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Abstract

We focus on the problem of training deep image clas-
sification models for a small number of extremely rare
categories. In this common, real-world scenario, al-
most all images belong to the background category in
the dataset. We find that state-of-the-art approaches
for training on imbalanced datasets do not produce ac-
curate deep models in this regime. Our solution is to
split the large, visually diverse background into many
smaller, visually similar categories during training. We
implement this idea by extending an image classification
model with an additional auxiliary loss that learns to
mimic the predictions of a pre-existing classification
model on the training set. The auziliary loss requires no
additional human labels and regularizes feature learning
in the shared network trunk by forcing the model to dis-
criminate between auziliary categories for all training
set examples, including those belonging to the monolithic
background of the main rare category classification task.
To evaluate our method we contribute modified versions
of the iNaturalist and Places365 datasets where only a
small subset of rare category labels are available during
training (all other images are labeled as background).
By jointly learning to recognize both the selected rare
categories and auxiliary categories, our approach yields
models that perform 8.8 mAP points higher than state-
of-the-art imbalanced learning baselines when 98.30%
of the data is background, and up to 42.3 mAP points
higher than fine-tuning baselines when 99.98% of the
data is background.

1. Introduction

Image classification tends to be evaluated on manu-
ally curated datasets that are clean and balanced [32,
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Figure 1. Top: Training classification models for rare cate-
gories is difficult because of the limited information content
and extreme label imbalance provided by a large “back-
ground” category. During training we address these issues
by splitting the background category into a large set of smaller
categories according to pseudo-labels produced by an exist-
ing, pre-trained model. Bottom: positive (blue outline) and
negative (orange outline) images for a fine-grained lizard
category in iNaturalist. Even though the negatives all have
the same label (background) they encompass a diverse set
of hard negatives (hard to distinguish from the positives)
and a vast number of easy negatives. Background splitting
extracts value from all negatives by forcing the model to
predict pseudo-labels for all images.

20]. Recent focus has shifted toward in-the-wild data
that features long-tail distributions [39, 33, 43, 44, 47],
but these datasets are still “artificial” in that every
curated image is a positive example of some cate-
gory [23, 23, 3, 3, 39]. In contrast, in many real-world
settings, categories of interest are sufficiently rare that
it is far more common for images to not exhibit any
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categories of interest. As a consequence, it is typically
easy to collect a large number of easy negative instances
(e.g., with weak- or semi-supervised methods [30, 5], or
as a by-product of multi-label annotation [7], or with
random sampling), but finding positives and hard nega-
tives is difficult. For example, consider a newly collected
dataset (e.g., obtained by an autonomous vehicle fleet)
where a new category — an e-scooter — is annotated.
This is a highly imbalanced binary image classification
problem, as the vast majority of collected images will
not contain an e-scooter (sparse positives). If additional
categories are desired, the task becomes a multi-way
image classification problem where the vast majority of
images belong to the “background” category.

This work focuses on the problem of training accurate
deep models for image classification of a small number
of rare categories. In these scenarios, not only is there a
small number of positives per category, but the overall
number of positive examples for all categories is domi-
nated by the number of background images (e.g., our
experiments include cases where 99.98% of the dataset
is background). We find that even state-of-the-art meth-
ods for deep imbalanced classification based on data
sampling [13] or loss re-weighting [3] fail to produce
accurate models in this extremely imbalanced setting.

Contributions: We propose a surprisingly simple
method to address learning challenges posed by severe
background dominance: we split the visually diverse, but
monolithic background category into many smaller, visu-
ally similar categories during training. However, rather
than modify the main (rare category) classification loss
of the model to identify more categories, our approach
adds an auxiliary loss that forces the model to mimic
the predictions of an existing, pre-trained image classifi-
cation model on all training examples, the vast majority
of which constitute “easy” background instances in the
main rare category classification task. Jointly learn-
ing using the main classification loss and the auxiliary
classification loss regularizes the rare category classi-
fication model by forcing it to discriminate between
pseudo-categories for all training examples and helps
reduce over-fitting to the small number of rare cate-
gory positives. Most importantly, this solution transfers
knowledge of an auxiliary classification task into the
target model via distillation—it only requires access
to the pre-trained model, not access to any additional
labels beyond those used for the main classification task.

