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Abstract

Recently, learning-based approaches have achieved im-

pressive results in the field of low-light image denoising.

Some state of the art approaches employ a rich physical

model to generate realistic training data. However, the per-

formance of these approaches ultimately depends on the re-

alism of the physical model, and many works only concen-

trate on everyday photography. In this work we present a

denoising approach for extremely low-light images of per-

manently shadowed regions (PSRs) on the lunar surface,

taken by the Narrow Angle Camera on board the Lunar

Reconnaissance Orbiter satellite. Our approach extends

existing learning-based approaches by combining a phys-

ical noise model of the camera with real noise samples and

training image scene selection based on 3D ray tracing to

generate realistic training data. We also condition our de-

noising model on the camera’s environmental metadata at

the time of image capture (such as the camera’s tempera-

ture and age), showing that this improves performance. Our

quantitative and qualitative results show that our method

strongly outperforms the existing calibration routine for the

camera and other baselines. Our results could significantly

impact lunar science and exploration, for example by aiding

the identification of surface water-ice and reducing uncer-

tainty in rover and human traverse planning into PSRs.

1. Introduction

Low-light image denoising is an important field of com-

puter vision. Low-light environments occur in many dif-

ferent applications, such as night-time photography, astron-

omy and microscopy [4, 7, 50], and the images captured

usually have very poor quality. Fundamentally, this is due

to the very limited number of photons arriving at the cam-

era, meaning that noise sources such as photon noise and

sensor-related noise strongly dominate [7, 22].

Direct approaches for removing these noise sources in-

clude increasing the exposure time or by using burst pho-

tography and aligning and combining the images during

post-processing. However, these approaches have signif-

icant downsides; for example longer exposure times can

cause blurring and burst photography can still be sensitive

to dynamic scenes [18, 20]. Instead, image denoising can be

applied, for which there exists a rich literature [3, 13, 11].

An emerging approach is to use learning-based denois-

ing methods on short exposure images [4, 46, 48]. Whilst

promising, a disadvantage is that large amounts of labelled

training data are often required to prevent overfitting, which

can be expensive to collect, or unavailable [4, 50, 1]. Some

recent methods alleviate this problem by using physical

models to generate synthetic training data [46], but ulti-

mately the generalisation performance depends on the re-

alism of the physical model.

Furthermore, many recent works focus on denoising

low-light images of everyday scenes [4, 20, 46, 35]. In

this work we present a denoising approach for a specialised

set of extremely low-light images; namely those of the Per-

manently Shadowed Regions (PSRs) on the lunar surface,

taken by the Narrow Angle Camera (NAC) on board the

Lunar Reconnaissance Orbiter (LRO) satellite [6, 38]. Im-

proving the quality of these images could have significant

scientific impact, for example by enabling the detection of

science targets and obstacles in PSRs, reducing the uncer-

tainty in rover and human traverse planning and aiding the

identification of surface-exposed water-ice [26].
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Whilst the NAC is a scientific camera operating in a re-

mote environment, many of its underlying noise sources are

the same as those found in other applications. In this work

we extend existing learning-based methods in several re-

spects. Firstly, in order to avoid overfitting and improve

generalisation performance, we combine a realistic physi-

cal noise model of the camera with real noise samples from

dark frames to generate realistic training data. We also use

3D ray tracing to select training image scenes which best

match the illumination conditions expected in PSRs. Sec-

ondly, instead of using the noisy image as the only input to

the learned model as is typically done [4, 46, 48], we con-

dition our model on the camera’s environmental metadata

available at the time of image capture, allowing us to ac-

count for the effect of external factors such as camera tem-

perature on the noise. Finally, many recent works focus on

images from CMOS sensors, whilst we formulate a physical

noise model for a CCD sensor [4, 46, 48, 28, 44].

Our main contributions are summarised as follows:

• We present a novel application of learning-based low-

light image denoising for images of PSRs on the lunar

surface.

• We extend existing approaches by combining a physi-

cal noise model with real noise samples and scene se-

lection based on 3D ray tracing to generate training

data; and by conditioning our model on the camera’s

environmental metadata at the time of image capture.

• Our quantitative and qualitative results show that our

method strongly outperforms the existing NAC cali-

bration routine and other baselines.

We name our approach Hyper-Effective Noise Removal

U-Net Software, or HORUS1.

