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Abstract

People touch their face 23 times an hour, they cross

their arms and legs, put their hands on their hips, etc.

While many images of people contain some form of self-

contact, current 3D human pose and shape (HPS) regres-

sion methods typically fail to estimate this contact. To ad-

dress this, we develop new datasets and methods that sig-

nificantly improve human pose estimation with self-contact.

First, we create a dataset of 3D Contact Poses (3DCP) con-

taining SMPL-X bodies fit to 3D scans as well as poses

from AMASS, which we refine to ensure good contact. Sec-

ond, we leverage this to create the Mimic-The-Pose (MTP)

dataset of images, collected via Amazon Mechanical Turk,

containing people mimicking the 3DCP poses with self-

contact. Third, we develop a novel HPS optimization

method, SMPLify-XMC, that includes contact constraints

and uses the known 3DCP body pose during fitting to cre-

ate near ground-truth poses for MTP images. Fourth, for

more image variety, we label a dataset of in-the-wild im-

ages with Discrete Self-Contact (DSC) information and use

another new optimization method, SMPLify-DC, that ex-

ploits discrete contacts during pose optimization. Finally,

we use our datasets during SPIN training to learn a new

3D human pose regressor, called TUCH (Towards Under-

standing Contact in Humans). We show that the new self-

contact training data significantly improves 3D human pose

estimates on withheld test data and existing datasets like

3DPW. Not only does our method improve results for self-

contact poses, but it also improves accuracy for non-contact

poses. The code and data are available for research pur-

poses at https://tuch.is.tue.mpg.de.

1. Introduction

Self-contact takes many forms. We touch our bodies

both consciously and unconsciously [24]. For the major

limbs, contact can provide physical support, whereas we

touch our faces in ways that convey our emotional state.

We perform self-grooming, we have nervous gestures, and

Figure 1. The first column shows images containing self-contact.

In blue (left), results of TUCH, compared to SPIN results in violet

(right). When rendered from the camera view, the estimated pose

may look fine (column two vs. four). However, when rotated, it is

clear that training TUCH with self-contact information improves

3D pose estimation (column three vs. five).

we communicate with each other through combined face

and hand motions (e.g. “shh”). We may wring our hands

when worried, cross our arms when defensive, or put our

hands behind our head when confident. A Google search

for “sitting person” or “thinking pose” for example, will re-

turn images, the majority of which, contain self-contact.

Although self-contact is ubiquitous in human behavior,

it is rarely explicitly studied in computer vision. For our

purposes, self-contact comprises “self touch” (where the

hands touch the body) and contact between other body parts

(e.g. crossed legs). We ignore body parts that are frequently

in contact (e.g. at the crotch or armpits) and focus on contact

that is communicative or functional. Our goal is to estimate

3D human pose and shape (HPS) accurately for any pose.

When self-contact is present, the estimated pose should re-

flect the true 3D contact.

Unfortunately, existing methods that compute 3D bodies

from images perform poorly on images with self-contact;

see Fig. 1. Body parts that should be touching generally

are not. Recovering human meshes from images typically

involves either learning a regressor from pixels to 3D pose

and shape [20, 23], or fitting a 3D model to image features

using an optimization method [4, 34, 45, 46]. The learn-

ing approaches rely on labeled training data. Unfortunately,

current 2D datasets typically contain labeled keypoints or

segmentation masks but do not provide any information
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about 3D contact. Similarly, existing 3D datasets typically

avoid capturing scenarios with self-contact because it com-

plicates mesh processing. What is missing is a dataset with

in-the-wild images and reliable data about 3D self-contact.

To address this limitation, we introduce three new

datasets that focus on self-contact at different levels of de-

tail. Additionally, we introduce two new optimization-

based methods that fit 3D bodies to images with contact

information. We leverage these to estimate pseudo ground-

truth 3D poses with self-contact. To make reasoning about

contact between body parts, the hands, and the face pos-

sible, we represent pose and shape with the SMPL-X [34]

body model, which realistically captures the body surface

details, including the hands and face. Our new datasets then

let us train neural networks to regress 3D HPS from images

of people with self-contact more accurately than state-of-

the-art methods.

