
Robust Audio-Visual Instance Discrimination

Pedro Morgado*

UC San Diego

Ishan Misra

Facebook AI Research

Nuno Vasconcelos

UC San Diego

Abstract

We present a self-supervised learning method to learn

audio and video representations. Prior work uses the nat-

ural correspondence between audio and video to define a

standard cross-modal instance discrimination task, where

a model is trained to match representations from the two

modalities. However, the standard approach introduces

two sources of training noise. First, audio-visual corre-

spondences often produce faulty positives since the audio

and video signals can be uninformative of each other. To

limit the detrimental impact of faulty positives, we optimize

a weighted contrastive learning loss, which down-weighs

their contribution to the overall loss. Second, since self-

supervised contrastive learning relies on random sampling

of negative instances, instances that are semantically similar

to the base instance can be used as faulty negatives. To alle-

viate the impact of faulty negatives, we propose to optimize

an instance discrimination loss with a soft target distribution

that estimates relationships between instances. We validate

our contributions through extensive experiments on action

recognition tasks and show that they address the problems of

audio-visual instance discrimination and improve transfer

learning performance.

1. Introduction

Self-supervised representation learning aims to learn

feature representations that can transfer to downstream

tasks without costly human annotations. Many recent self-

supervised methods [11, 36, 51, 14, 78, 74] use a variant

of the instance discrimination framework [81, 22], which

matches features from multiple views/augmentations of the

same instance, while distinguishing these features from those

of other instances. This often relies on a contrastive loss [31],

where different augmentations are considered ‘positives’ and

other samples ‘negatives.’

Cross-modal instance discrimination (xID) extends in-

stance discrimination to the realm of multiple modalities,

where data modalities, such as video, audio, or text, act as the

*Contacting author.
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Figure 1: Example of a positive audio/video pair and negative instances

used for contrastive learning. Audio-visual signals may not semantically

correspond to each other, such as the pairing weightlifting video/background

music shown in green, which leads to faulty positives. Due to random

sampling, semantically similar instances can also appear as faulty negatives,

e.g. a second weightlifting video in yellow. Faulty positive and negative

samples are a common occurrence in audio-visual contrastive learning and

hurt representation learning.

different ‘views’ of an instance. Since there is a strong corre-

lation between audio and visual events (e.g., the sound of an

instrument or a baseball match), audio-visual instance dis-

crimination has gained popularity [5, 58, 41, 56, 64, 3, 61, 2].

Representations learned by these methods show promising

performance on tasks like action recognition and environ-

mental sound classification. xID methods rely on two key

assumptions - (1) the audio and video of a sample are in-

formative of each other, i.e., positives; (2) the audio and

video of all other samples are not related, i.e., negatives. In

practice, both these assumptions are too strong and do not

hold for a significant amount of real-world data. This results

in faulty positive samples that are not related to each other

and faulty negative samples that are semantically related.

Figure 1 shows examples of these faulty correspondences.

Videos where the audio is uninformative of the visual con-

tent can lead to faulty positives, e.g., videos containing audio

from sources outside of the camera field-of-view or contain-

ing post-edited sounds like a soundtrack. Similarly, random

negative sampling can produce faulty negatives, i.e., neg-

ative samples that are semantically related to the positive.

These faulty correspondences undermine the primary goal of

representation learning, i.e., to ensure that similar instances

have similar feature representations. As we show empiri-

cally in Figure 7 and Table 1, they can hurt representation

learning and degrade downstream performance. Thus, we

believe cross-modal learning should be seen as a problem
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Figure 2: Comparison between standard cross-modal instance discrimination (xID) and the proposed procedure. In xID, samples contribute equally to the

loss, and all instances other than themselves are treated as negatives. The proposed method addresses the two main sources of noisy training signals: faulty

positives and faulty negatives. Faulty positives are discounted by down-weighting instances with poor audio-visual correspondence. Faulty negatives are

addressed by optimizing the loss over a soft target distribution that encodes instance similarity.

of learning with noisy targets. This raises the question of

how to identify faulty positive and negative samples in the

absence of human annotations.

We propose to use cross-modal information during self-

supervised training to detect both faulty positive and negative

instances. This is done by estimating the quality of the audio-

visual correspondence of each instance and optimizing a

weighted contrastive learning loss that down-weighs the

contribution of faulty positive examples. To address faulty

negatives, we estimate the similarity across instances to

compute a soft target distribution over instances. The model

is then tasked to match this distribution. As a result, instances

with enough evidence of similarity are no longer used as

negatives and may even be used as positives.

The contributions of this work are as follows (Figure 2).

We identify two sources of training noise in cross-modal

learning: instances with weak cross-modal correspondence,

which create faulty positives, and the sampling of semanti-

cally similar instances as negatives, which create faulty nega-

tives. We show that removing faulty positives and negatives

using an oracle can significantly improve the performance

of a state-of-the-art xID method [56]. We then propose a

mechanism to replace the oracle and a robust cross-modal

instance discrimination loss that limits the impact of faulty

correspondences. The effectiveness of the proposed method

is demonstrated on several downstream tasks.

2. Related work

Self-supervised representation learning aims to learn rep-

resentations by solving pretext tasks defined from the data

alone, i.e. without human annotations. In computer vi-

sion, pretext tasks involve reasoning about spatial con-

text [57, 21, 39, 60, 30, 34, 65], temporal context [52, 45,

80, 39, 53, 33, 23, 77, 9, 34, 35, 65], other visual properties

such as hue, brightness and flow [20, 43, 86, 44, 87, 74, 64],

or clusters of features [10, 7, 11, 78]. One promising tech-

nique is the instance discrimination task proposed in [81, 22]

and further explored in [36, 51, 14, 78, 82]. However, con-

trastive learning from a single modality requires heavy data

augmentations to generate distinct views. Instead, we focus

on cross-modal instance discrimination, which avoids this

issue by generating views from different modalities.

Representation learning from audio-visual correspon-

dences: Since, in video, the audio is naturally paired and

synced with the visual component, audio-visual correspon-

dences have been used to draw direct supervision for sev-

eral tasks, such as visually guided-source separation and

localization [26, 28, 91, 90, 25, 68], visually guided au-

dio spatialization [55, 27], audio-visual embodied naviga-

tion [13], lip-speech synchronization [18] and audio-visual

speech recognition [1, 17].

In the context of contrastive learning, audio-visual cor-

respondences are used to generate alternative views of an

instance. While this has been known for a long time [19],

self-supervised audio-visual representation learning gained

popularity in recent years. For example, [5, 4] propose to

learn representations by solving a binary classification prob-

lem that identifies audio and video clips belonging to the

same instance. [41, 58] predict if audio and video clips

are temporally synchronized, and [54] predicts if audio and

video clips extracted from a 360 video are spatially aligned.