2. Related work

Image denoising is a well-studied area of computer vi-

sion [3, 13, 11, 14]. Many different approaches have

been proposed, for example those based on spatial-domain

filtering [13], total variation [40, 31], sparse representa-

tions [10, 29, 9] and transformed-domain filtering [34, 8].

Most algorithms are based on the assumption that sig-

nal and noise have different statistical properties which

can be exploited to separate them, and therefore crafting

a suitable image prior (such as smoothness, sparsity, and

self-similarity) is critical [40, 10, 8, 15]. More recently,

deep learning based methods have become hugely popu-

lar [49, 30, 45, 16, 2, 24, 23, 25]. In these approaches,

1The name HORUS represents our interest in complementing the exist-

ing LRO NAC image processing pipeline, named Integrated Software for

Imagers and Spectrometers (ISIS) [12]. Isis also happens to be the mother

of Horus in Egyptian mythology.

deep neural networks are used to learn an implicit repre-

sentation of signal and noise. Approaches such as DnCNN

[49] have shown significant improvements over popular tra-

ditional methods such as BM3D [8].

For denoising low-light images, simple traditional meth-

ods include histogram equalisation and gamma correc-

tion [5], whilst more sophisticated methods include using

wavelet transforms [27], retinex-based methods [32, 47, 17]

and principle component analysis [41]. Deep learning

methods are becoming popular too [48, 46, 28, 50, 4, 36,

35]. For example, [4] proposed an end-to-end network with

a U-Net [39] architecture to convert short-exposure images

to their corresponding long-exposure images, whilst [48]

proposed a frequency-based enhancement scheme.

Whilst promising, a major disadvantage of deep learning

methods is that they often require large amounts of train-

ing data [1, 4, 50]. An alternative approach is to syntheti-

cally generate noisy images, although many works use sim-

ple additive Gaussian noise models or similar, leading to

poor performance on real images [33]. A potential improve-

ment is to incorporate both synthetic and real images into

the training set [16]. For low-light images, [46] focused

on improving the realism of their synthetic data by incor-

porating a comprehensive set of noise sources based on a

physical noise model of CMOS sensors and showed that

this performed as well as a deep neural network trained on

real clean-noisy image pairs.

Specifically for low-light PSR LRO NAC images, [42]

attempted to remove noise using a Canny edge detector and

a Hough transform with local interpolation. Their method

worked sufficiently well for images with relatively high

photon counts but failed for low photon counts, i.e., the vast

majority of high-latitude PSRs. The current calibration rou-

tine of the camera also attempts to remove noise in the im-

ages, but is not specifically designed for images of PSRs

[38, 19]. We improve on these approaches by using state-

of-the-art learning-based low-light denoising techniques.

3. Instrument overview

The LRO has been orbiting the Moon since 2009 at an

altitude varying between 20 and 200 km and over its life-

time its NAC has captured over 2 million images of the lu-

nar surface, enough to cover the surface multiple times over

[6, 38]. The NAC consists of two nominally identical cam-

eras (“left” and “right”) which capture publicly-available2

12-bit panchromatic optical images [38, 19]. Each camera

consists of a 700 mm focal length telescope, which images

onto a Kodak KLI-5001G 5064-pixel CCD line array, pro-

viding a 10 µrad instantaneous field of view. The array

is oriented perpendicular to the direction of flight of the

satellite and 2D images are captured by taking multiple line

2lroc.sese.asu.edu/data
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Figure 1. Examples of HORUS applied to 3 real PSR images, compared to the baseline approaches. Grayscale colorbars show the estimated

mean photon count S in DN for each HORUS plot. Raw/ISIS image credits to LROC/GSFC/ASU.

Figure 2. HORUS denoising approach and physical noise model. (a) HORUS denoising workflow. The input to the workflow is the raw,

noisy low-lit image I . First a model of the dark bias and dark current is subtracted from the image, which is estimated using a convolutional

decoder from the environmental and masked pixel data available at the time of image capture. Next, the inverse nonlinearity and flatfield

corrections are applied. Lastly, residual noise sources are estimated and subtracted using a network with a U-Net architecture. (b) Physical

noise model. We assume that the raw image I contains companding noise, read noise, dark current and bias noise, photon noise and a

nonlinearity and flatfield response. The quantity we wish to recover is the mean photon signal, S. S image credit to LROC/GSFC/ASU.

