attention scores of the objects

in relation to the human at both levels of ASSIGN. At the

frame level the human pays sharper attention to a specific

object in order to make a clean decision on transitioning

between sub-activities. At the segment level the attention is

more uniform, which is reasonable given the sparsity of the

updates. At each sparse deciding point, the human needs to

consider multiple neighboring objects to recognize the label

of its sub-activity.

4.5. Ablation study

To understand the role of individual components of

ASSIGN, we ablate several key modules and evaluate these

variants on the CAD-120 dataset (Table 4). First, the spatial

message passing has a crucial role in modeling the entity

Table 4: Ablation study on the CAD-120 dataset.

Model
Sub-activity Object Affordance

F1@0.10 F1@0.50 F1@0.10 F1@0.50

1 w/o msg passing 74.5 55.0 89.0 74.4

2 w/o seg. loss 84.3 69.9 89.2 78.6

3 w/ dense update 85.5 70.3 90.6 79.8

4 w/o pre-training 87.6 71.6 91.1 78.9

5 full ASSIGN model 88.0 73.8 92.0 82.4

Figure 6: Attention scores of messages from objects to hu-

man at both layers. Sharp and strong attention on relevant

objects are used in frame level to gather key information.

More uniform attention is found in the segment level where

overall consideration is made.

interactions (row 1). Second, we join labeling and segment-

ing tasks by adding the segmentation loss, which is also es-

sential for good joint results (row 2). On top of this joint

training scheme, ASSIGN is special by using asynchronous

and sparse interaction constraints. This innovation signif-

icantly improves robustness to a wide variety of activity

structures (row 3 vs. row 5). Finally, the strategy of pre-

training ASSIGN with the dense model (see Sec. 3.5) bene-

fits the learning process and supports the model to reach the

highest performance (row 4 vs. row 5).

5. Conclusions

We designed ASSIGN, a two-layer graph network that

explores the activity structure concurrently with predicting

its content. ASSIGN models human-object interaction more

correctly than previous methods by allowing the participat-

ing entities to have asynchronous lives. The interactions in

ASSIGN are sparse, hence more robust to varied segment

lengths and activity progression.

These advantages resulted in higher performance in mul-

tiple datasets. Moreover, this performance is consistently

strong over larger variations of scenarios than any other

method. Deep analysis into ASSIGN’s operation shows

that the strong performance comes from the new ability to

deal with over- or under-segmentation mistakes that previ-

ous models suffered from. The generic capability of distill-

ing structure from time series showcases that ASSIGN can

be readily applicable to other domains and applications.
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