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Abstract

Maps are arguably one of the most fundamental con-

cepts used to define and operate on manifold surfaces in

differentiable geometry. Accordingly, in geometry process-

ing, maps are ubiquitous and are used in many core appli-

cations, such as paramterization, shape analysis, remesh-

ing, and deformation. Unfortunately, most computational

representations of surface maps do not lend themselves to

manipulation and optimization, usually entailing hard, dis-

crete problems. While algorithms exist to solve these prob-

lems, they are problem-specific, and a general framework

for surface maps is still in need.

In this paper, we advocate considering neural networks

as encoding surface maps. Since neural networks can be

composed on one another and are differentiable, we show it

is easy to use them to define surfaces via atlases, compose

them for surface-to-surface mappings, and optimize differ-

entiable objectives relating to them, such as any notion of

distortion, in a trivial manner. In our experiments, we repre-

sent surfaces by generating a neural map that approximates

a UV parameterization of a 3D model. Then, we compose

this map with other neural maps which we optimize with re-

spect to distortion measures. We show that our formulation

enables trivial optimization of rather elusive mapping tasks,

such as maps between a collection of surfaces.

1. Introduction

Maps are one of the most fundamental concepts in sur-

face geometry: in differential geometry, a surface, i.e., a

2-manifold, is usually (locally) defined as the image of a

(non-degenerate) map

f : R2 → R
n.

Not surprisingly, maps are also used to define correspon-

dences between different parts of surfaces in an atlas, to

evaluate similarity between surface pairs, or across surface

collections.

Accordingly, computing maps is central in most geome-

try processing tasks operating on surfaces. The ubiquitous

f

φ ψ

h

Figure 1. Two surfaces are respectively represented by two neu-

ral maps, φ and ψ, each mapping the unit square to 3D. A

distortion-minimizing surface-to-surface map f is visualized by

texture transfer. This surface map is achieved by a third neural map

h between the square to itself, which yields the surface map by an

implicit composition of the three neural maps. The distortion of

the composed map f is trivially optimized by defining it as a loss

in pytorch and optimizing with respect to h. Inset shows the initial

random map of the hippo to the cow is a poor initialization, cover-

ing only a very tiny region of the cow model. Optimization results

in a final map that covers the whole target surface, and reducing

isometric distortion, resulting in an average Symmetric Dirichlet

energy of 11 between these highly-nonisometric surfaces. As in-

put, 4 keypoint constraints were used, each on one leg.

concept of a UV map [54], mapping a surface into the plane,

provides a local coordinate system on surfaces, and hence

enables downstream tasks such as texturing, surface corre-

spondence, remeshing, quad-meshing [11] to name only a

few. Similarly, surface-to-surface maps [53] enable defining

correspondences between surfaces, which are at the heart

of shape analysis, transfer of properties, deformations, or

defining morph sequences. Indeed, almost all shape pro-

cessing tasks, including parameterization, surface corre-

spondence, remeshing, and deep learning on surfaces, heav-

ily rely on access to such surface maps.
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However, many of the tasks related to maps and their

computation become extremely hard to handle when the tar-

get domain is a surface, i.e., a 3D mesh (n = 3). This is due

mostly to the fact that meshes are combinatorial representa-

tions, which in turn leads to a combinatorial representation

of the surface maps, and taints the optimization task with a

combinatorial nature as well. Although elegant solutions in

the form of discrete differential geometry [50, 52], meshing

invariant spectral analysis [42, 40], functional maps [45, 35]

have been proposed to work around the combinatorial rep-

resentation, the diverse choices and different data represen-

tations inhibit easy end-to-end optimization and adaptation

outside the specialized geometry processing community.