Benchmarking: Although background dominant
scenarios are common in real-world applications of
computer vision, no academic datasets directly tar-
get this important task. To evaluate our methods and
facilitate future rare category learning research, we
contribute modified label distributions for two exist-

ing large-vocabulary datasets: the highly-imbalanced
species-classification iNaturalist dataset [39], and the
scene-classification Places365 dataset [15]. In both cases
we select only a small number of categories as targets
of interest, and merge all other categories into a sin-
gle, large background category. These new label sets
model real-world training scenarios in that they contain
a small number of rare categories, and a vast majority
of images exhibit only background. (We will release
these modified label distributions to the public.)

Analysis: We find that state-of-the-art techniques
for imbalanced classification [13, 3] perform worse than
standard fine-tuning in scenarios where the background
category makes up more than 98% of the dataset. In
contrast, background splitting outperforms prior art by
8.9 mAP points. In extreme cases of a single, rare fore-
ground category (e.g., 99.98% background), background
splitting yields mAP improvements from 10.6 to 52.9.
We also evaluate the benefits of background splitting
under different amounts of background dominance, and
varying semantic overlap between the auxiliary task
and main task categories.

2. Related Work

Category imbalance. Training deep classifiers on
heavily imbalanced data is challenging because stan-
dard losses focus on majority categories (failing to learn
minority categories) or over-fit to the few positive ex-
amples of minority categories. Most methods for learn-
ing under long-tail, imbalanced datasets [10] rely on
techniques such as re-balancing, re-weighting/category-
conditioned adjustments to final loss values, and cat-
egory clustering. Re-balancing methods alter the
training distribution to simulate traditional balanced
training sets [3, 40]. Recent work showed re-balancing
should be limited to a final stage of model training to en-
courage more general feature representations [13, 3, 42].
Re-weighting/category-conditioned methods ad-
just the loss attributed to a sample based on its cat-
egory [46, 3, 13] or how hard the sample is. Cate-
gory clustering methods use clustering of embed-
dings from training samples to improve transfer learn-
ing from head to tail categories [23] and to train sub-
models specialized to individual categories (avoiding
imbalance) [47, 28, 17].

Instead of altering the training distribution through
re-balancing or re-weighting, background splitting keeps
the training distribution for the main loss fixed and
instead adds an additional auxiliary loss that forces the
model to make fine-grained distinctions among images
in the background category (the model must perform
a challenging task even for “easy” background images).
This approach encourages the feature representation
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to be more discriminative while still learning from the
unaltered primary training distribution.

Large, diverse background. Background dominant
scenarios are an important real-world case of imbal-
anced classification where instances of a large, diverse
background category are more common than any fore-
ground category. Prior work has modeled the back-
ground by adding an additional “N+1” category to
represent the background [25, 24, 22] (which we use in
our method, Sec. 4.2), modeling the background as a
Gaussian distribution [27], or by training the model to
predict low scores for background instances and then
applying a threshold to filter them [6, 25]. Handling
a large, diverse background in classification is related
to the foreground-background class imbalance prob-
lem in object detection [26], where ideas such as re-
balancing (hard-negative mining [36]) and re-weighting
(focal loss [19]) are employed to improve object detec-
tion performance. We focus on background imbalance
problem in the context of image classification, but our
findings may also benefit object detection tasks as well.