To begin, we first construct a 3D Contact Pose (3DCP)

dataset of 3D meshes where body parts are in contact. We

do so using two methods. First, we use high-quality 3D

scans of subjects performing self-contact poses. We ex-

tend previous mesh registration methods to cope with self-

contact and register the SMPL-X mesh to the scans. To gain

more variety of poses, we search the AMASS dataset [28]

for poses with self-contact or “near” self-contact. We then

optimize these poses to bring nearby parts into full contact

while resolving interpenetration. This provides a dataset of

valid, realistic, self-contact poses in SMPL-X format.

Second, we use these poses to collect a novel dataset of

images with near ground-truth 3D pose. To do so, we show

rendered 3DCP meshes to workers on Amazon Mechanical

Turk (AMT). Their task is to Mimic The Pose (MTP) as ac-

curately as possible, including the contacts, and submit a

photograph. We then use the “true” pose as a strong prior

and optimize the pose in the image by extending SMPLify-

X [34] to enforce contact. A key observation is that, if we

know about self-contact (even approximately), this greatly

reduces pose ambiguity by removing degrees of freedom.

Thus, knowing contact makes the estimation of 3D human

pose from 2D images more accurate. The resulting method,

SMPLify-XMC (for SMPLify-X with Mimicked Contact),

produces high-quality 3D reference poses and body shapes

in correspondence with the images.

Third, to gain even more image variety, we take images

from three public datasets [16, 17, 27] and have them la-

beled with discrete body-part contacts. This results in the

Discrete Self-Contact (DSC) dataset. To enable this, we de-

fine a partitioning of the body into regions that can be in

contact. Given labeled discrete contacts, we extend SM-

PLify to optimize body shape using image features and the

discrete contact labels. We call this method SMPLify-DC,

for SMPLify with Discrete Self-Contact.

Given the MTP and DSC datasets, we finetune a re-

cent HPS regression network, SPIN [23]. When we have

3D reference poses, i.e. for MTP images, we use these as

though they were ground truth and do not optimize them

in SPIN. When discrete contact annotations are available,

i.e. for DSC images, we use SMPLify-DC to optimize the

fit in the SPIN training loop. Fine-tuning SPIN on MTP and

DSC significantly improves accuracy of the regressed poses

when there is contact (evaluated on 3DPW [43]). Surpris-

ingly, the results on non-self-contact poses also improve,

suggesting that (1) gathering accurate 3D poses for in-the-

wild images is beneficial, and (2) that self-contact can pro-

vide valuable constraints that simplify pose estimation.

We call our regression method TUCH (Towards Under-

standing Contact in Humans). Figure 1 illustrates the effect

of exploiting self-contact in 3D HPS estimation. By training

with self-contact, TUCH significantly improves the physi-

cal plausibility.

In summary, the key contributions of this paper are: (1)

We introduce TUCH, the first HPS regressor for self-contact

poses, trained end-to-end. (2) We create a novel dataset of

3D human meshes with realistic contact (3DCP). (3) We de-

fine a “Mimic The Pose” MTP task and a new optimization

method to create a novel dataset of in-the-wild images with

accurate 3D reference data. (4) We create a large dataset

of images with reference poses that use discrete contact la-

bels. (5) We show in experiments that taking self-contact

information into account improves pose estimation in two

ways (data and losses), and in turn achieves state-of-the-art

results on 3D pose estimation benchmarks. (6) The data and

code are available for research purposes.

2. Related Work

3D pose estimation with contact. Despite rapid

progress in 3D human pose estimation [19, 20, 23, 31, 34,

40, 45], and despite the role that self-contact plays in our

daily lives, only a handful of previous works discuss self-

contact. Information about contact can benefit 3D HPS

estimation in many ways, usually by providing additional

physical constraints to prevent undesirable solutions such

as interpenetration between limbs.

Body contact. Lee and Chen [25] approximate the hu-

man body as a set of line segments and avoid collisions

between the limbs and torso. Similar ideas are adopted

in [3, 10] where line segments are replaced with cylinders.