scans as the spacecraft moves. Because of this motion, the

in-track spatial resolution of the images depends on the ex-

posure time as well as the spacecraft altitude and typically

both the in-track and cross-track resolution are in the range

0.5 – 2.0 m. Each camera has two operating modes, “regu-

lar” and “summed”, where the summed mode typically uses

twice the exposure time and sums adjacent pixels during im-

age capture. This is frequently used to maximise the signal

received over low-lit regions of the Moon (such as PSRs),

at the expense of halving the spatial resolution. For every

image the NAC also records over 50 fields of environmental

metadata at the time of capture, which for example includes

the camera’s temperature and orbit number, and the values

of 60 masked pixels located on the edges of the CCD.

Of central interest to this study are the NAC images of

PSRs. These are located around the lunar poles and whilst

they receive no direct sunlight, PSRs can be illuminated by

very low levels of indirect sunlight scattered from their sur-

roundings. Figure 1 (column 1) shows example raw NAC

images captured over 3 PSRs at the lunar south pole.

4. Physical noise model

In this extremely low-light setting these images are dom-

inated by noise. As part of HORUS, we propose a physical

model of this noise. The model is informed by the model

developed by [19], who carried out comprehensive charac-

terisation of the instrument before and during its deploy-

ment, as well as standard CCD theory [7], and is given by

I = N(F ∗ (S+Np))+Nb +(T +Nd)+Nr +Nc , (1)

where I is the raw image detector count in Data Numbers

(DN) recorded by the camera, N is the nonlinearity re-

sponse, F is the flatfield response, S is the mean photon

signal (which is the desirable quantity of interest), Np is
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photon noise, Nb is the dark bias, T +Nd is the dark current

noise, Nr is read out noise and Nc is companding noise. A

depiction of our noise model is shown in Figure 2 (b). In the

following we describe each noise source in greater detail.

The photon noise Np is due to the inherent randomness

of photons arriving at the CCD, and obeys

(S +Np) ∼ P(S) , (2)

where P denotes a Poisson distribution. The strength of this

noise depends on the mean rate of photons hitting the CCD,

and it represents a fundamental limitation for any sensor.

The dark bias Nb is a deterministic noise source which

is due to an artificial voltage offset applied to the CCD to

ensure that the Analogue-to-Digital Converter (ADC) al-

ways receives a positive signal, and varies pixel-to-pixel,

manifesting itself as vertical stripes in the image. Differ-

ent offsets are commanded depending on the temperature

of the NAC, and we also consider the possibility that the

bias changes over the camera’s lifetime as it degrades.

The dark current noise is generated by thermally-

activated charge carriers in the CCD which accumulate over

the exposure duration and obeys

(T +Nd) ∼ P(T ) , (3)

where T is the mean number of thermally-activated charge

carriers which depends on the CCD temperature. This noise

source varies pixel-to-pixel and with each image line and

introduces horizontal and vertical stripes in the image.

The read out noise Nr is stochastic system noise intro-

duced during the conversion of charge carriers into an ana-

logue voltage signal and is estimated by [19] to have a stan-

dard deviation around 1.15 DN for both cameras.

A perfect camera is expected to have a linear response

between the recorded DN value and the mean photon signal

S. However during laboratory characterisation [19] showed

that the response of the NAC becomes nonlinear for DN

counts below 600 DN. They proposed an empirical nonlin-

earity correction to correct for this effect, given by

N−1(x) = (x+ d)−
1

ab(x+d) + c
, (4)

where x is the recorded pixel DN value and N−1(x) is the

estimated true DN value. Here a, b, c and d are free pa-

rameters which [19] estimated through experimental cali-

bration. In this work we use the average parameter values

reported by [19] for each camera, using the same values

across all pixels. For computing the forward function N(x)
we are not aware of an analytical inverse of Equation 4 and

instead use numerical interpolation. The nonlinearity cor-

rection curves used are shown in Figure 3 (a).