Open-world, open-set, and out-of-distribution
recognition. Unlike the background category set-
ting (in which models are given access to training in-
stances which are from the same distribution as the
test instances), Open World, Open Set, or Out-of-
distribution recognition datasets test on data from cate-
gories (Open World/Open Set) or entire datasets (Out-
of-distribution) not seen during training [23, 1, 2, 6].
In this setting, the model is tasked with identifying
“unknown unknowns” in the test distribution that are
not present in the training distribution. Typically, these
“unknown unknowns” are not a significant majority of
the test distribution. In contrast, we are interested in
“known unknowns” which are present in the training
distribution, but make up a majority of the data.
Knowledge transfer and sharing. Our approach
leverages knowledge contained in a pre-trained model to
improve performance on the rare category classification
task. Our approach modifies standard transfer learn-
ing methods [29, 31, 34, 15] by introducing an auxiliary
distillation loss to improve model performance in back-
ground dominant scenarios. Thus our solution is similar
in spirit to multi-task learning methods [4, 16], in
particular those addressing the challenges of incremen-
tal learning [18, 37, 14, 35]. However, our approach uses
supervision from an existing classifier to regularize train-
ing on the rare-category classification task. It does not
aim to train a model that accurately classifies both prior
and novel categories. Instead of transferring knowledge
exclusively via fine tuning, we transfer knowledge using
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Figure 2. Left: distribution of images per category in the
iNaturalist-2017 training set, sorted by category frequency.
Although there is no “background” category in iNaturalist,
we color categories based on whether they are placed in the
background category in our modified dataset, iNaturalist-
BG. Right: distribution of examples in iNaturalist-BG (N =
100). The background category (yellow) contains 98.3% of
the images in the dataset.

a combination of fine tuning and knowledge distilla-
tion [12, 41], where the distillation is performed using
data from the new domain rather than data from the
original domain. This approach to knowledge transfer
has been shown to outperform fine tuning for some
tasks [38, 21], and is also useful when the source and
destination models are different [9].

3. Large Background Datasets

To support image classification research in real-world,
large-background settings, we created modified vari-
ants of the iNaturalist 2017 dataset and the Places365
dataset, which we call iNaturalist-BG and Places-BG.
We selected iNaturalist 2017 because of its large (and
imbalanced) category vocabulary (5089 categories, in-
cluding many visually similar species), and because
it is based on a real-world use case of identifying the
world’s flora and fauna. (iNaturalist was collected by
thousands of real individuals interested in species identi-
fication, not by choosing a list of categories then collect-
ing images by querying internet search engines [23, 3]).
Places365 exhibits a more modestly sized vocabulary
(365 categories), but contains content that differs signif-
icantly from iNaturalist, making the pair of datasets a
good test of generalizability of rare category methods.

To construct our modified datasets, we consider a
small number (V) of the original dataset’s categories to
be “labeled” and combine the remainder of the categories
from the original dataset into a single background cate-
gory. To study how the size of the background category
affects model performance, we provide training and test
set pairs for varying N. For example, for iNaturalist we
create pairs for N =5089 (equivalent to the standard
iNaturalist 2017 category distribution), 1100, 100, 10,
and 1). Figure 2-right shows the distribution of images
to categories for the iNaturalist-BG (N =100) training
set. In total, the 100 chosen categories constitute only
1.7% of the dataset (98.3% background).
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Figure 3. Left: distribution of images for the iNaturalist-BG (/N =100) dataset after partitioning into pseudo-categories
determined by the output of a pre-trained auxiliary model (in this example, 1000 ImageNet categories). The largest pseudo-
category is only 4.5% of the dataset, far smaller than the iNaturalist-BG “background” category (98.3%). Right: the training
configuration for our method. We use two tasks, one supervised by labels from the target dataset (e.g., iNaturalist-BG)
and one supervised by pseudo-labels from the auxiliary model. The main loss uses a fixed background logit to improve

background classification.

Note that in all cases, models are trained on all
images in the original dataset’s training set (579,184
for iNaturalist, 1.8 million for Places), and tested on
the dataset’s full test set. (Images not belonging to the
N categories of interest are labeled “background”.)

4. Method

When training a model for classifying a small set
of rare categories (main task), we want to avoid over-
fitting to the small set of foreground positives and avoid
solutions which predict all instances are part of the
background category. We address these challenges by
transforming the model optimization problem into a
easier one with significantly lower distribution skew.
We also describe how we combine our background split-
ting technique with the common softmax thresholding
method introduced by Matan et al. [25].