Yin et al. [48] build a pose prior to penalize deep inter-

penetration detected by the Open Dynamics Engine [41].

While efficient, these stickman-like representations are far

from realistic. Using a full 3D body mesh representation,

Pavlakos et al. [34] take advantage of physical limits and

resolve interpenetration of body parts by adding an inter-

penetration loss. When estimating multiple people from an

image, Zanfir et al. [49] use a volume occupancy exclusion

loss to prevent penetration. Still, other work has exploited
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textual and ordinal descriptions of body pose [35, 36].

This includes constraints like “Right hand above the hips”.

These methods, however, do not consider self-contact.

Most similar to us is the work of Fieraru et al. [8],

which utilizes discrete contact annotations between people.

They introduce contact signatures between people based on

coarse body parts. This is similar to how we collect the DSC

dataset. Contemporaneous with our work, Fieraru et al. [9]

extend this to self-contact with a 2-stage approach. They

train a network to predict “self-contact signatures”, which

are used for optimization-based 3D pose estimation. In con-

trast, TUCH is trained end-to-end to regress body pose with

contact information.

World contact. Multiple methods use the 3D scene to

help estimate the human pose. Physical constraints can

come from the ground plane [44, 49], an object [13, 21, 22],

or contextual scene information [11, 47]. Li et al. [26] use

a DNN to detect 2D contact points between objects and

selected body joints. Narasimhaswamy et al. [32] catego-

rize hand contacts into self, person-person, and object con-

tacts and aim to detect them from in-the-wild images. Their

dataset does not provide reference 3D poses or shape.

All the above works make a similar observation: human

pose estimation is not a stand-alone task; considering ad-

ditional physical contact constraints improves the results.

We go beyond prior work by addressing self-contact and

showing how training with self-contact data improves pose

estimation overall.

3D body datasets. While there are many datasets of 3D

human scans, most of these have people standing in an “A”

or “T” pose to explicitly minimize self-contact [38]. Even

when the body is scanned in varied poses, these poses are

designed to avoid self-contact [2, 6, 7, 37]. For example, the

FAUST dataset has a few examples of self-contact and the

authors identify these as the major cause of error for scan

processing methods [5]. Recently, the AMASS [28] dataset

unifies 15 different optical marker-based motion capture

(mocap) datasets within a common 3D body parameteri-

zation, offering around 170k meshes with SMPL-H [39]

topology. Since mocap markers are sparse and often do not

cover the hands, such datasets typically do not explicitly

capture self-contact. As illustrated in Table 1, none of these

datasets explicitly addresses self-contact.

Pose mimicking. Our Mimic-The-Pose dataset uses the

idea that people can replicate a pose that they are shown.

Several previous works have explored this idea in different

contexts. Taylor et al. [42] crowd-source images of people

in the same pose by imitation. While they do not know the

true 3D pose, they are able to train a network to match im-

ages of people in similar poses. Marinoiu et al. [29] motion

capture subjects reenacting a 3D pose from a 2D image.

They found that subjects replicated 3D poses with a mean

joint error of around 100mm. This is on par with existing

Name Meshes Meshes with self-contact

3DCP Scan (ours) 190 188

3D BodyTex [1] 400 3

SCAPE [2] 70 0

Hasler et al. [12] 520 0

FAUST [5] 100/ 400 20/ 140
Table 1. Existing 3D human mesh datasets with the number of

poses and the number of contact poses identified by visual in-

spection. 3DCP Scan is the scan subset of 3DCP (see Section 4).

FAUST (train/test) includes scans with self-contact, i.e. 20 in the

training and 140 in the test set. However, in FAUST the variety is

low as each subject is scanned in the same 10/20 poses, whereas

in 3DCP Scan each subject does different poses.

3D pose regression methods, pointing to people’s ability to

approximately recreate viewed poses. Fieraru et al. [9] ask

subjects to reproduce contact from an image in a lab setting.

They manually annotate the contact, whereas our MTP task

is done in people’s homes and SMPLify-XMC is used to

automatically optimize the pose and contact.