The flatfield correction is used to correct for pixel-to-

pixel variations in the sensitivity of the camera, which may

be due to the optics or the detector, such as vignetting or
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Figure 3. NAC characteristics and training image selection. (a)

Nonlinearity response. Separate responses are used for the left and

right cameras. (b) Flatfield response. Separate flatfields are used

for each camera and operating mode. (c) The six compression

schemes commandable for compressing NAC images from 12-bit

values to 8-bit values. (d) Distribution of solar incidence angles

in the training set for HORUS compared to the distribution of sec-

ondary incidence angle of scattered rays using 3D ray tracing over

4 PSRs. (e) Render of the secondary illumination radiance from

ray tracing of the Shackleton crater PSR at the lunar south pole

(white indicates increased secondary illumination).

particulates on the detector. The forward response is mod-

elled by multiplying the flatfield F , which is a vector of

gain values, point-wise with each pixel. [19] experimen-

tally measured separate flatfields for each camera and each

operating mode and we use the same, shown in Figure 3 (b).

Finally, the NAC images are compressed (companded)

from 12-bits to 8-bits using a lossy compression scheme

before downlink to Earth [38]. This introduces companding

noise and represents a fundamental limit on DN resolution.

Six different compression schemes can be commanded; for

PSR images scheme 3 in Figure 3 (c) is frequently used,

which more accurately reconstructs lower DN values, lead-

ing to a maximum absolute reconstruction error after de-

compression of 2 DN for counts below 424 DN.

Compared to the noise model proposed by [19], our

noise model explicitly considers photon noise, stochastic

dark current noise, read noise and companding noise.

5. Training data generation

5.1. Hybrid noise generation

To train HORUS we generate a large dataset of clean-

noisy image pairs. Noisy images are generated by combin-

ing our physical noise model (Equation 1) with noise sam-

pled from real dark calibration frames. An example of a
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Figure 4. Example dark noise predictions generated by De-

stripeNet. (a) Histogram of orbit numbers over the dark calibration

frames. The linked line plot shows the predicted dark level using

DestripeNet for the first 70 pixels of the right camera in summed

mode when varying the orbit number and fixing the other metadata

inputs to those of a randomly selected dark frame. Color-coded

dots in the histogram show the value of the orbit number for each

line. (b) Similar set of plots for the CCD temperature. (c) His-

tograms of the difference between the DestripeNet and ISIS dark

frame predictions and the ground truth dark calibration frame over

the test set of summed mode images. (d) Example portion of a real

dark calibration frame. (e) Corresponding DestripeNet dark level

prediction. (f) Difference between (d) and (e).

real dark calibration frame is shown in Figure 4 (d). These

are captured by the NAC whenever the LRO passes over the

non-illuminated side of the Moon and nominally receive no

sunlight. We therefore assume that they sample the follow-

ing terms in our physical noise model3,

D ≃ Nb + (T +Nd) +Nr . (5)

Over 70,000 dark calibration frames have been captured,

which cover the entire lifetime of the instrument over a wide

range of camera states and environmental conditions; the

histogram of orbit numbers and CCD temperatures at the

time of image capture over the entire set are shown in Fig-

ure 4. We assume that these frames are a representative and

sufficient sample of the dark noise distribution of the cam-

era.

Given an input clean image representing the mean pho-

ton signal S̃, we generate its corresponding noisy image Ĩ

3Dark frames are compressed using scheme 1 in Figure 3 (c), which is

a lossless one-to-one mapping and so Nc is not included.

using the following equation,

Ĩ = N(F ∗ (S̃ +Np)) +D +Nc , (6)

where D is a randomly selected dark noise frame, Np

is synthetic, randomly generated Poisson noise and Nc is

the noise generated by compressing and decompressing the

noisy image through the NAC companding scheme 3. By

using a hybrid noise model, Equation 6 does not entirely

rely on the assumptions of our physical noise model and we

ensure that the distribution of noise in our training data is as

close as possible to the real noise distribution.

5.2. Image preprocessing and selection based on 3D
ray tracing

Clean images S̃ are generated by extracting millions of

randomly selected 256 × 256 image patches cropped from

NAC images of the lunar surface in normal sunlit condi-

tions. We define a sunlit image as any image with a median

DN > 200 and our assumption is that in this regime the

noise sources in Equation 1 become negligible, such that

we can use sunlit images as a proxy for S. An example

sunlit image is shown in Figure 2 (b).

An important difference between sunlit images and the

test-time images of PSRs are the illumination conditions;

whilst sunlit images are illuminated by direct sunlight,

PSRs are only illuminated by secondary (backscattered)

light. In order to match the illumination conditions of the

training data to the test-time data as best we can, we select

sunlit images with similar solar incidence angles to the sec-

ondary illumination incidence angles expected over PSRs.