As an example, consider the problem of computing a

mesh-to-mesh mapping in which a continuous map from

one surface to the other is computed: one needs to account

for the image of each source vertex, which lands on a tri-

angle of the other mesh, and the image of a source edge

may span several triangles of the target; this leads to ex-

tensive bookkeeping, and any attempt to optimize, e.g., the

map’s inter-surface distortion leads to combinatorial opti-

mization of the choice of target triangle for each source

vertex as in [53, 31]. An alternative is to optimize proxy

maps into a common base domain [4] in the hope that the re-

sulting surface-to-surface map will be optimized by proxy.

Such an approach, however, does not yield surface maps

that are even a local minimizer of the energy they set to

minimize. This is particularly problematic when optimiz-

ing inter-surface maps across shape collections.

In this work, we consider neural networks as a para-

metric representation of both individual surfaces as well

as inter-surface maps. Specifically, we consider networks

with parameters θ that receive 2D points as input and out-

put points either in 2D or 3D, φθ : R2 → R
n. While this

definition is similar to, e.g., AtlasNet [25], we do not aim

to perform any learning task, and our network does nothing

more than map 2D points with the aim of performing one

task: approximate a single surface map φθ ∼ f : R2 → R
n,

so we can work with neural networks instead of with, e.g.,

mappings of triangular meshes.

Specifically, we use a map φθ ∼ f : R2 → R
3 to di-

rectly characterize a given manifold shape (restricted to sur-

face patches homeomorphic to a disc), and use another map

ψβ ∼ g : R2 → R
2 to update the surface map by restrict-

ing movements on the underlying 2-manifold. These neural

networks are, by construction, differentiable and compos-

able with one another, hence they lend us a simple model

for defining a differentiable algebra of surface maps, en-

abling us to compose maps with one another and optimize

objectives directly over their composition, rather than pro-

pose approximations via intermediate proxy domains.

We employ this concept in two ways that build on top

of one another: first, we revisit the differential-geometry

definition of a surface as a map from 2D to 3D, by over-

fitting a neural network to a given UV parameterization

computed via a standard parameterization algorithm, such

as Tutte’s embedding [59] or SLIM [51]. Two such maps,

φ,ψ, are shown in Figure 1. This gives us a parametric,

differentiable representation of the surface, from a canoni-

cal domain. Second, we compose the overfitted map with

other maps, either to optimize the distortion of the map,

or to compute distortion-minimizing maps between two or

more surfaces. Figure 1 shows an example of a distortion-

minimizing map f defined by composing h with φ,ψ.

We evaluate our method on a variety of triangular meshes

with varying complexity and show their efficacy in com-

putation of parameterizations, surface-to-surface distortion-

minimizing mapping, and also for mapping across collec-

tions of shapes. We also provide comparison to baseline

methods. In summary, our main contribution is introducing

neural surface map as a novel representation and utilizing

it towards addressing a variety of geometry processing ap-

plications. We particularly stress the modular nature of the

representation that enables harnessing the power of current

deep learning frameworks to solve many (classical) shape

analysis tasks in a uniform framework. Code available from

the project page http://geometry.cs.ucl.ac.

uk/projects/2021/neuralmaps/.

2. Related Works

2.1. Surface maps

Mappings of surfaces (mostly, meshes) is an active re-

search area. Usually, algorithms compute surface maps by

striving for a specific type of map, such as a harmonic one

[59, 48, 20, 23, 2]. In other cases the goal is to compute

a map that minimizes or bounds some notion of distortion

such as conformality - preservation of angles - [33, 30, 34],

or isometry - preservation of local distances - [57, 4, 51, 61].

Many surface mapping algorithms focus specifically on pa-

rameterizations, see [21, 54] for a more detailed review. On

the other hand, the task of computing mappings between

two surfaces is a long-studied and notoriously hard prob-

lem. Our work uses the popular concept of a common base

domain to which two surfaces are mapped, to define the sur-

face map via the overlay of the two maps in the base do-

main, which can either be a coarse mesh [32, 53, 31, 12] or

a planar domain [5, 61, 6, 3]. The resulting surface map can

be optimized via direct mesh-mesh intersection at the price

of yielding an optimization problem with a significant com-

binatorial part [53], due to the discreteness of the triangles.