[56, 61] improve upon the audio-visual correspondence prob-

lem [5] by posing it as a cross-modal instance discrimination

task, where instances are contrasted to a large number of neg-

atives. As a result, [56, 61] achieve impressive performance

on downstream tasks such as action recognition.

In this work, we address two issues inherent to cross-

modal instance discrimination, namely the detrimental im-

pact of faulty positives and negatives. Recently, [3, 8] pro-

posed to learn representations by iteratively clustering the

audio and visual representations and seeking to predict clus-

ter assignments from the opposite modality. While clustering

can also discourage faulty negatives from acting as repelling

forces, our method accomplishes this by optimizing a simple

instance discrimination loss with soft targets, thus avoiding

the significant computational overhead of clustering.
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Supervised learning from noisy labels. Our work is

closely related to supervised learning from noisy labels [66,

88, 62, 32, 47]. Since label collection is expensive and time-

consuming, scaling human annotation to large datasets often

requires the use of non-experts or non-curated labels such

as user tags, which are prone to noise. Since deep neural

networks can easily overfit to noisy labels [84], this results

in poor generalization. Several techniques have been de-

veloped to increase the robustness of learning algorithms

to label noise, including losses that reduce the impact of

outliers [29, 88, 79], loss correction approaches that model

the sources of label noise [62, 37, 12, 66, 6, 49, 70], meta-

learning procedures that learn how to correct the sources

of label noise [47, 67, 46, 69, 89] and regularization pro-

cedures tailored to lower the impact of noise [85, 63]. We

refer the reader to [71, 24] for a detailed survey of prior

work on learning with label noise. In this work, we show

that cross-modal instance discrimination should be seen as a

problem of learning with noisy targets. However, instead of

the class mislabeling, we identify two main sources of noise

for cross-modal instance discrimination (faulty positives and

faulty negatives) and propose an algorithm to mitigate them.

3. Analysis: Instance Discrimination

We analyze the cross-modal instance discrimination

method [56, 74, 61] and show that faulty positives and neg-

atives have a disproportionately large contribution to the

training updates. Additionally, in Table 1, we document the

detrimental empirical effects of faulty samples.

Cross-Modal Instance Discrimination Consider a dataset

D = {(vi, ai)
N
i=1

} containing N samples (or instances) of

video vi and audio ai. Cross-modal instance discrimination

uses a contrastive loss [31] to learn video and audio encoders,

fv(·) and fa(·), so as to align the two modalities belonging

to the same instance [74, 56, 61] by minimizing

LxID(vi,ai) =− logP (āi|vi; τ)− logP (v̄i|ai; τ) (1)

where P (t̄i|si; τ) =
exp(sTi t̄i/τ)

∑

k exp(s
T
i t̄k/τ)

, (2)

where vi = fv(vi) and ai = fa(ai) are visual and audio

features normalized to the unit sphere, v̄i and āi are tar-

get representations, and τ is a temperature hyper-parameter.

Prior works differ by the type of target representations em-

ployed. For example, v̄i and āi can be entries of a memory

bank as in [56, 81], the network representations themselves

v̄i = fv(vi) and āi = fa(ai) as in SimCLR [14], the outputs

of momentum encoders as in MoCo [36], or the centroids of

an online clustering procedure as in SwAV or CLD [11, 78].

In this work, we build on the Audio-Visual Instance Dis-

crimination (AVID) method of [56], focusing on target rep-

resentations sampled from a memory bank. However, the

principles introduced below can also be applied to SimCLR,

MoCo or SwAV style targets.

Faulty positives and negatives in practice. The contrastive

loss of Equation 1 is minimized when audio and visual rep-

resentations from the same instance are aligned (dot-product

similarities v
T
i āi and a

T
i v̄i as close to 1 as possible), and

representations from different instances are far apart. In prac-

tice, however, the two modalities are not informative of each

other for a significant number of instances (see Figure 1). We

refer to these unclear correspondences as faulty positives.1

On the other hand, a significant number of contrastive learn-

ing negatives are semantically similar to the base instance.

We term these semantically similar negatives as faulty nega-

tives since they should ideally be used as positives.

Figure 3 shows the histogram of similarities v̄T
i āi after

training an audio-visual model with the loss of Equation 1.

As can be seen, instances with higher scores tend to have

stronger correspondences (i.e. the audio and video signals

are informative of each other). Instances where the two

modalities are uninformative of each other tend to have lower

scores and are generally faulty positives. On the other hand,

Figure 4 shows the histograms of similarities between a

video i and negatives j. As can be seen, faulty negatives

tend to occur for negatives j with high similarity v̄
T
i āj .

How do faulty positives and negatives affect learning?
Faulty positives and negatives have a disproportionately
large contribution to the training updates. To see this, exam-
ine the gradients that are computed when optimizing Equa-
tion 1. The partial derivatives are given as

−
∂LxID
∂vi

=
āi

τ
(1− P (āi|vi))

︸ ︷︷ ︸

Attraction force

−
∑

n 6=i

ān

τ
P (ān|vi)

︸ ︷︷ ︸

Repulsion force

(3)

−
∂LxID
∂ai

=
v̄i

τ
(1− P (v̄i|ai))

︸ ︷︷ ︸

Attraction force

−
∑

n 6=i

v̄n

τ
P (v̄n|ai)

︸ ︷︷ ︸

Repulsion force

. (4)

Intuitively, the target representations v̄i and āi of the in-

stance itself act as ‘attraction points’ for the encoder of the

opposing modality, while the target representations of other

(negative) instances, v̄n and ān, act as ‘repelling points’.

For example, in Equation 3, the negative gradient pushes

vi toward āi and away from ān, n 6= i. The attraction

forces are weighed by the complement of the prediction con-

fidence, i.e., 1− P (v̄i|ai) or 1− P (āi|vi). When positive

samples are faulty, these gradients lead to noisy training

signals. As show in Figure 3, faulty positives tend to have

lower similarities and thus less confident predictions. As a

result, the cross-modal loss of Equation 1 assigns stronger

gradients to faulty positive samples. On the other hand, the

repelling forces of negative instances are also weighted by

the likelihood of matching the base sample, i.e. P (v̄n|ai)

1We prefer ‘faulty positives’ over ‘false positives’ to distinguish from

supervised learning where one has access to labels.
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Figure 3: Faulty positives in a pretrained cross-modal model. His-

togram of similarity scores v̄T
i āi between video and audio representations,

and examples obtained at various points of the distribution. We describe

both the sound and video content in the plot. Examples with lower similar-

ity scores contain audio that is less predictive of the video content, which

creates faulty positives for training.

and P (ān|vi). However, as shown in Figure 4, faulty neg-

atives tend to have high similarity scores, leading to high

posteriors P (v̄n|ai) and P (ān|vi). Thus, the targets v̄n and

ān of faulty negatives act as strong repelling forces for a

and v (see Equation 3-4), even though they should ideally

be close in feature space.