4.1. Regularization via Auxiliary Loss

In addition to supervising the model with the main
task’s cross-entropy loss for (N +1)-way classification
during training (the additional +1 category represent-
ing the background), we also add an auzxiliary task by
attaching a second classification head to the network
supervised by pseudo-labels generated with using pre-
trained model. (Figure 3-right, “Auxiliary Task”). Let
y € {0,... N} be the main (N+1)-way classification
task where 0 is treated as the background class. Given
a training set with a large fraction of background ex-
amples, we assume access to an auzxiliary model with K
classes that provides pseudo-labels on all training pairs

{(zs,v4)}:

{(-’If'ivyi;ti)} Yi € {0, . N}, t; € {1, . K}

ImageNet Exemplars
Top 5 iNaturalist Predictions

Figure 4. An auxiliary model pre-trained to perform Im-
ageNet category classification groups semantically similar
iNaturalist images together, resulting in pseudo-labels that
split the large background category in iNaturalist-BG. Each
row represents a category chosen at random from the auxil-
iary model categories (ImageNet categories). The image on
the left is an example of the category taken from the aux-
iliary model training set (ImageNet). Images on the right
are the auxiliary model’s five most confident predictions for
that category on the iNaturalist dataset. Notice that rows
1, 3, 4, and 5 contain visually similar images even though
the auxiliary model category is different from the animals
in the iNaturalist images.

where ¢; is the auxiliary model’s pseudo-label. We then
learn a classifier with a multi-task loss:

min loss (yi, Gw(Fe(mi))) + Aploss (tn Hy(Fy (%)))

0, w,v =
%

where G and H refer to the main and auxiliary task clas-
sification heads, respectively, of a base network trunk F’
with shared features 6 and task-specific features w and
v. Mg is the weight for the auxiliary loss. The loss func-
tion is the standard softmax cross-entropy loss. Note
that the pseudo-labels t; are generated by evaluating
the auxiliary model on all training data. No additional

8046



human labeling effort is required beyond the labels y;
provided for the main rare category classification task.
Figure 3-right visualizes the full training graph for our
multi-task network, which defines task-specific linear
weights (w,v) on the shared feature trunk #. Note
that at test time, performing the main rare category
classification task requires only evaluating Gy (Fp(z))
(for test sample ).

During training, the role of the auxiliary task is to
effectively “split up” the large background category into
a large number of visually coherent sub-categories. This
reduces distribution skew and forces learning of robust
features 6 that discriminate between the many psuedo-
categories, even for the large majority of training data
that would otherwise serve as a “easy” background exam-
ples for the main classification task. Figure 3-left shows
the results of splitting the iNaturalist-BG (N = 100)
background category into K=1000 categories defined by
an auxiliary model that classifies images into ImageNet
categories. Although the background category is 98.3%
of the training set in this case, the most frequently
occurring auxiliary task category contains only 4.5% of
the dataset.

Importantly, a direct mapping between auxiliary
model categories and the content of the dataset be-
ing evaluated on is not necessary for visually coherent
groupings to occur. Figure 4 illustrates that visual co-
herence of sub-categories that emerge when evaluating
an ImageNet category classification model on the iNat-
uralist dataset. Rows 1, 3, 4, and 5 contain visually
similar images, even though they do not contain the ani-
mal the auxiliary model category was trained for. (Row
1’s category is “flamingo”, but the birds at right are a
different species of pink bird; Row 4’s category is “Euro-
pean fire salamander” but the images to the right are of
owls). In Section 5.3, we evaluate how different choices
for the auxiliary task influence the extent auxiliary loss
helps main task classification performance.

4.2. Background Thresholding

The straightforward approach to performing classifi-
cation with a background category modifies the N-way
classification problem into an (N +1)-way classification
problem. However, linear (softmax) classification en-
courages examples that fall into the same category to
have similar features that can be linearly separated
from other classes. This may be problematic for the
background class, which we expect to be very large
and diverse in our setting (Figure 2-left). We address
this issue by choosing to not learn a classifier for the
background category. Instead, we adopt the method of
Matan et al. [25], which assigns the background cate-
gory (category 0) a fixed activation, as represented by

by in Figure 3-right. (See supplemental for full details
of the modified loss.)