Otherwise, the properties of the resulting map are ignored at

the hope that optimizing the maps into the common domain

will be sufficient [4].

Soft notions of maps such as Functional Maps [46] en-

able a parametric definition of fuzzy maps which can be
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Figure 2. Parameterizations of the Bimba (a), rhino (b), Tosca hand (c) and FAUST (d) models represented via overfitted neural maps. The

models are colored based on deviation from source models. Distortions, if any, introduced by the mappings are not considered at this stage.

used in a deep learning context [35, 19], however they de-

fine fuzzy correspondences and not a continuous surface

map from one surface to another.

Cycle-consistency [44, 29] is a trait of maps between a

collection of surfaces, that ensures that the set of surfaces

are in global correspondence by ensuring that mapping a

point across random shapes until reaching the source shape

maps the point back to itself. We present the first method to

minimize the distortion of a cycle-consistent collection of

maps.

2.2. Neural surface representation

Atlas-based representations have been prevalent in geo-

metrical deep learning, mostly focusing on generative and

analysis tasks (e.g. segmentation), but not on raw represen-

tation of surface mapping.

Many works consider UV-mapping a 3D surface, render-

ing surface functions as a 2D image, and applying a neural

network to the images [55, 41, 10, 27]. Representing sur-

faces as regularly-sampled image grids suffers from high

distortions in the mapping, where large surface areas can

be mapped to sub-pixel regions. Some works apply neu-

ral networks directly on meshes [28, 37]. Generative tech-

niques, such as FoldingNet [63] and AtlasNet [25] propose

to alleviate this issue by using a neural network to approxi-

mate the atlas map from 2D to 3D as a continuous function

conditioned on a latent shape code. Many extensions have

been proposed including regularizing differential properties

of the mapping [9], optimizing for elementary shape of the

atlas [18], and forcing surfaces to align with the level set of

shape’s implicit function [49].

While our network architectures are inspired by these

prior techniques, as we also train a neural module that maps

2D points to mesh surfaces, they have very different under-

lying objectives. The aforementioned methods aim at train-

ing a network to reconstruct shapes, conditioned on a latent

code. Our work is distinct from them, in that it focuses on

considering each neural network as a unique, single surface

map, and using this representation to solve classic geometry

processing problems in surface mapping.

2.3. Neural shape representation

In addition to surface-based representations many alter-

natives have been used, such as voxels [38, 22, 13, 16], point

clouds [1, 58], meshes [15], and implicit functions [47].

From these techniques only the neural implicit represen-

tations do not suffer from discretization artifacts, since

they use neural modules to represent continuous functions,

mapping a point in 3D to an occupancy value. Simi-

larly to surface-based methods they aim to create a shared

latent space for all shapes, and various extensions have

been proposed, such as enforcing unit gradient to satisfy

the Eikonal equation [24], and sign-agnostic version of

this normalization [8, 7]. Littwin and Wolf in [36] intro-

duce a meta-learning approach closely related to HyperNet-

works [26] for implicit representations. A meta-model f

regress weights θg for the implicit function g, which de-

scribes the signed distance field for a specific shape. Al-

though the approaches introduced above are very success-

ful, they focus on generalizing over a plethora of models

rather than represent a single one. Hence, they all present

artefacts and thus can only be used as a rough proxy to the

actual geometry and cannot be regarded as neural maps in a

strict sense.

Davies et al. [17] overfit neural networks to implicit

fields of individual shapes, as a compact representation for

their geometry. Implicit fields have also been used for

multi-view reconstruction, where Sitzmann et al. [56] op-

timize a neural network that represents a single shape, with

the loss that favors this representation to be consistent with

observed views of the object. Following the trends from

[60, 43], the proposed network learns to project the input

into high-frequency features, hence learning in such do-

main. Although these techniques are similar to ours in that

they use overfit networks to represent geometry, they focus

on implicit surfaces and do not provide any mechanisms
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for inter-surface mapping. In contrast, we encode explicit

surfaces via neural maps, and demonstrate that these maps

can be composited and used for inter-surface mapping prob-

lems.