4. Robust audio-visual representation learning

We have seen that contrastive learning places too much

emphasis on the impossible goals of bringing together the

audio-visual components of faulty positives and repelling

the feature representations from faulty negatives. We next

propose solutions to these two problems.

4.1. Weighted xID: Tackling Faulty Positives

To reduce the impact of faulty positives, we propose to

optimize a weighted loss. Let wi ∈ [0, 1] be a set of sample

weights that identify faulty positives. Robustness is achieved

by re-weighting the xID loss of Equation 1

LRxID =

∑

i wiLxID(vi,ai)
∑

i wi

. (5)

To estimate sample weights wi, we leverage observations

from Figure 3. Since low similarities v̄T
i āi are indicative of

faulty positives, we define the weights wi to be proportional

to the cumulative distribution of these scores. We assume

the scores to be normally distributed and define wi as

wi = twmin

(

CN

(

ā
T
i v̄i;µ+ δσ, κσ2

))

, (6)

where µ and σ2 are the sample mean and variance of the

scores, CN is the cumulative distribution of a transformed

normal distribution N (µ+δσ, κσ2), and twmin
(x) = x·(1−

wmin) + wmin is a soft truncation function used to assign

a non-zero weight wmin to low score instances. δ, κ and

wmin are shape hyper-parameters that provide flexibility to

the weight function, adjusting the location and rate of decay

of the weights. Figure 5 shows how the weighting function

varies with the shape hyper-parameters δ, κ and wmin.

Video 𝐯! Examples of audios used as negatives

Histogram of scores 

over all negatives

Video 𝐯! Examples of audios used as negatives

Histogram of scores 

over all negatives

Figure 4: Faulty negatives in a pretrained cross-modal model. Two

instances vi and the corresponding negatives used by a xID model sorted

by their similarity scores. The actual videos are provided in supplementary

material. xID often uses faulty negatives for contrastive learning.

1.0 0.5 0.0 0.5 1.0
Similarity Score: vTa

0

1
W

ei
gh

t w
i

= 2
= 1
= 0
= 1
= 2

1.0 0.5 0.0 0.5 1.0
Similarity Score: vTa

0

1

W
ei

gh
t w

i

= 0.25
= 0.5
= 1
= 2
= 4

1.0 0.5 0.0 0.5 1.0
Similarity Score: vTa

0

1

W
ei

gh
t w

i

wmin = 0.0
wmin = 0.10
wmin = 0.25

wmin = 0.50

wmin = 0.75

wmin

Figure 5: Weights as function of similarity scores v̄T
i āi for different values

of shape parameters δ, κ and wmin. Parameters µ, σ are automatically

determined from the histogram of similarity scores v̄T
i āi (shown in red).

4.2. Soft Targets: Tackling Faulty Negatives

As observed in §3, faulty negatives are overemphasized

during training. The underlying reason is that the xID loss

of Equation 1 has too strict a definition of negatives: every

negative instance j 6= i is considered ‘equally negative.’ To

limit the impact of faulty negatives, we introduce a ‘softer’

definition by introducing soft targets T (j|i), based on the

similarity between instance i and negative j. We then mini-

mize a soft-xID loss

LSoft-xID(vi,ai) =−
∑

j Tv(j|i) logP (āj |vi; τ)

−
∑

j Ta(j|i) logP (v̄j |ai; τ) (7)

Tv(j|i) = (1− λ)1i=j + λSv(j|i) (8)

Ta(j|i) = (1− λ)1i=j + λSa(j|i) (9)

where 1i=j is the one-hot targets of vanilla xID, Sv and Sa ∈
[0, 1] are softening scores (described next) used to adjust the

one-hot targets, and λ ∈ [0, 1] is a mixing coefficient that

weighs the two terms. Equations 1 and 7 are identical when

λ = 0. Since T (j|i) is no longer strictly zero for similar

instances, minimizing Equation 7 reduces the force to repel

faulty negatives and thus their impact.

Estimating softening scores S. Since our approach focuses

on self-supervised learning, we must estimate the softening
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scores S automatically, i.e., without class labels. We describe

multiple strategies for estimating these values and illustrate

them in Figure 6.

• Bootstrapping [66] is a well established procedure

to create soft targets. It uses the model’s own predictions

(posteriors) as the softening scores, i.e.,

Sv(j|i) = P (āj |v̄i; τs) and Sa(j|i) = P (v̄j |āi; τs), (10)

where τs controls the peakiness of the distribution. However,

bootstrapping computes the target distribution without ag-

gregating information from any other source other than each

model’s own posterior.

• Swapped prediction improves upon bootstrapping by

using the posteriors of the opposite modality, i.e., the soften-

ing scores Sv for the video modality are computed using the

posterior of the audio encoder and vice-versa,

Sv(j|i) = P (v̄j |āi; τs) and Sa(j|i) = P (āj |v̄i; τs). (11)

As a result, in addition to the instance itself, the model is

asked to predict which other instances are deemed similar in

the opposite modality.

• Neighbor prediction relies on within-modal relation-

ships to estimate the similarity between instances, thus avoid-

ing potential mismatched audio and visual modalities when

computing the soft targets. Specifically, we define

Sv(j|i) = ρ(v̄T
i v̄j/τs) and Sa(j|i) = ρ(āT

i āj/τs), (12)

where ρ is the softmax operator.

• Cycle consistent prediction improves upon ‘swapped

prediction‘ by focusing on negatives that are good correspon-

dences themselves, i.e., negatives with high similarity scores

v̄
T
j āj . In this case, we define

Sv(j|i) = ρ(v̄T
i āi/τt + ā

T
i v̄j/τs + v̄

T
j āj/τt) (13)

Sa(j|i) = ρ(āTi v̄i/τt + v̄
T
i āj/τs + ā

T
j v̄j/τt) (14)

where τs and τt control the relative importance of swapped

prediction target and avoiding negatives with weak corre-

spondences. As shown in Figure 6, the terms v̄
T
i āi and

v̄
T
j āj complete a cycle over instances i and j.

How do soft targets mitigate faulty negatives? The soft

xID loss of Equation 7 prevents overemphasizing faulty nega-

tives by relying on soft targets T (j|i) that encode similarities

between instances. To better understand the mechanism, we

examine the partial derivatives of the soft-xID loss:

−
∂LSoft-xID

∂vi
=

∑

j

āj

τ
(Tv(j|i)− P (āi|vi)) (15)

−
∂LSoft-xID

∂ai
=

∑

j

v̄j

τ
(Ta(j|i)− P (v̄i|ai)). (16)

Since faulty negatives j tend to be similar to the base in-

stance i, the soft targets T (j|i) are higher. Thus, the target

Neighbor 

Prediction

𝑣!