3D ray tracing is performed over 4 example PSRs using

30 m/pixel spatial resolution LRO Lunar Orbiter Laser Al-

timeter elevation data [37] and a Lambertian bidirectional

reflection function. The solar incidence angle is available

as metadata for each sunlit image, and we match the distri-

bution of solar incidence angles in our training images to

the distribution of secondary illumination angles from ray

tracing, shown in Figure 3 (d).

Before using the sunlit images as training data we re-

scale their DN values to those expected for PSR images.

Each image patch is divided by its median DN value and

multiplied by a random number drawn from a uniform dis-

tribution over the range 0-60 DN, which is what we expect

for typical PSRs. Images are sampled from the entire lunar

surface with no preference on their location and in total over

1.5 million image patches S̃ are extracted for each camera

in each operating mode.

6. Experiments

6.1. Denoising workflow

The workflow HORUS uses to denoise images is shown

in Figure 2 (a). The input is the noisy low-lit image, I , af-
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ISIS DestripeNet FFT U-Net HORUS

Mode Camera L1 / PSNR / SSIM

Normal Left 5.68 / 31.12 / 0.61 5.58 / 31.33 / 0.62 4.93 / 33.38 / 0.80 1.64 / 42.50 / 0.96 1.30 / 44.63 / 0.97

Right 5.09 / 32.23 / 0.67 4.99 / 32.44 / 0.68 4.61 / 34.20 / 0.83 1.43 / 44.08 / 0.96 1.23 / 45.35 / 0.97

Summed Left 5.45 / 31.51 / 0.65 5.44 / 31.59 / 0.65 4.50 / 34.04 / 0.83 1.69 / 42.34 / 0.95 1.52 / 43.33 / 0.96

Right 4.96 / 32.48 / 0.70 4.92 / 32.59 / 0.70 4.21 / 34.82 / 0.85 1.60 / 42.93 / 0.96 1.43 / 44.02 / 0.96

Table 1. Synthetic test set performance of HORUS, compared to the baseline approaches. All metrics compare the ground truth image S̃ to

the estimated denoised image and the average performance over all images is reported. Higher is better, apart from L1 error.
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Figure 5. Synthetic test set performance of HORUS with varying

signal strengths. (a) Unscaled ground truth image S used below.

(b) Mean absolute percentage error between the ground truth im-

age and the denoised image, binned by median DN value of the

ground truth image, for HORUS and the baselines over the syn-

thetic test set of summed mode images. Filled regions show ±1

standard deviation. The image grid shows the ground truth image

from (a) scaled to different median photon counts with noise added

according to our physical model (top row), HORUS denoising of

this image (middle row) and the difference between HORUS and

the ground truth image (bottom row). Colorbar shows DN counts.

Raw image credits to LROC/GSFC/ASU.

ter decompression. First a convolutional decoder called De-

stripeNet is used to predict the dark bias and mean dark cur-

rent, given a set of environmental metadata and the masked

pixel values at the time of image capture, which is sub-

tracted from the input image. Next, the inverse nonlinearity

and flatfield corrections are applied. Lastly, a network with

a U-Net [39] architecture called PhotonNet is used to es-

timate the residual noise sources in the image, which are

subtracted from the image.

The input to DestripeNet is a vector of 8 selected envi-

ronment metadata fields available at the time of image cap-

ture (listed in Figure 2 (a)), concatenated with the masked

pixel values. Our assumption is that this vector is sufficient

to predict the dark bias and mean dark current for an im-

age. DestripeNet is trained using the real dark calibration

images as labels and a L2 loss function. Under a L2 loss

the network learns to predict the mean of its output variable

conditioned on its inputs [43], such that, under the assump-

tions of Equation 5, it estimates the quantity (Nb + T ).
Given the DestripeNet prediction (N̂b + T̂ ), the input to

PhotonNet is

J = N−1(I − (N̂b + T̂ ))/F . (7)

We train PhotonNet using the synthetic image pairs (Ĩ , S̃)
described in Sections 5.1 and 5.2. Before inputting the

noisy training images Ĩ into the network, Equation 7 is ap-

plied using their DestripeNet prediction, and we use J̃ − S̃
as training labels. Thus, PhotonNet learns to estimate the

(transformed) residual noise sources in the image, namely

the photon noise, stochastic dark current noise, read noise,

companding noise, and any residual dark bias and mean

dark current noise which DestripeNet failed to predict.