Lastly, a work related to our data generation method,

[62] suggest overfitting an atlas to a point cloud as a method

for surface reconstruction. They however focus on the task

of inferring the surface topology via overfitting, while we

simply estimate a given map which already inholds the

topological data with a neural network, and instead focus

on the differentiability and composability properties of it,

for geometry representation and for optimizing other maps

composed with the parameterization.

3. Method

We now define neural surface maps and how to compute

and optimize them.

3.1. Neural Maps

We use the term neural surface map to refer to any neural

network considered as a function φ : R2 → R
n, where the

output dimension is 2 or 3. Indeed, this ensures the map’s

image is always a 3D surface, and, assuming the map is

non-singular, also a 2-manifold.

Neural surface maps can be seen as an alternative method

to represent a surface map that holds two main advantages:

differentiability and ability to be composed with other neu-

ral maps. In short, this enables us to easily compose neu-

ral maps φ ◦ ψ, and define an objective over the compo-

sition o (φ ◦ ψ) which can be differentiated and optimized

via standard (deep learning) libraries and optimizers with-

out the need to write tailor-made code to handle new objec-

tive, work with combinatorial mesh representations, or deal

with the notoriously-hard map composition problem.

Furthermore, we can choose any size, architecture and

activation functions for our networks, and, thanks to the

universal approximation theorem [14], know there always

exists a network capable of approximating a given surface

function.

We obtain and manipulate neural surface maps via two

processes – overfitting and optimization, which we detail

next.

3.2. Overfitting Neural Surface Maps

Let Ω ⊂ R
2 be the unit circle. All our neural maps

will make use of Ω as a canonical domain. Given any map

f : Ω → R
n, we can approximate it via a neural surface

map φ by using black-box methods to train the neural net-

work and overfit it to replicate f . Namely, we optimize the

least-square deviation of φ from f and the surface normal

Figure 3. Free-boundary isometric (b) and conformal (c)

parametrization of Stanford Bunny (a) model. Independently of

the size of the model, our neural maps can parametrize the input

mesh, represented as neural surface map, with very few param-

eters. Adding a constraint over the boundary shape is as simple

as regularize the mesh boundary. Initial median Dirichlet energy

Diso = 7.24 is reduced to Diso = 6.03; initial median conformal

energy Dconf = 1.29 is reduced to Dconf = 1.04.

deviation, by minimizing the integrated error

Loverfit =

�

p∈Ω

�f (p)− φ (p)�
2
+

λn

�

p∈Ω

�nφp − nfp�
2
,

(1)

where nφp is the estimated normal at p, and nfp is the

ground truth normal. In case f is indeed a continuous map,

such as a piecewise-linear map mapping triangles to trian-

gles, we can optimize this objective by approximating the

integral in Monte-Carlo fashion by summing the integrand

over a random set of sample points. Namely, to use neu-

ral surface maps to represent surfaces, we first compute a

ground truth map f by overfiting to a UV parameterization

of the mesh into 2D, computed via any bijective parameter-

ization algorithm of our choosing – in this paper, we show

results with SLIM [51], by which we achieve an injective

map of the mesh into Ω ⊂ R
2. We consider the inverse of

this map, which maps Ω back into the 3D mesh S, as our

input f : Ω → S , and overfit φ to it by minimizing Equa-

tion 1. Thus, we obtain a neural representation of the sur-

face. More specifically, this is a mapping into the surface,

endowed with specific UV coordinates, with point φ (x, y)
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Figure 4. Evolution of surface to surface optimization between Igea and David. Final median Dirichlet energy Diso = 18.25.

having UV coordinates x, y. Fig. 2 shows several exam-

ples of such overfitted neural maps and their faithfulness to

the original geometry. Our method can faithfully represent

smooth shapes as well as those having sharp edges. Note

that we assume that the objects are or have been cut open to

be homeomorphic to a disc.