𝑣"

𝑎!

𝑎"

𝑣!

𝑣"

𝑎!

𝑎"

Bootstrapping

𝑣!

𝑣"

𝑎!

𝑎"

𝑣!

𝑣"

𝑎!

𝑎"

𝑣!

𝑣"

𝑎!

𝑎"

Swapped 

Prediction

𝑣!

𝑣"

𝑎!

𝑎"

V
id

e
o

 

P
re

d
ic

ti
o

n
A

u
d

io
 

P
re

d
ic

ti
o

n

Prediction: P ( j | i ) Softening Scores: S ( j | i )Base Negative

Cycle-Consistent 

Prediction

𝑣!

𝑣"

𝑎!

𝑎"

𝑣!

𝑣"

𝑎!

𝑎"

Figure 6: Strategies to estimate softening scores S(i|j).

representations v̄j and āj of faulty negatives act as weaker

negatives, or even as positives when T (j|i) is larger than the

model posteriors.

4.3. Training

We introduced two procedures to deal with noisy train-

ing signals inherent to cross-modal instance discrimination.

§4.1 presents a weighting mechanism that limits the effect

of faulty positives, while §4.2 proposes a soft instance dis-

crimination loss that predicts relations between instances,

thus preventing the training algorithm from overemphasizing

faulty negatives. Since both procedures rely on the alignment

between audio and visual target representations to find weak

correspondences, we start by training the model for cross-

modal instance discrimination alone (Equation 1). After the

initial warmup stage, the two procedures can be combined

by minimizing

L = 1∑
k
wk

∑

i

wiLSoft-xID(vi,ai) (17)

where wi are the sample weights of Equation 6 and LSoft-xID

is the xID loss with soft targets of Equation 7.

5. Experiments

We perform experiments to better understand cross-modal

learning and validate the proposed improvements. We pre-

train models on a subset of the Kinetics-400 [76] dataset

containing 50K videos and evaluate the pretrained models

by transfer learning.

5.1. Experimental Setup

Video and audio preprocessing. During training, we ex-

tract video clips of length T = 8 frames and resolution

80× 80 at 16 fps. Video clips are augmented using tempo-

ral jittering, multi-scale cropping, horizontal flipping, color

jittering, gray-scaling, and Gaussian blur [14]. All data aug-

mentations are applied consistently over all frames. For the

audio, we extract mono clips of length 2s at a sample rate of

11025Hz, and compute log spectrograms on 50ms windows

with a hop size of 25ms. The spectrogram is then converted

to a mel scale with 80 bands, yielding an audio input of size
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80 × 80. Audio data is augmented by randomly changing

the volume by at most 20%.

Video and audio models. The video encoder is a 9-layer

version of the R(2+1)D model of [75]. Following [5, 56], we

replaced global average pooling with max pooling. The

audio encoder is a 9-layer 2D ConvNet with batch nor-

malization and global max pooling. Both encoders yield

512-dimensional features, which are mapped into a 128-

dimensional sphere using a non-linear projection head (as

in [14]) followed by L2 normalization.

Pretraining. In the warm-up stage, the video and audio

models are trained to optimize the loss of Equation 1 us-

ing the Adam optimizer [40] with default hyper-parameters

(β1 = 0.9 and β2 = 0.999) for 400 epochs with a learning

rate of 1e − 4 and a batch size of 224 split over 2 12Gb

GPUs. In order to reduce the memory footprint of our mod-

els, we employ mixed-precision training [50] using PyTorch

AMP [59]. Following [56, 81], the audio and video target

representations, ā and v̄, are generated using memory banks

updated by exponential moving average with an update con-

stant of 0.5. The contrastive loss of Equation 1 is defined by

opposing the target representation of the opposite modality

to 1024 negatives randomly drawn from the memory bank.

The temperature hyper-parameter is set to τ = 0.07.

After the initial warm-up stage, models are trained for an

additional 200 epochs to optimize the loss of Equation 17

using the Adam optimizer and a cosine learning rate schedule

starting at 1e−4 and ending at 1e−5. The hyper-parameters

for the weighting function (Equation 6) and the soft xID

loss (Equation 7) are discussed below. To provide a fair

comparison to the AVID baseline [56], we control for the

number of epochs by training the baseline model for an

additional 200 epochs as well.

Downstream tasks. We evaluate audio and video features

using transfer learning. Video features are evaluated on

the UCF [72] and HMDB [42] datasets. Models are fine-

tuned using 8-frame clips for 200 epochs using the Adam

optimizer with a batch size of 192 on a single GPU and a

cosine learning rate schedule starting at 1e− 4 and ending at

1e−5. To prevent overfitting, we use dropout after the global

max-pooling layer, weight decay of 1e− 3, and reduced the

learning rate for backbone weights by a factor of 10. At test

time, top-1 accuracy is measured on video level predictions

computed by averaging the predictions of 10 clips uniformly

sampled over the entire video.

Following [8, 83], we also evaluate the quality of video

representations by conducting retrieval experiments without

fine-tuning. Feature maps of size 4×4×512 are extracted

from 10 clips per video and averaged. We then use videos in

the test set to query the training set. As in [8, 83], a correct

retrieval occurs when the class of one of the top-k retrieved

videos matches the query, and performance is measured by

the average top-k retrieval performance (R@K).
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Figure 7: Faulty positives vs. transfer performance We inject faulty

positives in the pre-training data (Kinetics) by randomly replacing the audio

corresponding to a video. We evaluate the pretrained models on action

recognition and see that increasing the fraction of faulty positives hurts

transfer performance. Our weighted loss (Weighted-xID) is less sensitive

to faulty positives and even outperforms an oracle version that information

about altered samples. This is because the unaltered pretraining dataset

itself has an unknown, but significant number (n0) of faulty positives.

5.2. Weighted cross­modal learning

We analyze the impact of faulty positives on the represen-

tations learned by cross-modal instance discrimination.

Faulty positives are detrimental to representation learn-

ing. We artificially control the number of faulty positives to

assess their impact on representation learning. The pretrain-

ing dataset already contains an unknown (but significant)

number of faulty positives. We increase this number by in-

jecting more faulty positives. A faulty positive is injected by

replacing the audio of an instance with a randomly selected

audio that is not part of the training set. After pretraining, the

learned visual representation is evaluated on the UCF and

HMDB datasets using both classification and retrieval proto-

cols. Figure 7 shows that as the fraction of faulty positives

increases, the transfer performance of cross-modal instance

discrimination (xID) decreases significantly.