DestripeNet is trained to predict each image line sepa-

rately and is comprised of 13 1D transposed convolutional

layers with a filter length and stride of 2 and ReLU ac-

tivation functions. The number of hidden channels starts

constant at 512 and then halves every layer from 512 to

16 in the last layer. Each metadata field is independently

normalised before input. PhotonNet operates on 2D image

patches and uses a standard U-Net architecture [39] with

4 downsampling steps and 1 convolutional layer per scale

with LeakyReLU activation functions with a negative slope

of 0.1. The number of hidden channels doubles after every

downsampling step from 32 to 512. DestripeNet is trained

before PhotonNet and its predictions used for training Pho-

tonNet are pre-computed. Both networks are trained using
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the Adam stochastic gradient descent algorithm [21] with a

L2 loss function, using a batch size of 400 image lines for

DestripeNet and 10 image patches for PhotonNet. Learning

rates of 1 × 10−5 and 1 × 10−4 are used for DestripeNet

and PhotonNet respectively. We divide the synthetic im-

age dataset (Ĩ , S̃) into a training, validation and test set

(72:18:10). Finally, to account for possible differences in

the two cameras and their two operating modes, separate

networks are trained for each possible configuration.

6.2. Baselines

We compare our approach to a number of baselines;

Current NAC calibration routine (ISIS). We use the Inte-

grated Software for Imagers and Spectrometers (ISIS) [12],

which is the current calibration routine for NAC images.

The calibration removes an estimate of the dark bias and

mean dark current noise by fitting a cyclic trend to the

masked pixel values, and also applies the nonlinearity and

flatfield corrections [19].

DestripeNet only. For this case, we only subtract the De-

stripeNet prediction from the image and then apply the non-

linearity and flatfield correction, i.e. PhotonNet is not used.

Fast Fourier Transform (FFT) filtering. We develop

a hand-crafted FFT denoising algorithm. The 2D image

is transformed into the frequency domain and its zero-

frequency components are replaced with the mean of their

nearest neighbours to remove horizontal and vertical dark

noise stripes in the image. A mild low-pass filter using a 2D

Gaussian kernel with a standard deviation of 0.25 m−1 and

the nonlinearity and flatfield corrections are also applied.

End-to-end U-Net. Instead of two separate networks, we

train a single U-Net to directly estimate S̃ given Ĩ as in-

put, without using any metadata. This end-to-end strategy

is typical in many existing works [4, 28, 46]. The U-Net has

the same architecture and training scheme as PhotonNet.

All relevant baselines are trained on and/or have their

hyperparameters selected using the same training data as

HORUS, and all are tested on the same data as HORUS.

7. Results

7.1. Results on synthetic images

Table 1 shows the quantitative performance of HORUS

compared to the baselines across the synthetic test set of

images. We find that HORUS gives the strongest perfor-

mance across all metrics for this dataset, and significantly

outperforms the ISIS, DestripeNet-only and FFT baselines.

Example HORUS denoising of a synthetic test image

with varying mean photon counts are shown in Figure 5.

We also plot the mean absolute percentage error between

the ground truth image S̃ and the denoised image, binned

by median DN value of the ground truth image, for HO-

RUS and the baselines over the test set of summed mode

images. We find that the performance of all the methods

degrades with lowering photon counts, however HORUS

gives the lowest error across all DN values. The example

denoised images suggest that HORUS can denoise synthetic

images with median photon counts as low as 3-6 DN. The

difference plots suggest that the minimum feature size HO-

RUS can reliably resolve correlates strongly with the pho-

ton count, and for median photon counts of ∼12 DN this is

∼5 m.

7.2. DestripeNet results

The histogram of the error between the DestripeNet pre-

diction and the real dark calibration frame over the calibra-

tion frame test set is shown in Figure 4 (c). We find that

DestripeNet is typically able to reconstruct the dark frames

to within 1 DN. We plot scans of its prediction over the or-

bit number and CCD temperature whilst keeping the other

metadata inputs fixed. We find that these predictions are

physically interpretable: increasing the CCD temperature

increases the dark DN level, which is expected, and the vari-

ance of the prediction increases with orbit number, possibly

indicating a degradation of the instrument over time.