5. Evaluation

We perform an in-depth analysis of background split-
ting on the iNaturalist-BG dataset by comparing its
performance to strong baselines in multiple different
regimes of background dominance. We also provide
diagnostic experiments that explore the sensitivity of
background splitting to different choices of auxiliary
task and show the necessity of jointly optimizing the
main task loss with the auxiliary loss. Finally, we also
demonstrate the benefits of background splitting on
Places-BG, suggesting applicability to a wide range of
classification tasks.

5.1. Experimental Setup

Evaluation metrics. Traditional metrics for image
classification include top-1 or top-5 error, but these met-
rics can be manipulated by constructing models that
favor the background. (Always predicting background
yields a top-1 accuracy of 98.3% on iNaturalist-BG
N=100.) Instead, we propose two evaluation proto-
cols for datasets with N category labels plus a large
background category. The first protocol is motivated by
top-1 error: algorithms must report a single (N +1)-way
label for each test sample. It computes the F1 accu-
racy (harmonic mean of precision and recall) for each
of the N classes and reports their mean. The second
protocol, motivated by those used for large-background
tasks such as object detection [3], recasts the problem
as N retrieval tasks corresponding to each foreground
category. For each category, algorithms must return a
confidence for each test sample. These are ranked to
produce N precision-recall curves, which in turn are
summarized by their average area underneath (mAP).
For iNaturalist-BG, we evaluate using label sets that
range from no background (N = 5089) to increasing
levels of background dominance (N=1100, 100, 10, 1).
Even though the foreground category distribution varies
with N, we construct training/set pairs so that evalua-
tion metrics remain comparable across N. Specifically,
we evaluate performance using a fixed set of 100 cate-
gories. When N > 100, we only compute mean F1 or
mAP from the selected 100 categories. The N =10 and
N =1 setups do not contain all 100 categories, so we
provide 10 test set pairs for N =10 (spanning all 100
test categories) and average performance across these
subsets. Computational constrains required us to limit
evaluation to 10 pairs for N=1. (Evaluation averages
over only 10 of the 100 test categories, so N = 1 results
are not directly comparable to results for other N.)
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Model and training details. In our background
splitting configurations (referred to as BG-SPLIT) we use
the ResNet-50 architecture [11] (initialized via ImageNet
pre-training) in all experiments. We set the background
threshold value to by=0.1, the weight on the auxiliary
loss to Ag = 0.1, and batch size to 1024. We find
that large batch sizes are crucial for training models
when the background category is dominant, and provide
an additional evaluation of the effect of batch size on
different methods in the supplement.

Unless otherwise stated, we use a standard ResNet50
model trained on the 1000-category ImageNet [32]
dataset, as an auxiliary model. We evaluate alternative
choices for auxiliary models in Sec. 5.3.

Baselines. We compare our method to standard fine-
tuning with cross entropy loss (denoted as FT in the rest
of the paper), as well as two state-of-the-art baselines
for training on the iNaturalist dataset: Lws [13] which
performs sample re-balancing; and LDAM [3], which
performs loss re-weighting. LDAM and LwsS have been
shown to perform better than a broad set of other
imbalanced learning methods, including recent meth-
ods from the object detection literature such as focal
loss [19]. Lws trains in two stages: first training a stan-
dard cross-entropy model with uniform sampling and no
re-weighting for 90 epochs; then freezing all layers but
the final classification layer and retraining for 15 epochs
using class-balanced sampling. LDAM also uses a two-
stage training approach: first training a classification
model using uniform sampling and weighting samples
with a Label-Distribution Aware Margin (LDAM) loss
for 60 epochs; and then continue training the same
model by re-weighting the loss for individual examples
based upon their frequency for 30 epochs. We train
these baseline models using the official code provided
by each method

We tuned the learning rate and batch size for FT via
hyperparameter search. (We use a batch size 512, see
supplement for motivation of this large batch size). For
LWS when N =5089 we train the base representation
model for the first stage using published hyperparame-
ters [13]. When N <5089 we use the same hyperparam-
eters as FT. We report results for the best-performing
second-stage method (Tau Norm for N =100 and 1100,
LWS for N=5089).