Weighted xID reduces the impact of faulty positives. We

evaluate the effectiveness of the weighted xID loss (Equa-

tion 5) as a function of the number of faulty positives. We

compare the representations learned by Weighted-xID to its

unweighted counterpart (xID), as well as an oracle weight

function (Oracle-xID) which assigns wi = 0 to artificially

altered instances and wi = 1 otherwise. The weight function

of Equation 5 is defined with κ = 0.5 and wmin = 0.25. For

simplicity, we assume that the noise level is known and set δ
in Weighted-xID so that the midpoint of the weighting func-

tion coincides with the known fraction of altered samples.

In practice, the noise level would need to be estimated either

by cross-validation or by manual inspection. Weighted-xID

is not very sensitive to these parameters (see appendix).

Figure 7 shows the performance of the three approaches.

Oracle-xID consistently outperforms xID when the fraction

of injected faulty positives is high. This shows that the detri-
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Table 1: Different strategies for computing soft targets in the pretraining

loss of Equation 7. Models are pretrained on Kinetics and evaluated on

UCF and HMDB datasets using fine-tuning and retrieval protocols. Best

method is bolded. Second best is underlined.

Target

Distribution

UCF HMDB

Acc R@5 Acc R@5

Oracle∗ 73.6 76.0 45.4 53.6

xID [56] 68.0 63.2 39.0 43.4

Bootstrapping 69.2 64.4 40.5 44.7

Neighbor Pred. 70.5 65.4 41.2 45.0

Swapped Pred. 70.0 64.9 41.3 45.4

CCP 70.3 65.9 41.5 45.5

∗Uses class labels to generate target distribution.

mental impact of noisy correspondences can be mitigated

with a weighting strategy. Weighted-xID also outperforms

the unweighted version (xID) in nearly all cases, with larger

margins for larger fractions of noisy correspondences. In fact,

Weighted-xID even outperforms the oracle weight function,

especially at lower noise levels. This is because the original

Kinetics dataset already contains a significant amount of

weak correspondences, which the oracle weight function

treats as clean wi = 1, while the weighting function of

Equation 6 can suppress them.

5.3. Instance discrimination with soft targets

To limit the impact of faulty negatives, we proposed to

match a soft target distribution that encodes instance simi-

larity. We analyze different design decisions for creating the

soft targets and their effect on transfer performance.

Comparison of strategies for computing targets As sum-

marized in Figure 6, the soft target distributions can be com-

puted by aggregating evidence from all modalities. Four

different strategies were proposed, bootstrapping, swapped

or cycle consistent assignments. Models were trained to

minimize the loss of Equation 7 with λ = 0.5. We empiri-

cally found that peakier target distributions work better, and

set the temperature parameter τs to 0.02. For cycle consis-

tent assignments, the terms v̄
T
j āj are used so as to focus

on negatives that are good correspondences themselves. A

temperature hyper-parameter of τt = 0.07 was sufficient to

impose such constraint. Beyond the baseline xID, we also

compare to an oracle target distribution that has access to

class labels to determine the similarity between instances.

Specifically, the oracle considers two instances i and j to

be similar if they share the same class label, and computes

Tv(j|i) and Ta(j|i) by assigning a uniform distribution over

similar instances, and 0 to non-similar ones.

Table 1 shows the performance of different target distri-

butions. We observe a large gap between vanilla xID and

xID with an oracle soft target, which demonstrates the detri-

mental effect of faulty negatives. In the self-supervised case,

however, labels are not available for determining the target

distribution. Nevertheless, the estimated target distributions

Table 2: Combining weighted xID loss with soft targets. Models are

pretrained on Kinetics with the loss of Equation 17 and evaluated on UCF

and HMDB datasets using fine-tuning and retrieval protocols.

Method
Robust

Weighting

CCP

Soft Targets

UCF HMDB

Acc R@5 Acc R@5

xID [56] ✗ ✗ 68.0 63.2 39.0 43.4

Weighted-xID ✓ ✗ 69.7 64.1 40.1 44.3

Soft-xID ✗ ✓ 70.3 65.9 41.5 45.5

Robust-xID ✓ ✓ 71.6 67.4 41.9 46.2

(bottom four rows) still significantly improve over the xID

loss. Regarding the various types of target distributions, boot-

strapping is the least effective. This is expected since, in this

case, the target distribution is a peakier version of the model

posterior, i.e. it is obtained without aggregating information

from any other sources. Cycle consistent prediction is the

most effective most often. This is because cycle consistent

prediction not only leverages the opposite modality to create

the target distribution, but it also avoids targets that are not

good correspondences themselves, i.e., avoids samples with

low cross-modal similarities.

5.4. Robust instance discrimination with soft targets

Sample weighting and soft targets are designed to address

two different sources of noisy training signals inherent to

cross-modal contrastive learning: faulty positives and faulty

negatives. Table 2 shows that the two proposed improve-

ments (Weighted-xID and Soft-xID) not only improve upon

the representations of vanilla xID, they are also comple-

mentary to each other. By combining the two approaches

using the loss of Equation 17, Robust-xID improved upon

Weighted and Soft-xID.

6. Comparison to prior work

We compare Robust-xID to prior work in self-supervised

learning. We train our models on the Kinetics dataset, using

an 18-layer R(2+1)D model [75] for the video, and a 9-

layer 2D ConvNet with batch normalization for the audio.

Video clips of length 8-frames and 112 × 112 resolution

are extracted at 16fps, and the same data augmentations

from §5 are used. We extract audio clips of length 2s at

24KHz and compute log mel spectrograms with 128 time

steps and 128 frequency bands. All models are trained with

the Adam optimizer with a batch size of 512 distributed

across 8 12Gb GPUs. We warm-up the models for 200

epochs by training on the xID loss alone with a learning rate

of 5e− 4. The models are then trained with sample weights

and cycle consistent soft targets for an additional 200 epochs

using a cosine learning rate schedule from 5e−4 to 5e−5.

After pre-training, models are evaluated on UCF and

HMDB. We fine-tune the models using either 8 or 32 frame

clips for action recognition and report the top-1 accuracy

of video level predictions (with 10 clips per video) in Ta-
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Table 3: Comparison to prior work (finetuning). Performance on the

downstream UCF and HMDB datasets by full network fine-tuning after

pre-training on Kinetics. We report top-1 accuracy of video level predictions

(10 clips per video). We also list the video encoder, amount of compute

used for pre-training and the fine-tuning resolution.