3. Self-Contact

An intuitive definition of contact between two meshes,

e.g. a human and an object, is based on intersecting trian-

gles. Self-contact, however, must be formulated to exclude

common, but not functional, triangle intersections, e.g. at

the crotch or armpits. Intuitively, vertices are in self-contact

if they are close in Euclidean distance (near zero) but distant

in geodesic distance, i.e. far away on the body surface.

Definition 3.1. Given a mesh M with vertices MV , we de-

fine two vertices vi and vj ∈ MV to be in self-contact, if

(i) ‖vi − vj‖ < teucl , and (ii) geo(vi, vj) > tgeo , where

teucl and tgeo are predefined thresholds and geo(vi, vj) de-

notes the geodesic distance between vi and vj . We use

shape-independent geodesic distances precomputed on the

neutral, mean-shaped SMPL and SMPL-X models.

Following this definition, we denote the set of ver-

tex pairs in self-contact as MC := {(vi, vj)|vi, vj ∈
MV and vi, vj satisfy Definition 3.1}. M is a self-contact

mesh when |MC | > 0. We further define an operator U(·)
that returns a set of unique vertices in MC , and an operator

fg(·) that takes vi as input and returns the Euclidean dis-

tance to the nearest vj that is far enough in the geodesic

sense. Formally, U(MC) = {v0, v1, v2, . . . , vn}, where

∀vi ∈ U(MC) , ∃vj ∈ U(MC), such that (vi, vj) ∈ MC .

fg(vi) := minvj∈MG(vi) ‖vi − vj‖, where MG(vi) :=
{vj |geo(vi, vj) > tgeo}.

We further cluster self-contact meshes into distinct

types. To that end, we define self-contact signatures S ∈
{0, 1}K×K ; see [9] for a similar definition. We first seg-

ment the vertices of a mesh into K regions Rk, where
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Figure 2. Visualization of the function HD(X), that maps from

mesh vertices to mesh surface points. First, a SMPL-X mesh with

vertices in contact highlighted. Second, in yellow, all faces con-

taining a vertex in contact are selected. Then, all points lying on a

face containing a vertex in contact are selected from MP , denoted

as MD . MP is a fixed set of mesh surface points that are regressed

from mesh vertices. Note that in image one and two the finger ver-

tices are denser than the arm and chest vertices, in contrast to the

more uniform density in images three and four.

Rk ∩ Rl = ∅ for k 6= l and
⋃K

k=1Rk = MV . We use

fine signatures to cluster self-contact meshes from AMASS

(see Sup. Mat.) and rough signatures (see Fig. 6) for human

annotation.

Definition 3.2. Two regions Rk and Rl are in contact if

∃(vi, vj) ∈ MC , such that vi ∈ Rk and vj ∈ Rl holds. If

Rk and Rl are in contact, Skl = Slk = 1. MS denotes the

contact signature for mesh M .

To detect self-contact, we need to be able to quickly

compute the distance between two points on the body sur-

face. Vertex-to-vertex distance is a poor approximation

of this due to the varying density of vertices across the

body. Consequently, we introduce HD SMPL-X and HD

SMPL to efficiently approximate surface-to-surface dis-

tance. For this, we uniformly, and densely, sample points,

MP ∈ R
P×3 with P = 20, 000 on the body. A sparse

linear regressor P regresses MP from the mesh vertices

MV , MP = PMV . The geodesic distance geoHD(p1, p2)
between p1 ∈ MP and p2 ∈ MP is approximated via

geo(m,n), where m = argminv∈MV
‖v − p1‖ and n =

argminv∈MV
‖v − p2‖. In practice, we use mesh surface

points only when contact is present by following a three-

step procedure as illustrated in Fig. 2. First, we use Defi-

nition 3.1 to detect vertices in contact, MC . Then we se-

lect all points in MP lying on faces that contain vertices

in MC , denoted as MD. Last, for pi ∈ MD we find the

closest mesh surface point minpj∈MD
‖pi − pj‖, such that

geoHD(pi, pj) > tgeo . With HD(X) : X ⊂ MV →
MD ⊂ MP we denote the function that maps from a set

of mesh vertices to a set of mesh surface points. As the

number of points, P , increases, the point-to-point distance

approximates the surface-to-surface distance.