7.3. Results on real images

Qualitative examples of HORUS and the baselines ap-

plied to 3 real images of different PSRs are shown in Fig-

ure 1. We find that HORUS gives the most convincing re-

sults on these images; compared to the ISIS, DestripeNet-

only and FFT baselines it removes much more of the high

frequency stochastic noise in the images, and compared to

the U-Net it removes more of the residual dark noise stripes

in the image and introduces less low-frequency noise.

Ground truth qualitative verification. A limitation in this

setting is that we do not have real image pairs of noisy and

clean images to quantitatively test performance. Instead,

we verify our work by using Temporary Shadowed Regions

(TSRs). These are regions which transition between being

sunlit and shadowed over the course of a lunar day. We

compare HORUS denoised shadowed images of TSRs to

their raw sunlit images in Figure 6, using the sunlit images

as ground truth. For images with sufficient photon counts

(e.g. Wapowski crater in Figure 6) HORUS is able to re-

solve the vast majority of topographic features, e.g., impact

craters as small as ∼4 m across. For images with lower pho-

ton counts (e.g. Kocher crater in Figure 6) HORUS is able

to resolve most large-scale topographic features, although

higher frequency details are sometimes lost. In sharp con-

trast, the raw input image is affected by intense noise, mak-

ing any meaningful observations difficult. Furthermore, we

do not observe any hallucinations in the HORUS images.

Overlapping image qualitative verification. We perform

a second analysis to verify performance, by comparing three
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Figure 6. Qualitative verification of HORUS using map-projected sunlit (left) and shadowed image pairs in (a) Wapowski crater and (b)

Kocher crater; HORUS-denoised frames (center) are compared with their raw input frames (right). Some features are resolved in both

the HORUS and raw frames (blue marks), but HORUS resolves a significantly larger number of features. With decreasing photon counts

(example (b)), HORUS struggles to resolve smaller features (here less than ∼10 m across, red marks), resulting in a smoother image.

Differences in shadowing are caused by different sunlit/secondary illumination incidence angles. Raw image credits to LROC/GSFC/ASU.

Figure 7. In-PSR qualitative verification of 3 overlapping map-

projected HORUS frames with varying levels of signal (decreasing

clockwise from top left to bottom left). Some features are present

in all frames (blue), some in 2 (yellow), and some only in 1 (red).

overlapping HORUS images taken over a PSR at the lu-

nar south pole (Figure 7). Here we do not have definitive

ground truth as all images are shadowed, but we can analyse

whether topographic features appear consistent throughout

all three HORUS frames. As illustrated in Figure 7, we can

trace topographic features through all three frames. How-

ever, the size of resolvable features increases with decreas-

ing photon counts: The smallest feature we can identify in

the highest photon count frame (top left) is ∼7 m across,

while the smallest feature in the lowest photon count frame

(bottom left) is ∼14 m across. This is consistent with the

synthetic observations in Figure 5.

8. Conclusion

We have presented a learning-based extreme low-light

denoising method for improving the image quality of per-

manently shadowed regions at the lunar poles. Our work is

novel in several respects; we are the first to apply learning-

based denoising in this setting and we built on state-of-

the-art approaches by combining a realistic physical noise

model with real noise samples and scene selection based on

3D ray tracing to generate realistic training data. We also

conditioned our learned model on the camera’s environmen-

tal metadata at the time of image capture. Our quantita-

tive and qualitative results showed that our method strongly

outperformed the existing calibration routine of the camera

and other baselines. Future work will look at quantitatively

assessing HORUS using downstream tasks on real images

such as crater counting and elevation modelling. Further

refinement of our training image scene selection to specific

tasks could also be studied; for example by training our net-

works to image transition zones between PSRs and sunlit re-

gions, which are particularly relevant for future exploration

missions.
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[33] Tobias Plötz and Stefan Roth. Benchmarking denoising al-

gorithms with real photographs. In Proceedings - 30th IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR 2017, volume 2017-Janua, pages 2750–2759. Insti-

tute of Electrical and Electronics Engineers Inc., jul 2017.

2

[34] Javier Portilla, Vasily Strela, Martin J. Wainwright, and

Eero P. Simoncelli. Image denoising using scale mixtures

of Gaussians in the wavelet domain. IEEE Transactions on

Image Processing, 12(11):1338–1351, nov 2003. 2

[35] Tal Remez, Or Litany, Raja Giryes, and Alex M. Bronstein.