Before progressing to discussing how can we compose

maps and optimize them, we define the distortion measures

we wish to optimize.

3.3. Surface Map Distortion

We wish to optimize several energies related to neural

surface maps. Similarly to [9], for a neural map φ : Ω →
R

n, we denote by Jpφ ∈ R
n×2 the matrix of partial deriva-

tives at point p ∈ Ω, called the Jacobian of φ. The Jacobian

essentially quantifies the local deformation at a point. Let-

ting Mp = JT
p Jp, we subsequently can quantify the sym-

metric Dirichlet energy [51],

Diso =

�

Ω

trace (Mp) + trace
�

(Mp + εI)
−1

�

(2)

where I is the identity matrix, added with a small constant

�, set to 0.01, to regularize the inverse.

Likewise, we can define a measure of conformal distor-

tion via

Dconf =

�

Ω

�

�

�

�

�

trace (Mp)

�Mp�
2

Mp − I

�

�

�

�

�

2

. (3)

We evaluate the integrals by random sampling of the func-

tion in the domain.

Next, we show how to define surface-to-surface maps via

various compositions of the maps and optimize their distor-

tion, in the pairwise and in the shape collection setting.

3.4. Geometry-preserving optimization via compo-
sition

Our basic representation of 3D geometries is, as dis-

cussed above, via an overfitted neural surface map φ : Ω →
R

3 that approximates a given map f . We now treat φ as our

de-facto representation of the geometry. Our goal is to opti-

mize various properties relating to the surface map, without

affecting the geometry. However, optimization of the map

is not trivial since it will immediately change our 3D geom-

etry. We propose a solution to completely avoid this issue,

next.

Assume we are given a neural surface map representing

some surface φ : Ω → S; we wish to optimize the distortion

D (φ) of the map. It is immediate to optimize φ itself with

respect to our differentiable notion of distortion, however

that will cause the map to change, and thus its image, the

3D surface, will change and could, for instance, flatten to

the plane. To overcome this, we suggest introducing another

neural surface map h : Ω → Ω. We can now define a new

map, φh = φ ◦ h. As long as we solely optimize h and

ensure it is onto Ω, we are guaranteed that the image of

φh is still the original image of φ, i.e., respects the original

surface.

We can now optimize the distortion of φh, by optimiz-

ing h and keeping φ fixed, thereby finding a map from Ω

to S which is (at least a local) minimizer of the distortion

measure of our choice:

min
h

D
�

φh
�

.

The distortion is a differentiable property of the map and

hence is readily available, e.g., via automatic differentia-

tion. In fact, composition, and minimization of distortion

can be achieved in a mere few lines of code in Pytorch.

We can now consider composing more than two of these

maps, to enable maps into more intricate domains.

3.5. Compositing Neural Maps

Map composition via common domains. One of the

many advantages of our representation’s composability is

to enable representing maps between a pair of surfaces, us-

ing the classic method of a common domain, as depicted

in Figure 1: we posses two overfitted neural maps, φ,ψ :
Ω → R

3, respectively representing two surfaces S, T , and

we wish to define and optimize an inter-surface mapping

between these two 3D surfaces, f : T → S.
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To address the above

problem, we define as be-

fore a map h : Ω → Ω and

the composition ψh = ψ ◦
h. At first glance, it would

seem that in this case, to

map a point from T to S ,

we will need to consider the map ψh ◦ φ−1, which includes

an inverse of the entire map, that is of course not readily

tractable.

However, we can define the map f via the following sim-

ple definition: for any point p ∈ Ω, f is implicitly defined as

the map satisfying f ◦ φ � ψh, or in simple words: for any

point p ∈ Ω, f matches the image of p under φh with the

image of p, mapped through h and then through ψ (refer to

Figure 1 for an illustration). This definition is known as the

common domain definition of a map and has been used in

many works [32, 53, 31, 12, 5, 61, 6, 3]. It is easy to verify

that this definition is identical to the one using the inverse,

as long as the inverse exists, and can still provide a bijective

map between the surfaces even in cases where it does not

exist (cf., [61, 4]).