4. Self-Contact Datasets

Our goal is to create datasets of in-the-wild images

paired with 3D human meshes as pseudo ground truth. Un-

like traditional pipelines that collect images first and then

annotate them with pose and shape parameters [18, 43], we

Figure 3. Self-contact optimization. Column 1 and 2: a pose se-

lected from AMASS with near self-contact (between the fingertips

and the foot) and interpenetration (thumb and foot). Column 3 and

4: after self-contact optimization, all fingers are in contact with the

foot and interpenetration is reduced.

take the opposite approach. We first curate meshes with

self-contact and then pair them with images through a novel

pose mimicking and fitting procedure. We use SMPL-X

to create the 3DCP and MTP dataset to better fit contacts

between hands and bodies. However, to fine-tune SPIN

[23], we convert MTP data to SMPL topology, and use

SMPLify-DC when optimizing with discrete contact.

4.1. 3D Contact Pose (3DCP) Meshes

We create 3D human meshes with self-contact in two

ways: with 3D scans and with motion capture data.

3DCP Scan. We scan 6 subjects (3 males, 3 females)

in self-contact poses. We then register the SMPL-X mesh

topology to the raw scans. These registrations are obtained

using Co-Registration [14], which iteratively deforms the

SMPL-X template mesh V to minimize the point-to-plane

distance between the scan points S ∈ R
N×3, where N is

the number of scan points and the template points V ∈
R

10375×3. However, registering poses with self-contact is

challenging. When body parts are in close proximity, the

standard process can result in interpenetration. To address

this, we add a self-contact-preserving energy term to the

objective function. If two vertices vi and vj are in contact

according to Definition 3.1, we minimize the point-to-plane

distance between triangles including vi and the triangular

planes including vj . This term ensures that body parts that

are in contact remain in contact; see Sup. Mat. for details.

3DCP Mocap. While mocap datasets are usually not

explicitly designed to capture self-contact, it does occur

during motion capture. We therefore search the AMASS

dataset for poses that satisfy our self-contact definition. We

find that some of the selected meshes from AMASS contain

small amounts of self-penetration or near contact. Thus, we

perform self-contact optimization to fix this while encour-

aging contact, as shown in Fig. 3; see Sup. Mat. for details.

4.2. Mimic­The­Pose (MTP) Data

To collect in-the-wild images with near ground-truth 3D

human meshes, we propose a novel two-step process (see

Fig. 4). First, using meshes from 3DCP as examples, work-

ers on AMT are asked to mimic the pose as accurately as

possible while someone takes their photo showing the full
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Figure 4. Mimic-The-Pose (MTP) dataset. MTP is built via: (1) collecting many 3D meshes that exhibit self-contact. In grey, new 3D

scans in self-contact poses, in brown self-contact poses optimized from AMASS mocap data. (2) collecting images in the wild, by asking

workers on AMT to mimic poses and contacts. (3) the presented meshes are refined via SMPLify-XMC to match the image features.

Figure 5. MTP results. Meshes presented to AMT workers (blue) and the images they submitted with OpenPose keypoints overlaid. In

grey, the pseudo ground-truth meshes computed by SMPLify-XMC.

body (the mimicked pose). Mimicking poses may be chal-

lenging for people when only a single image of the pose

is presented [29]. Thus, we render each 3DCP mesh from

three different views with the contact regions highlighted

(the presented pose). We allot 3 hours time for ten poses.

Participants also provide their height and weight. All par-

ticipants gave informed consent for the capture and the use

of their imagery. Please see Sup. Mat. for details.

SMPLify-XMC. The second step applies a novel opti-

mization method to estimate the pose in the image, given a

strong prior from the presented pose. The presented pose θ̃,

shape β̃, and gender is not mimicked perfectly. To obtain

pseudo ground-truth pose and shape, we adapt SMPLify-

X [34], a multi-stage optimization method, that fits SMPL-

X pose θ, shape β, and expression ψ to image features start-

ing from the mean pose and shape. We make use of the

presented pose θ̃ in three ways: first, to initialize the opti-

mization and solve for global orientation and camera; sec-

ond, it serves as a pose prior; and third its contact is used

to keep relevant body parts close to each other. We refer to

this new optimization method as SMPLify-XMC.