Deep Convolutional Denoising of Low-Light Images. ArXiv

e-prints, jan 2017. 1, 2

[36] Wenqi Ren, Sifei Liu, Lin Ma, Qianqian Xu, Xiangyu Xu,

Xiaochun Cao, Junping Du, and Ming Hsuan Yang. Low-

Light Image Enhancement via a Deep Hybrid Network.

IEEE Transactions on Image Processing, 28(9):4364–4375,

sep 2019. 2

[37] H. Riris, G. Neuman, J. Cavanaugh, X. Sun, P. Liiva, and M.

Rodriguez. The Lunar Orbiter Laser Altimeter (LOLA) on

NASA’s Lunar Reconnaissance Orbiter (LRO) mission. In

Naoto Kadowaki, editor, International Conference on Space

Optics — ICSO 2010, volume 10565, page 77. SPIE, nov

2017. 5

[38] M. S. Robinson, S. M. Brylow, M. Tschimmel, D. Humm,

S. J. Lawrence, P. C. Thomas, B. W. Denevi, E. Bowman-

Cisneros, J. Zerr, M. A. Ravine, M. A. Caplinger, F. T.

Ghaemi, J. A. Schaffner, M. C. Malin, P. Mahanti, A. Bar-

tels, J. Anderson, T. N. Tran, E. M. Eliason, A. S. McEwen,

E. Turtle, B. L. Jolliff, and H. Hiesinger. Lunar reconnais-

sance orbiter camera (LROC) instrument overview. Space

Science Reviews, 150(1-4):81–124, jan 2010. 1, 2, 4

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

ArXiv e-prints, may 2015. 2, 6

[40] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear

total variation based noise removal algorithms. Physica D:

Nonlinear Phenomena, 60(1-4):259–268, nov 1992. 2

[41] Joseph Salmon, Zachary Harmany, Charles Alban Deledalle,

and Rebecca Willett. Poisson noise reduction with non-

local PCA. Journal of Mathematical Imaging and Vision,

48(2):279–294, apr 2014. 2

[42] H. M. Sargeant, V. T. Bickel, C. I. Honniball, S. N. Martinez,

A. Rogaski, S. K. Bell, E. C. Czaplinski, B. E. Farrant, E. M.

Harrington, G. D. Tolometti, and D. A. Kring. Using Boul-

der Tracks as a Tool to Understand the Bearing Capacity of

Permanently Shadowed Regions of the Moon. Journal of

Geophysical Research: Planets, 125(2), feb 2020. 2

[43] Padhraic Smyth. On Loss Functions Which Minimize

to Conditional Expected Values and Posterior Probabili-

ties. IEEE Transactions on Information Theory, 39(4):1404–

1408, jul 1993. 6

[44] Richard Szeliski. Computer Vision: Algorithms and Applica-

tions. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

2

[45] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

Net: A Persistent Memory Network for Image Restoration.

In Proceedings of the IEEE International Conference on

Computer Vision, volume 2017-Octob, pages 4549–4557. In-

stitute of Electrical and Electronics Engineers Inc., dec 2017.

2

[46] Kaixuan Wei, Ying Fu, Jiaolong Yang, and Hua Huang. A

Physics-based Noise Formation Model for Extreme Low-

light Raw Denoising. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition, 2020. 1, 2, 7

[47] Jun Xu, Yingkun Hou, Dongwei Ren, Li Liu, Fan Zhu,

Mengyang Yu, Haoqian Wang, and Ling Shao. STAR: A

Structure and Texture Aware Retinex Model. IEEE Transac-

tions on Image Processing, 29:5022–5037, jun 2020. 2

[48] Ke Xu, Xin Yang, Baocai Yin, and Rynson W.H. Lau.

Learning to restore low-light images via decomposition-and-

enhancement. In Proceedings of the IEEE Computer Soci-

6326



ety Conference on Computer Vision and Pattern Recognition,

pages 2278–2287, 2020. 1, 2

[49] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a Gaussian denoiser: Residual learning

of deep CNN for image denoising. IEEE Transactions on

Image Processing, 26(7):3142–3155, aug 2017. 2

[50] Yide Zhang, Yinhao Zhu, Evan Nichols, Qingfei Wang,

Siyuan Zhang, Cody Smith, and Scott Howard. A

poisson-gaussian denoising dataset with real fluorescence

microscopy images. Proceedings of the IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recogni-

tion, 2019-June:11702–11710, 2019. 1, 2

6327