Computing distortion in the common domain. Even

though f itself is not tangible for optimization, as it is im-

plicitly defined by h, luckily the only differential quantity

we need from f to compute the distortion, is the Jacobian

of f , denoted Jqf at point q = φ (p). Using basic differen-

tial calculus arithmetic, Jqf can be derived to be exactly

Jqf = Jpψ
h (Jpφ)

−1
, (4)

which is composed of the Jacobian of ψ and the inverted

Jacobian of φ at point p, both readily available. Hence to

optimize the distortion of f , we can take (4), and plug it

as the Jacobian used to define M in one of the distortion

measures (2),(3), which we denote as D (f).

Optimizing h for bijectivity. In order for h to indeed

be a well-define surface map, it needs to map exactly bi-

jectively (i.e., 1-to-1 and onto) to the source domain of ψ,

which is Ω. To ensure that, we only need to ensure that h

has a positive-determinant Jacobian everywhere, and maps

to the target boundary injectively. We optimize h to map the

boundary onto itself, via the energy

B (h) =

�

p∈∂Ω

σ (h (p)) , (5)

where σ is the squared signed distance function to the

boundary of Ω. Note that the boundary map is free to slide

along the boundary of Ω during optimization, enabling the

boundary map to change. This is true for all points on the

boundary, except those mapped to the four corners which

are fixed to place and are essentially keypoint constraints

between the two models.

Further, we also optimize h to encourage its Jacobian’s

determinant to be positive, via

G = λinv

�

max (−sign (|Jh|) exp (− |Jh|) , 0) . (6)

Keypoint constraints. Lastly, in many cases, a sparse set

of corresponding key points on the two surfaces are given,

and it is required that the surface map f maps those points

to one another. Given keypoints on S, we can, in a pre-

process before optimization, find their preimages in Ω, to

get a set of points P s.t. φ (Pi) maps to the ith keypoint.

We likewise can find the preimages of the keypoints from

T and their preimages Q under ψ. If these key points are

required to be mapped to one another between the two sur-

faces by f , we can achieve that by requiring h (Pi) = Qi,

which guarantees the induced f maps the points correctly.

We optimize for that equality by reducing its least-squares

error:

C (h) = λC

�

i

�h (Pi)−Qi�
2

2
. (7)

To facilitate the optimization, we apply a rotation, R, to the

input of h. R is pre-computed from the landmarks.

Optimization for surface-to-surface maps. To compute

the surface map, we optimize the distortion of f with re-

spect to h, while ensuring h respects the mapping con-

straints

min
h

D (f) + C (h) +B (h) +G (h) . (8)

This yields a map h that maps onto the domain square,

and represents a distortion-minimizing surface map f that

maps the given sets of corresponding keypoints correctly,

as shown for instance in Figure 1.

Cycle-consistent surface mapping. We also extend our

method to discover inter-surface mapping among a collec-

tion of k surfaces S1,S2, ...,Sk represented respectively via

neural maps φ1,φ2, ...,φk, we can define a cycle consis-

tent [44, 29] set of surface maps by considering k addi-

tional neural maps, hi : Ω → Ω, define the composition

φh
i = φi ◦ hi, and then define the surface-to-surface maps

Fi→j : Si → Sj via Fi→j ◦ φ
h
i � φh

j . This naturally allows

extracting a set of mutually consistent maps while addition-

ally optimizing for (all pairs) surface-to-surface maps, see

Figure 6. Note that achieving similar qualities via classic

methods is significantly challenging, and to the best of our

knowledge, while previous methods could compute cycle

consistency, none could optimize for true surface-surface

distortion minimization over the entire collection.
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Figure 5. Surface maps between a neural surface mapping repre-

senting the Bimba model, into several surfaces represented directly

via analytic functions. Colors are based on the normals of Bimba

model. Please refer tot he supplemental for further visualizations.