We refer the reader to the supplement for comparison
to further baselines, such as background downsampling
and focal loss [19].

LWS: https://github.com/facebookresearch/classifier-
balancing
LDAM: https://github.com/kaidic/LDAM-DRW

5.2. Comparison with Baselines

iNaturalist-BG comparison. Table 1 compares
the mAP and F1 scores of models trained using BG-
SPLIT against all baselines on iNaturalist-BG. LDAM
and tws perform slightly better than BG-SPLIT in the
N=5089 case they were designed for (original iNatural-
ist setting, no background), however as background size
increases (N=1100, 78.0% background) and (N=100,
98.3% background), both baselines degrade rapidly, per-
forming worse than the FT baseline, even when using
the best hyperparameter configurations found for each
N. In the N=100 configuration BG-SPLIT outperforms
the best results of LbAM and Lws by 11.7 (mAP) and 4.1
(F1) points. We observe that class-balanced sampling
(tws) and loss re-weighting based on class frequency
(LDAM) cause accuracy on the dominant background
category to decrease, yielding a significant increase in
false positives for foreground categories. This results
in a minor increase in foreground category recall, but
a large reduction in precision and overall worse perfor-
mance for LDAM and LWS in the sparse positive setting.
Since the performance of LDAM and Lw$s further de-
grades with decreasing N, we do not evaluate these
methods for N = 10 and N = 1 to save experimental
costs.

The value of BG-SPLIT increases as background dom-
inance is further increased. In the extreme case of N=1
(98.98% background), BG-SPLIT beats FT by 42.3 (mAP)
and 40.9 (F1) points. We note that the extreme back-
ground dominance in the N=1 configuration is typical
of many real-world applications. The overall perfor-
mance of BG-SPLIT decays gracefully with decreasing IV
without modifying key hyperparameters (e.g., learning
rate, batch size, by, Ag). Hyperparameter robustness
across different levels of background imbalance is an
attractive property of our method which makes it easy
to use in practice.

Places-BG comparison. Table 2 compares BG-
SPLIT to FT on two configurations of Places-BG: N=10
(97.2% background) and N=1 (99.7% background). De-
spite Places-BG containing notably different categories
and image content than iNaturalist-BG, the overall
trends on Places-BG are similar. The benefit of BG-
SPLIT is significant and increases with increasing back-
ground dominance. However, for a given N, the benefits
of BG-SPLIT are lower on Places-BG than for iNaturalist-
BG because Places-BG contains a smaller number of
categories with higher per-category frequency, making
the foreground category classification problem easier
(helping the FT baseline). Note that N=10 background
frequency on Places-BG is similar to that of N=100 on
iNaturalist-BG.
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Model Performance: iNaturalist-BG

N=1 N =10 N =100 N = 1100 N = 5089
(99.98%) (99.83%) (98.30%) (77.95%) (0%)
mAP F1 mAP F1 mAP F1 mAP F1 mAP F1

44.8 57.7 49.9

FT 10.6 10.8 9.3 8.9 38.3 38.4 50.9
LDAM - - - - 247 211 416  37.1 574  55.1
LWS - - - - 35.5 36.6 42,5 373 60.0 56.9

52.9 51.7 44.6 39.4 47.2 40.7 51.4 447 59.9 52.5

BG-SPLIT

Table 1. BG-SsPLIT outperforms all baselines when the background frequency exceeds 98% on iNaturalist-BG.
Comparison of mAP and F1 scores of BG-SPLIT to baselines on the iNaturalist-BG dataset (percentages indicate background
frequency). BG-SPLIT is 8.3 mAP points more accurate than state-of-the-art baselines in the N =100 setting, and 42.3 points
higher than fine tuning (FT) in the extremely imbalanced N =1 setting that is typical of many real-world image classification

scenarios. Prior state-of-the-art baselines for imbalanced training (LDAM [3], LWS |

|) perform worse than FT in background

dominated settings. (N =1 results are not directly comparable to other choices of N, see Section 5.1).