In the first stage, we optimize body shape β, camera Π
(rotation, translations, and focal length), and body global

orientation θg , while the pose θ is initialized as θ̃ and stays

constant; see Sup. Mat. for a description of the first stage.

In the second and third stage, we jointly optimize θ, β,

and Π to minimize

L(θ, β,Π) =EJ + λmh
Emh

+ λθ̃Lθ̃+

λMLM + λC̃LC̃ + λSLS .
(1)

EJ denotes the same re-projection loss as specified in [34]1.

We use the standard SMPLify-X priors for left and right

hand Emh
. While the pose prior in [34] penalizes deviation

from the mean pose, here, Lθ̃ is an L2-Loss that penalizes

deviation from the presented pose. The measurements loss

LM takes ground-truth height and weight into account; see

Sup. Mat. for details. The term LC̃ acts on M̃C , the vertices

in self-contact on the presented mesh. To ensure the desired

self-contact, one could seek to minimize the distances be-

tween vertices in contact, e.g. ||vi − vj ||, (vi, vj) ∈ M̃C .

However, with this approach, we observe slight mesh dis-

tortions, when presented and mimicked contact are differ-

ent. Instead, we use a term that encourages every vertex in

M̃C to be in contact. More formally,

LC̃ =
1

|U(M̃C)|

∑

vi∈U(M̃C)

tanh(fg(vi)). (2)

1We denote loss terms defined in prior work as E while ours as L.
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The third stage actives LS for fine-grained self-contact

optimization, which resolves interpenetration while encour-

aging contact. The objective is LS = λCLC + λPLP +
λALA. Vertices in contact are pulled together via a contact

term LC ; vertices inside the mesh are pushed to the surface

via a pushing term LP , and LA aligns the surface normals

of two vertices in contact.

To compute these terms, we must first find which ver-

tices are inside, MI ⊂MV , or in contact, MC ⊂MV . MC

is computed following Definition 3.1 with tgeo = 30cm

and teucl = 2cm. The set of inside vertices MI is de-

tected by generalized winding numbers [15]. SMPL-X is

not a closed mesh and thus complicating the test for pene-

tration. Consequently, we close it by adding a vertex at the

back of the mouth. In addition, neighboring parts of SMPL

and SMPL-X often intersect, e.g. torso and upper arms. We

identify such common self-intersections and filter them out

fromMI . See Sup. Mat. for details. To capture fine-grained

contact, we map the union of inside and contact vertices

onto the HD SMPL-X surface, i.e. MD = HD(MI ∪MC),
which is further segmented into an inside MDI

and outside

MD∁
I

subsets by testing for intersections. The self-contact

objectives are defined as

LC =
∑

pi∈M
D∁

I

α1 tanh(
fg(pi)

α2
)2,

LP =
∑

pi∈MDI

β1 tanh(
fg(pi)

β2
)2,

LA =
∑

(pi,pj)∈MDC

1 + 〈N(pi), N(pj)〉.

fg denotes the function that finds the closest point pj ∈
MD. MDC

is the subset of vertices in contact in MD. We

use α1 = α2 = 0.005, β1 = 1.0, and β2 = 0.04 and

visualize the contact and pushing functions in the Sup. Mat.

Fig. 5 shows examples of our pseudo ground-truth meshes.

4.3. Discrete Self­Contact (DSC) Data

Images in the wild collected for human pose estima-

tion normally come with 2D keypoint annotations, body

segmentation, or bounding boxes. Such annotations lack

3D information. Discrete self-contact annotation, however,

provides useful 3D information about pose. We useK = 24
regions and label their pairwise contact for three publicly

available datasets, namely Leeds Sports Pose (LSP), Leeds

Sports Pose Extended (LSPet), and DeepFashion (DF). An

example annotation is visualized in Fig. 6. Of course, such

labels are noisy because it can be difficult to accurately de-

termine contact from an image. See Sup. Mat. for details.