4. Experiments

We use our neural-mapping representation in the context

of various mapping problems, such as surface parameteri-

zation, inter-surface mapping, and mapping a collection of

shapes. See the supplementary material for more examples.

Neural Mapping. For all surfaces shown in this paper, we

render the reconstructions obtained with our neural map-

ping representation. Note how our overfitting procedure is

able to capture even very detailed features of the original

shape with a high fidelity. Figure 2 illustrates the differ-

ence between our reconstruction and the input mesh (high-

lighted in red). There are minor discrepancies between

the models in regions like hairs of the bust and paws of

the rhino. We observe that our reconstructions tend to be

slightly smoother than the original shapes due to the use of

softplus.

Surface Parameterization. The main advantage of neural

mapping is not in representing the surfaces, but in represent-

ing the mapping. We now take the map φ : Ω → R
3 from

Figure 2, and introduce another map h : Ω → R
2, where we

don’t constrain its output domain. Similarly to the discus-

sion in Subsection 3.5, we can define the map f from the 3D

model implicitly via as f (φ (p)) = h (p) for all p ∈ Ω. We

then minimize the isometry distortion of f (Eq. 2), using

the method to extract the Jacobian discussed in Subsection

3.5. Note that this objective is different from the one that

was used to produce φ, hence we undo the original param-

eterization’s distortion by compositing the neural map with

a newly optimized map in Figure 3. See the supplementary

for more results.

In contrast to UV parameterizations of meshes, the

complexity of our optimization for this composition is

completely independent of the resolution of the geometry.

Surface-to-surface Maps. We can obtain a surface-to-

surface map by compositing neural maps with a map

between two atlases, as discussed in Subsection 3.5.

In Figure 4, we show the evolution of the map during

optimization. Note how despite significant geometric

differences between surfaces, the result is a bijective,

low-distortion mapping. Please see more such maps in the

supplementary.

Composition with Analytical Maps. Our method can

optimize an inter-surface map f from φ,ψ just as well when

ψ is not a neural map, but rather an analytical mapping

defining some surface. Indeed, only h itself is required to

be neural in our formulation of surface-to-surface maps.

In Figure 5, we show mappings of Bimba into three such

analytical surfaces. In this case, we optimize the conformal

distortion (3) of f . Please refer to the supplementary for

further visualizations.

Cycle-consistent Mapping for Collections of Surfaces.

Finally, we show that thanks to the compose-ability of neu-

ral surface maps, our method can be efficiently applied

to cycle-consistent mapping problem for a collection of

shapes. Furthermore, since we use a common domain, the

maps are guaranteed to be cycle-consistent, as in [44, 29].

We minimize the isometric distortion of the surface-to-

surface maps between all pairs of surfaces in a collection

of three models, following the method discussed in Subsec-

tion 3.5. Figure 6 illustrates that we were able to obtain

cycle-consistent low distortion maps between all shapes in

the collection. We used one keypoint on the nose and shoul-

ders of each model to ensure correct alignment. See the

supplementary for more collection-maps.

Baseline comparison. To validate neural surface maps,

we offer visual comparisons with the classic inter-surface

method [53] and Mandad et al. [40]. Schreiner et al. fails to

produce smooth maps while matching landmarks: respec-

tively for the bust and animal shown in Fig. 7, [53] presents

8.58% and 8.54% triangles flips with a median Diso = 4.90
and Diso = 7.00. Similarly, Mandad et al. achieve a me-

dian Diso = 7146, with 49.91% of flips, and Diso = 10669
with 49.86% of flips, see Fig. 8. Note, [40] introduces dis-
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Figure 6. Collection mapping. We map from one model to the

other through a neural map. We then minimize the distortion be-

tween each different model. Cycle consistency is ensured by con-

struction.