Method Model
Compute

# GPUs

Finetuning

Resolution
UCF HMDB

DPC [33] S3D 4 25×1282 75.7 35.7

CBT [73] S3D 8 16×1122 79.5 44.6

Multisensory [58] 3D-ResNet18 3 32×2242 82.1 –

AVTS [41] MC3-18 4 25×2242 84.1 52.5

SeLaVi [8] R(2+1)D-18 64 32×1122 83.1∗ 47.1∗

R(2+1)D-18 64 8×2242 74.2∗ 39.0∗

XDC [3]
R(2+1)D-18 64 32×2242 86.8∗ 52.6∗

R(2+1)D-18 64 8×2242 83.7∗ 49.5∗

AVID-CMA [56]
R(2+1)D-18 64 32×2242 87.5∗ 60.8∗

GDT [61] R(2+1)D-18 64 32×2242 89.3∗ 60.0∗

R(2+1)D-18 8 8×1122 80.6 48.6
xID+CMA [56]

R(2+1)D-18 8 32×1122 84.9 54.7

R(2+1)D-18 8 8×1122 81.9 49.5
Robust-xID

R(2+1)D-18 8 32×1122 85.6 55.0

∗ Models pre-trained with more than one compute node (8 GPUs).

Table 4: Retrieval performance on UCF and HMDB datasets after pre-

training on Kinetics for different numbers of retried neighbors.

Method
UCF HMDB

R@1 R@5 R@20 R@1 R@5 R@20

SpeedNet [9] 13.0 28.1 49.5 - - -

VCP [48] 18.6 33.6 53.5 7.6 24.4 53.6

VSP [16] 24.6 41.9 76.9 10.3 26.6 54.6

CoCLR [35] 55.9 70.8 82.5 26.1 45.8 69.7

SeLaVi [8] 52.0 68.6 84.5 24.8 47.6 75.5

GDT [61] 57.4 73.4 88.1 25.4 51.4 75.0

xID+CMA [56] 60.1 76.6 90.1 29.7 54.4 77.1

Robust-xID 60.9 79.4 90.8 30.8 55.8 79.7

ble 3. The proposed procedure outperformed all prior work

where pretraining is limited to a single node (8 GPUs), and

even outperformed methods like SeLaVi, which require 8×
more compute for training. We also conducted a close com-

parison to the CMA procedure of [56] (xID+CMA). While

CMA can also partially address the problem of faulty nega-

tives, Robust-xID showed better performance. Robust-xID

is also easier to implement as it identifies both faulty posi-

tives and negatives in a simpler online fashion. We note that

xID+CMA is a faithful implementation of AVID+CMA [56],

as it follows the original code with improved data augmenta-

tions. However, the results reported for xID+CMA are lower

than those originally reported in [56] because 1) distributed

training was conducted on 8 GPUs instead of 64 (large batch

sizes are known to have a substantial impact on contrastive

learning performance [14, 15, 11]), and 2) [56] is trained

and evaluated with videos of higher resolution (224 instead

of 112). By training the proposed model with a larger batch

size, we expect the performance to improve further.

We also compare the learned representations to prior work

without fine-tuning. Following [8, 61], we conducted re-

trieval experiments, and report the retrieval performance

Table 5: Few-shot learning on UCF and HMDB after pre-training on

Kinetics. Classification is conducted using a one-vs-all SVM trained on the

pretrained features of n images per class. Top-1 accuracy is reported for

n ∈ {1, 5, 20}.

Method
UCF HMDB

1-shot 5-shot 20-shot 1-shot 5-shot 20-shot

3D-RotNet [38] 15.0 31.5 47.1 - - -

GDT [61] 26.3 42.4 49.4 13.4 15.6 20.8

xID+CMA [56] 30.8 53.1 66.9 13.5 25.0 33.6

Robust-xID 32.8 54.6 67.8 14.1 25.9 34.9

R@K for K = 1, K = 5 and K = 20 neighbors in Ta-

ble 4. The retrieval protocol was described in §5. Following

[38, 61], we also assessed the few-shot learning performance

of Robust-xID models on UCF and HMDB. For the few-shot

evaluation, we average the pretrained max-pooling features

of 10 clips per video. The features from n videos per class

are then used to learn a one-vs-all linear SVM classifier with

C = 1. We report the top-1 accuracy averaged over 50 tri-

als in Table 5. On both the retrieval and few-shot learning

tasks, Robust-xID improves significantly over all prior work,

reaffirming the importance of mitigating the training noise

introduced by faulty positives and faulty negatives.

7. Discussion and future work

We identified and tackled two significant sources of

noisy training signals in audio-visual instance discrimination,

namely instances with weak audio-visual correspondence (or

faulty positives) and semantically similar negatives (or faulty

negatives). We showed the impact of faulty correspondences

on representation learning by removing them using an oracle

with access to ground-truth annotations. We then proposed a

method that mitigates the impact of faulty correspondences

without relying on ground-truth annotations. Extensive anal-

ysis and experimental evaluations show that the proposed

procedure enhances representation learning and improves

transfer performance significantly.

Our findings show that cross-modal learning should be

seen as a problem of learning with noisy targets. While we

propose two specific methods to address faulty positives and

faulty negatives (i.e. weighting and soft targets), there is a

rich literature regarding supervised learning with noisy la-

bels. Developing methods that tackle noisy correspondences

are a promising avenue for future research. Furthermore, we

focused on audio-visual learning, but other pairs of modali-

ties such as RGB and flow or text from instructional videos

also present similar problems. We believe that our method

will also benefit cross-modal learning from other modalities.
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[5] Relja Arandjelović and Andrew Zisserman. Look, listen and

learn. Int. Conf. Computer Vision (ICCV), 2017. 1, 2, 6

[6] Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and

Kevin Mcguinness. Unsupervised label noise modeling and

loss correction. In Int. Conf. on Machine Learning (ICML),

2019. 3

[7] YM Asano, C Rupprecht, and A Vedaldi. Self-labelling via

simultaneous clustering and representation learning. In Int.

Conf. on Machine Learning (ICML), 2019. 2

[8] Yuki M. Asano, Mandela Patrick, Christian Rupprecht, and

Andrea Vedaldi. Labelling unlabelled videos from scratch

with multi-modal self-supervision. In Adv. Neural Informa-

tion Processing Systems (NeurIPS), 2020. 2, 6, 8

[9] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri,

William T Freeman, Michael Rubinstein, Michal Irani, and

Tali Dekel. Speednet: Learning the speediness in videos. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), 2020. 2, 8

[10] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning of

visual features. In Eur. Conf. Computer Vision (ECCV), 2018.

2

[11] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,

Piotr Bojanowski, and Armand Joulin. Unsupervised learn-

ing of visual features by contrasting cluster assignments. In

Adv. Neural Information Processing Systems (NeurIPS), 2020.