Model Performance: Places-BG

N=1 N =10
(99.72%) (97.22%)
mAP F1 mAP F1
FT 44.0 41.3 56.8 514
BG-SPLIT 53.8 48.7 61.0 56.6

Table 2. BG-sPLIT outperforms FT on Places-BG. The
benefit of BG-SPLIT over FT increases with increasing back-
ground size (percentages indicate background frequency).
Overall, the magnitude of benefit of BG-SPLIT is less on
Places-BG than on iNaturalist-BG (Table 1) because cat-
egories in Places-BG are on average over 13X more fre-
quent than iNaturalist-BGcategories (0.27% vs. 0.02%).
Places-BG categories are also less fine-grained than those in
iNaturalist-BG, making the background easier to discrimi-
nate.

5.3. Sensitivity to Choice of Auxiliary Task

A goal of background splitting’s auxiliary task is to
leverage the vast number of background examples to
learn useful representations that aid the main classi-
fication task. To understand the sensitivity of back-
ground splitting’s benefits to auxiliary tasks that ex-
hibit varying degrees of similarity to the main classifi-
cation task, we trained BG-SPLIT models on iNaturalist-
BG with the following auxiliary tasks: pseudo-
labeling via a pre-trained ImageNet classification
model (IMAGENET/CLASSIFIER), pseudo-labeling via
pre-trained image classification model for the Places365
dataset[15] (PLACES/CLASSIFIER), performing approxi-
mate k-means clustering on features generated by the
pre-trained ImageNet model (IMAGENET,/CLUSTER- 1K,

https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.MiniBatchKMeans.html

Aux Task Ablations: iNaturalist-BG (N=100)

Auxiliary Task BG-SPLIT

Source Dataset Label Method mAP F1

— No auziliary loss — 41.1 37.7
None Random-1K 37.2 35.0
Places365 Classifier 39.3  34.1
ImageNet Cluster-1K 45.9  39.0
ImageNet Cluster-5K 459 41.0
ImageNet Classifier 47.2  40.7

Table 3. Choice of auxiliary task significantly im-

pacts BG-SPLIT model performance. Due to sim-
ilarity between ImageNet classification and iNaturalist-
BG classification tasks, pseudo-labels from ImageNet-
based auxiliary tasks increase the performance of mod-
els trained using BG-SPLIT on iNaturalist-BG, even when
categories are machine-defined (IMAGENET/CLUSTER-1K,
IMAGENET/CLUSTER-5K). Auxiliary tasks based on ran-
dom pseudo-labels (RANDOM-1K) or significantly different
classification tasks (PLACES/CLASSIFIER) are destructive to
model training for iNaturalist-BG. Note that the no auzil-
iary loss configuration is similar to that of FT (N=100) in
Table 1, but with two differences for consistency within this
table: no auziliary loss uses batch size 1024 instead of 512,
and uses the background thresholding loss modification.

IMAGENET/CLUSTER-5K), and assigning 1000 pseudo-
categories to training images at random (RANDOM-1K).

Table 3 summarizes results for iNaturalist-BG (N =
100), where all methods are trained using a batch size of
1024 and include the background thresholding loss mod-
ification. RANDOM-1K, which splits the background into
equal-sized categories, but yields categories that lack
visual or semantic coherence, degrades performance com-
pared to a training configuration that does not employ
any auxiliary task (it is destructive to feature learning).
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Feature Learning Ablations: iNaturalist-BG (N=100)

BG-SPLIT Component Analysis: iNaturalist-BG (N=100)

Method Step 1 proese/FT VP2 AP
loss loss(es)

Linear model

on ImageNet — Freeze Main 25.5

features

Decoupl'ed Aux Freeze Main 28.3

aux/main

BG-SPLIT - Fine tune Main & 47.2

Aux

Table 4. Combining sparse foreground category la-
bels with pseudo-labels is critical to feature learn-
ing. Feature learning using only auxiliary task loss (row 2)
provides improvement over initial ImageNet features (row 1).
However a model trained using BG-SPLIT (row 3) is over
18 mAP points higher.