(a) source (b) [53] (c) ours
Figure 7. Comparison with inter-surface mapping [53].

continuities in the map, resulting in large distortion and mis-

alignment. On the other hand, our method offer a continu-

ous, properly aligned, map. Numerically, our map for busts

exhibit Diso = 7.00 with no triangle flips, Diso = 8.56 and

0.03% flips for animal.

4.1. Implementation Details

In all our experiments, we use a neural network consist-

ing of ten-layer residual fully-connected network, with 256

hidden units per layer, with a Softplus activation function.

We use λn = 0.01, λB = 106, λinv = 102, λC = 103

in all experiments. We sample the initial mesh uniformly

with 500k points. Since our goal is to fully-optimize the

networks, they are trained until the gradient’s norm drops

below a threshold of 0.1. In all cases, we optimize the

network with and RMSProp, and initialize the optimization

(a) source (b) [40] (c) ours
Figure 8. Comparison with state of art shape correspondence [40].

procedure with a learning rate of 10−4 and momentum 0.9,

the step size is modulated with [39]. Similarly, maps used

for surface mapping are four-layer fully-connected network

of 128 hidden units, with Softplus. In general, overfitted

networks converge in 3-7h based on the complexity of the

model, while, surface-map and collection-map optimization

take around 3h to reach a stable configuration.

5. Conclusions and Future Works

We introduced neural surface maps as a core representa-

tion for surfaces that is easily differentiable and compose-

able. Using the common domain approach, we can easily

use these traits to optimize for different properties. Over-

fit to individual meshes allows encoding shapes as network

weights, and subsequently optimize maps while keeping

the surface approximation quality fixed. We demonstrated

the universality of neural maps addressing a wide range

of challenging classical tasks including parameterization,

surface-to-surface distortion minimization, and extracting

maps across a collection of shapes.

Our work has several limitations. For one, we only dis-

cussed representing disk-topology surfaces. Other topolo-

gies can be approached with cuts. Second, we relied on the

assumption of h being bijective and mapping the keypoints

correctly; in theory, we cannot guarantee that this require-

ment is upheld, however, in our experiments, it is rare for

this condition to be violated.

We see many immediate uses to the differentiability and

composability of our representation, such as applying dif-

ferential geometry operators to the models as well as solv-

ing PDEs on them. Resorting to neural network general-

ization capabilities can bring large high-resolution dataset

within our reach, exposing neural surface maps to applica-

tions like segmentation and classification.
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Sharma, Peter Wonka, and Maks Ovsjanikov. ZoomOut:

Spectral upsampling for efficient shape correspondence. 2

[43] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing scenes as neural radiance fields for view syn-

thesis. In European Conference on Computer Vision, pages

405–421. Springer, 2020. 3

[44] Andy Nguyen, Mirela Ben-Chen, Katarzyna Welnicka,

Yinyu Ye, and Leonidas Guibas. An optimization approach

to improving collections of shape maps. Computer Graphics

Forum, 30(5):1481–1491, 2011. 3, 6, 7

[45] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian

Butscher, and Leonidas Guibas. Functional maps: A flexible

representation of maps between shapes. 31(4):30:1–30:11. 2

[46] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian

Butscher, and Leonidas Guibas. Functional maps: a flexible

representation of maps between shapes. ACM Transactions

on Graphics (TOG), 31(4):1–11, 2012. 2

[47] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In Proc. CVPR, pages 165–174, 2019. 3

[48] Ulrich Pinkall and Konrad Polthier. Computing discrete min-

imal surfaces and their conjugates. Experimental Mathemat-

ics, 2:15–36, 1993. 2

[49] Omid Poursaeed, Matthew Fisher, Noam Aigerman, and

Vladimir G. Kim. Coupling explicit and implicit surface rep-

resentations for generative 3d modeling. ECCV, 2020. 3

[50] Emil Praun, Wim Sweldens, and Peter Schröder. Consis-
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