Figure 6. DSC dataset. Image with discrete contact annotation on

the left. Right: DSC signature with K = 24 regions.

4.4. Summary of the Collected Data

Our 3DCP human mesh dataset consists of 190 meshes

containing self-contact from 6 subjects, 159 SMPL-X bod-

ies fit to commercial scans from AGORA [33], and 1304

self-contact optimized meshes from mocap data. From

these 1653 poses, we collect 3731 mimicked pose images

from 148 unique subjects (52 female; 96 male) for MTP

and fit pseudo ground-truth SMPL-X parameters. MTP is

diverse in body shapes and ethnicities. Our DSC dataset

provides annotations for 30K images.

5. TUCH

Finally, we train a regression network that has the same

design as SPIN [23]. At each training iteration, the cur-

rent regressor estimates the pose, shape, and camera param-

eters of the SMPL model for an input image. Using ground-

truth 2D keypoints, an optimizer refines the estimated pose

and shape, which are used, in turn, to supervise the re-

gressor. We follow this regression-optimization scheme for

DSC data, where we have no 3D ground truth. To this end,

we adapt the in-the-loop SMPLify routine to account for

discrete self-contact labels, which we term SMPLify-DC.

For MTP images, we use the pseudo ground truth from

SMPLify-XMC as direct supervision with no optimization

involved. We explain the losses of each routine below.

Regressor. Similar to SPIN, the regressor of TUCH pre-

dicts pose, shape, and camera, with the loss function:

LR = EJ + λθEθ + λβEβ + λCLC + λPLP . (3)

EJ denotes the joint re-projection loss. LP and LC are self-

contact loss terms used in LS in SMPLify-XMC, where LP

penalizes mesh intersections and LC encourages contact.

Further, Eθ and Eβ are L2-Losses that penalize deviation

from the pseudo ground-truth pose and shape.

Optimizer. We develop SMPLify-DC to fit pose θopt,

shape βopt, and camera Πopt to DSC data, taking ground-

truth keypoints and contact as constraints. Typically, in hu-

man mesh optimization methods the camera is fit first, then

the model parameters follow. However, we find that this

can distort body shape when encouraging contact. There-

fore, we optimize shape and camera translation first, using
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Figure 7. Initial wrong contact (left) from the regressor is fixed by

SMPLify-DC after 5 (middle) and 10 (right) iterations.

the same camera fitting loss as in [23]. After that, body pose

and global orientation are optimized under the objective

LO(θ) = EJ + λθEθ + λCLC + λPLP + λDLD. (4)

The discrete contact loss, LD, penalizes the minimum dis-

tance between regions in contact. Formally, given a contact

signature S where Sij = Sji = 1 if two regions Ri and Rj

are annotated to be in contact, we define

LD =

K∑

i=1

K∑

j=i+1

Sij min
v∈Ri,u∈Rj

||v − u||2.

Given the optimized pose θopt, shape βopt, and camera

Πopt, we compute the re-projection error and the mini-

mum distance between the regions in contact. When the

re-projection error improves, and more regions with contact

annotations are closer than before, we keep the optimized

pose as the current best fit. When no ground truth is avail-

able, the current best fits are used to train the regressor.

We make three observations: (1) The optimizer is often

able to fix incorrect poses estimated by the regressor be-

cause it considers the ground-truth keypoints and contact

(see Fig. 7). (2) Discrete contact labels bring overall im-

provement by helping resolve depth ambiguity (see Fig. 8).

(3) Since we have mixed data in each mini-batch, the di-

rect supervision of MTP data improves the regressor, which

benefits SMPLify-DC by providing better initial estimates.

Implementation details. We initialize our regression

network with SPIN weights [23]. For SMPLify-DC, we run

10 iterations per stage and do not use the HD operator to

speed up the optimization process. For the 2D re-projection

loss, we use ground-truth keypoints when available and,

for MTP and DF images, OpenPose detections weighted by

confidence. From DSC data we only use images where the

full body is visible and ignore annotated region pairs that

are connected in the DSC segmentation (see Sup. Mat.).