1, 2, 3, 8

[12] Haw-Shiuan Chang, Erik Learned-Miller, and Andrew Mc-

Callum. Active bias: Training more accurate neural networks

by emphasizing high variance samples. In Adv. Neural Infor-

mation Processing Systems (NeurIPS), 2017. 3

[13] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vi-

cenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna Ithapu,

Philip Robinson, and Kristen Grauman. Soundspaces: Audio-

visual navigation in 3d environments. In Eur. Conf. Computer

Vision (ECCV), 2020. 2

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In Int. Conf. on Machine Learning

(ICML), 2020. 1, 2, 3, 5, 6, 8

[15] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-

proved baselines with momentum contrastive learning. arXiv

preprint arXiv:2003.04297, 2020. 8

[16] Hyeon Cho, Taehoon Kim, Hyung Jin Chang, and Wonjun

Hwang. Self-supervised spatio-temporal representation learn-

ing using variable playback speed prediction. arXiv preprint

arXiv:2003.02692, 2020. 8

[17] Joon Son Chung, Andrew Senior, Oriol Vinyals, and An-

drew Zisserman. Lip reading sentences in the wild. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), 2017. 2

[18] Joon Son Chung and Andrew Zisserman. Out of time: auto-

mated lip sync in the wild. In Asian Conf. Computer Vision

(ACCV), 2016. 2

[19] Virginia R de Sa. Learning classification with unlabeled data.

In Adv. Neural Information Processing Systems (NeurIPS),

1994. 2

[20] Aditya Deshpande, Jason Rock, and David Forsyth. Learning

large-scale automatic image colorization. In Int. Conf. Com-

puter Vision (ICCV), 2015. 2

[21] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

Int. Conf. Computer Vision (ICCV), 2015. 2

[22] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-

miller, and Thomas Brox. Discriminative unsupervised fea-

ture learning with convolutional neural networks. In Adv. Neu-

ral Information Processing Systems (NeurIPS), 2014. 1, 2

[23] Basura Fernando, Hakan Bilen, Efstratios Gavves, and

Stephen Gould. Self-supervised video representation learning

with odd-one-out networks. In IEEE/CVF Conf. Computer

Vision and Pattern Recognition (CVPR), 2017. 2

[24] Benoı̂t Frénay and Michel Verleysen. Classification in the

presence of label noise: a survey. IEEE Transactions on

Neural Networks and Learning Systems, 25(5):845–869, 2013.

3

[25] Chuang Gan, Deng Huang, Hang Zhao, Joshua B Tenenbaum,

and Antonio Torralba. Music gesture for visual sound sep-

aration. In IEEE/CVF Conf. Computer Vision and Pattern

Recognition (CVPR), 2020. 2

[26] Ruohan Gao, Rogerio Feris, and Kristen Grauman. Learning

to separate object sounds by watching unlabeled video. In

Eur. Conf. Computer Vision (ECCV), 2018. 2

[27] Ruohan Gao and Kristen Grauman. 2.5d visual sound. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), 2019. 2

[28] Ruohan Gao and Kristen Grauman. Co-separating sounds

of visual objects. In IEEE/CVF Conf. Computer Vision and

Pattern Recognition (CVPR), 2019. 2

[29] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss

functions under label noise for deep neural networks. In AAAI

Conference on Artificial Intelligence, 2017. 3

[30] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-

pervised representation learning by predicting image rotations.

In Int. Conf. Learning Representations (ICLR), 2018. 2

[31] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-

ity reduction by learning an invariant mapping. In IEEE/CVF

Conf. Computer Vision and Pattern Recognition (CVPR),

2006. 1, 3

12942



[32] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu,

Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-teaching:

Robust training of deep neural networks with extremely

noisy labels. In Adv. Neural Information Processing Systems

(NeurIPS), 2018. 3

[33] Tengda Han, Weidi Xie, and Andrew Zisserman. Video

representation learning by dense predictive coding. In

Eur. Conf. Computer Vision Workshops (ECCV-W), 2019. 2,

8

[34] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-

augmented dense predictive coding for video representation

learning. In Eur. Conf. Computer Vision (ECCV), 2020. 2

[35] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-

supervised co-training for video representation learning. In

Adv. Neural Information Processing Systems (NeurIPS), 2020.

2, 8

[36] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning. In IEEE/CVF Conf. Computer Vision and

Pattern Recognition (CVPR), 2020. 1, 2, 3

[37] Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin

Gimpel. Using trusted data to train deep networks on la-

bels corrupted by severe noise. In Adv. Neural Information

Processing Systems (NeurIPS), 2018. 3

[38] Longlong Jing, Xiaodong Yang, Jingen Liu, and Yingli Tian.

Self-supervised spatiotemporal feature learning via video ro-

tation prediction. arXiv preprint arXiv:1811.11387, 2018.

8

[39] Dahun Kim, Donghyeon Cho, and In So Kweon. Self-

supervised video representation learning with space-time cu-

bic puzzles. In AAAI Conference on Artificial Intelligence,

2019. 2

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[41] Bruno Korbar, Du Tran, and Lorenzo Torresani. Cooperative

learning of audio and video models from self-supervised syn-

chronization. In Adv. Neural Information Processing Systems

(NeurIPS), 2018. 1, 2, 8

[42] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. HMDB: a large video

database for human motion recognition. In Int. Conf. Com-

puter Vision (ICCV). IEEE, 2011. 6

[43] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich.

Learning representations for automatic colorization. In

Eur. Conf. Computer Vision (ECCV), 2016. 2

[44] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich.

Colorization as a proxy task for visual understanding. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), 2017. 2

[45] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-

Hsuan Yang. Unsupervised representation learning by sorting

sequences. In IEEE/CVF Conf. Computer Vision and Pattern

Recognition (CVPR), 2017. 2

[46] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankan-

halli. Learning to learn from noisy labeled data. In IEEE/CVF

Conf. Computer Vision and Pattern Recognition (CVPR),

2019. 3

[47] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao,

Jiebo Luo, and Li-Jia Li. Learning from noisy labels with

distillation. In Int. Conf. Computer Vision (ICCV), 2017. 3

[48] Dezhao Luo, Chang Liu, Yu Zhou, Dongbao Yang, Can Ma,

Qixiang Ye, and Weiping Wang. Video cloze procedure for

self-supervised spatio-temporal learning. In AAAI Conference

on Artificial Intelligence, 2020. 8

[49] Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou,

Sarah Erfani, Shutao Xia, Sudanthi Wijewickrema, and James

Bailey. Dimensionality-driven learning with noisy labels. In

Int. Conf. on Machine Learning (ICML), 2018. 3

[50] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory

Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael

Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed

precision training. arXiv preprint arXiv:1710.03740, 2017. 6

[51] Ishan Misra and Laurens van der Maaten. Self-supervised

learning of pretext-invariant representations. In IEEE/CVF

Conf. Computer Vision and Pattern Recognition (CVPR),

2020. 1, 2

[52] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuf-

fle and learn: unsupervised learning using temporal order

verification. In Eur. Conf. Computer Vision (ECCV), 2016. 2

[53] Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep

learning from temporal coherence in video. In Int. Conf. on

Machine Learning (ICML), 2009. 2

[54] Pedro Morgado, Yi Li, and Nuno Vasconcelos. Learning repre-

sentations from audio-visual spatial alignment. In Adv. Neural

Information Processing Systems (NeurIPS), 2020. 2

[55] Pedro Morgado, Nuno Vasconcelos, Timothy Langlois, and

Oliver Wang. Self-supervised generation of spatial audio for

360 video. In Adv. Neural Information Processing Systems

(NeurIPS), 2018. 2

[56] Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-

visual instance discrimination with cross-modal agreement.

In IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), 2021. 1, 2, 3, 6, 7, 8

[57] Mehdi Noroozi and Paolo Favaro. Unsupervised learning

of visual representations by solving jigsaw puzzles. In

Eur. Conf. Computer Vision (ECCV), 2016. 2

[58] Andrew Owens and Alexei A Efros. Audio-visual scene

analysis with self-supervised multisensory features. In

Eur. Conf. Computer Vision (ECCV), 2018. 1, 2, 8

[59] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

Adv. Neural Information Processing Systems (NeurIPS). 2019.

6

[60] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In IEEE/CVF Conf. Computer Vision

and Pattern Recognition (CVPR), 2016. 2

[61] Mandela Patrick, Yuki M Asano, Ruth Fong, João F Hen-

riques, Geoffrey Zweig, and Andrea Vedaldi. Multi-modal

12943



self-supervision from generalized data transformations. arXiv

preprint arXiv:2003.04298, 2020. 1, 2, 3, 8

[62] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon,

Richard Nock, and Lizhen Qu. Making deep neural net-

works robust to label noise: A loss correction approach. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), 2017. 3

[63] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz

Kaiser, and Geoffrey Hinton. Regularizing neural networks

by penalizing confident output distributions. arXiv preprint

arXiv:1701.06548, 2017. 3

[64] AJ Piergiovanni, Anelia Angelova, and Michael S. Ryoo.

Evolving losses for unsupervised video representation learn-

ing. IEEE/CVF Conf. Computer Vision and Pattern Recogni-

tion (CVPR), 2020. 1, 2

[65] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang,

Huisheng Wang, Serge Belongie, and Yin Cui. Spatiotempo-

ral contrastive video representation learning. In IEEE/CVF

Conf. Computer Vision and Pattern Recognition (CVPR),

2021. 2

[66] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian

Szegedy, Dumitru Erhan, and Andrew Rabinovich. Train-

ing deep neural networks on noisy labels with bootstrapping.

arXiv preprint arXiv:1412.6596, 2014. 3, 5

[67] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun.

Learning to reweight examples for robust deep learning. In

Int. Conf. on Machine Learning (ICML), 2018. 3

[68] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang,

and In So Kweon. Learning to localize sound source in visual

scenes. In IEEE/CVF Conf. Computer Vision and Pattern

Recognition (CVPR), 2018. 2

[69] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zong-

ben Xu, and Deyu Meng. Meta-weight-net: Learning an

explicit mapping for sample weighting. In Adv. Neural Infor-

mation Processing Systems (NeurIPS), 2019. 3

[70] Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Re-

furbishing unclean samples for robust deep learning. In Int.

Conf. on Machine Learning (ICML), 2019. 3

[71] Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil

Lee. Learning from noisy labels with deep neural networks:

A survey. arXiv preprint arXiv:2007.08199, 2020. 3

[72] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

UCF101: A dataset of 101 human actions classes from videos

in the wild. Technical Report CRCV-TR-12-01, University of

Central Florida, 2012. 6

[73] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia

Schmid. Contrastive bidirectional transformer for tempo-

ral representation learning. arXiv preprint arXiv:1906.05743,

2019. 8

[74] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive

multiview coding. In Eur. Conf. Computer Vision (ECCV),

2020. 1, 2, 3

[75] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In IEEE/CVF Conf. Com-

puter Vision and Pattern Recognition (CVPR), 2018. 6, 7

[76] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S.

Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M.

Suleyman, and A. Zisserman. The kinetics human action

video dataset. arXiv:1705.06950, 2017. 5

[77] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-

supervised video representation learning by pace prediction.

In Eur. Conf. Computer Vision (ECCV), 2020. 2

[78] Xudong Wang, Ziwei Liu, and Stella X Yu. Unsupervised fea-

ture learning by cross-level discrimination between instances

and groups. In Adv. Neural Information Processing Systems

(NeurIPS), 2020. 1, 2, 3

[79] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng

Yi, and James Bailey. Symmetric cross entropy for robust

learning with noisy labels. In Int. Conf. Computer Vision

(ICCV), 2019. 3

[80] Donglai Wei, Joseph J Lim, Andrew Zisserman, and

William T Freeman. Learning and using the arrow of time. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), 2018. 2

[81] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In IEEE/CVF Conf. Computer Vision and

Pattern Recognition (CVPR), 2018. 1, 2, 3, 6

[82] Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong,

and Chen Change Loy. Delving into inter-image invari-

ance for unsupervised visual representations. arXiv preprint

arXiv:2008.11702, 2020. 2

[83] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and

Yueting Zhuang. Self-supervised spatiotemporal learning via

video clip order prediction. In IEEE/CVF Conf. Computer

Vision and Pattern Recognition (CVPR), 2019. 6

[84] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,

and Oriol Vinyals. Understanding deep learning requires

rethinking generalization. In Int. Conf. on Machine Learning

(ICML), 2017. 3

[85] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David

Lopez-Paz. Mixup: Beyond empirical risk minimization. In

Int. Conf. Learning Representations (ICLR), 2018. 3

[86] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In Eur. Conf. Computer Vision (ECCV),

2016. 2

[87] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-

brain autoencoders: Unsupervised learning by cross-channel

prediction. In IEEE/CVF Conf. Computer Vision and Pattern

Recognition (CVPR), 2017. 2

[88] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy

loss for training deep neural networks with noisy labels. In

Adv. Neural Information Processing Systems (NeurIPS), 2018.

3

[89] Zizhao Zhang, Han Zhang, Sercan O Arik, Honglak Lee, and

Tomas Pfister. Distilling effective supervision from severe

label noise. In IEEE/CVF Conf. Computer Vision and Pattern

Recognition (CVPR), 2020. 3

[90] Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Tor-

ralba. The sound of motions. In Int. Conf. Computer Vision

(ICCV), 2019. 2

12944



[91] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-

drick, Josh McDermott, and Antonio Torralba. The sound of

pixels. In Eur. Conf. Computer Vision (ECCV), 2018. 2

12945