PLACES /CLASSIFIER also degrades performance because
scene-specific classification on Places365 is a signifi-
cantly different task than species classification. (Table 2
showed ImageNet classification is a beneficial auxil-
iary task for Places-BG but Places365 classification
is a destructive auxiliary task for iNaturalist-BG clas-
sification.) However, since the ImageNet dataset has
a large number of categories (1000), including some
with semantic category overlap with iNaturalist (e.g.,
many animal categories), there is substantial improve-
ment from auxiliary tasks based on ImageNet mod-
els. For example, even though IMAGENET/CLUSTER-1K
and IMAGENET/CLUSTER-5K generate pseudo-labels for
machine-generated categories, these auxiliary tasks sig-
nificantly improve final model performance. Although
IMAGENET /CLASSIFIER yields the highest mAP gain,
the fine-scale clusters of IMAGENET/CLUSTER-5K are
the pseudo-labels that produce the highest F1 gain.

5.4. Value of Joint Training

Can the auxiliary loss alone produce an effective
feature representation without target foreground cate-
gory labels? If so, one could use the auxiliary loss for
dataset pre-training, and leverage the resulting repre-
sentations to rapidly learn a model for novel foreground
categories. To isolate the value of background splitting’s
joint training approach vs. supervision from main task
and pseudo-labels alone, we conducted an ablation ex-
periment where we separated the aux loss training and
main loss training into separate phases, and froze the
features after the first phase.

Table 4 compares the performance of the resulting
models on iNaturalist-BG (N=100). Even though pre-
training using only the auxiliary loss (row 2) keeps 98.3%
of the labels the same as the full BG-SPLIT solution

BG thresh Both
(BG-SPLIT)

None Aux loss
(FT) only only

mAP F1 mAP F1 mAP F1 mAP F1

36.0 356 46.0 404 41.1 37.7 472 40.7

Table 5. Most of the benefits of the full BG-spLIT
solution are due to the use of an auxiliary loss. How-
ever, use of auxiliary loss and background logic clamping are
complementary techniques (additive benefits), suggesting
auxiliary losses could be combined with other techniques for
learning on imbalanced data.

(row 3), the BG-SPLIT method is over over 18 mAP
points higher than this decoupled method. These results
suggest that feature learning via joint training from
sparse positive examples and abundant pseudo-labels
from the auxiliary task is critical.

5.5. Component Analysis

The full BG-SPLIT solution has two new components:
an auxiliary loss and the background thresholding mod-
ification to the main task loss. Table 5 isolates the
relative gains due to each of these components on
iNaturalist-BG (N=100). The majority of the ben-
efit of BG-SPLIT comes from the use of the auxiliary
loss (10 mAP points “aux loss only”). Background logit
thresholding in isolation yields 1.1 mAP points (“bg
thresh only”). These techniques are complementary
techniques (additive effects in the final solution), sug-
gesting that the benefits of using an auxiliary loss could
be combined with other state-of-the-art techniques for
imbalanced learning such as LDAM.

6. Conclusion

State-of-the-art classification methods for handling
imbalanced data do not perform well in the presence of a
large and diverse background. In response we contribute
a new approach that reduces the imbalance by jointly
training the main classification task along with an aux-
iliary classification task that involves categories that
are better balanced and less rare. This approach im-
proves on baselines by over 42 mAP points in situations
of significant background dominance, making it feasi-
ble to train useful binary classification models for rare
categories without additional human-provided labels.
We also contribute the iNaturalist-BG and Places-BG
datasets, which we hope will encourage further research
in this important training regime.
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