6. Evaluation

We evaluate TUCH on the following three datasets:

3DPW [43], MPI-INF-3DHP [30], and 3DCP Scan. This

latter dataset consists of RGB images taken during the

3DCP Scan scanning process. While TUCH has never seen

these images or subjects, the contact poses were mimicked

in creation of MTP, which is used in training.

We use standard evaluation metrics for 3D pose, namely

Mean Per-Joint Position Error (MPJPE) and the Procrustes-

aligned version (PA-MPJPE), and Mean Vertex-to-Vertex

MPJPE PA-MPJPE

3DPW MI 3DPW MI

SPIN [23] 96.9 105.2 59.2 67.5

EFT [18] - - 54.2 68.0

TUCH 84.9 101.2 55.5 68.6

Table 2. Evaluation on 3DPW and MPI-INF-3DHP (MI). Bold

numbers indicate the best result; units are mm. We report the EFT

result denoted in their publication when 3DPW was not part of the

training data. Please note that SPIN is trained on MI, but we do

not include MI in the fine-tuning set. MI contains mostly indoor

lab sequences (100% train, 75% test), while DSC and MTP con-

tain only in-the-wild images. This domain gap likely explains the

decreased performance in PA-MPJPE.

MPJPE PA-MPJPE MV2VE

SPIN [23] 79.7 50.6 95.7

EFT [18] 71.4 48.3 83.9

TUCH 69.5 42.5 81.5

Table 3. Evaluation on 3DCP Scan. Numbers are in mm. Note

that in contrast to TUCH, this version of SPIN did not see poses

in the MTP dataset during training. Please see Table 5 and the

corresponding text for an ablation study.

MPJPE PA-MPJPE

contact no contact unclear total contact no contact unclear total

SPIN 100.2 95.5 96.7 96.9 59.1 61.7 55.7 59.2

TUCH 85.1 86.6 81.9 84.9 54.1 58.6 51.2 55.5

Table 4. Evaluation of TUCH for contact classes in 3DPW. Num-

bers are in mm. See text.

Error (MV2VE) for shape and contact. Tables 2 and 3 sum-

marize the results of TUCH on 3DPW and 3DCP Scan. In-

terestingly, TUCH is more accurate than SPIN on 3DPW.

See Sup. Mat. for results of fine-tuning EFT.

We further evaluate our results w.r.t. contact. To this

end, we divide the 3DPW test set into subsets, namely for

tgeo = 50cm: self-contact (teucl < 1cm), no self-contact

(teucl > 5cm), and unclear (1cm < teucl < 5cm). For

3DPW we obtain 8752 self-contact, 16752 no self-contact,

and 9491 unclear poses. Table 4 shows a clear improve-

ment on poses with contact and unclear poses compared to

a smaller improvement on poses without contact.

To further understand the improvement of TUCH over

SPIN, we break down the improved MPJPE in 3DPW self-

contact into the pairwise body-part contact labels defined

in the DSC dataset. Specifically, for each contact pair, we

search all poses in 3DPW self-contact that have this partic-

ular self-contact. We find a clear improvement for a large

number of contacts between two body parts, frequently be-

tween arms and torso, or e.g. left hand and right elbow,

which is common in arms-crossed poses (see Fig. 9).

TUCH incorporates self-contact in various ways: anno-

tations of training data, in-the-loop fitting, and in the re-
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Figure 8. Impact of discrete self-contact labels in human pose estimation. Body parts labeled in contact are shown in the same color. First

row shows an initial SPIN estimate, second row the SMPLify fit, third row the SMPLify-DC fit after 20 iterations.

Figure 9. Average MPJPE difference (SPIN - TUCH), evaluated

on the self-contact subset of 3DPW. The axes show labels for the

DSC regions. Green indicates that TUCH has a lower error than

SPIN on average across all poses with the corresponding regions

in contact. The circle size represents the number of images per

region. Regions with small circle sizes are less common.

gression loss. We evaluate the impact of each in Table 5.

S+ is SPIN but it sees MTP+DSC images in fine-tuning and

runs standard in-the-loop SMPLify with no contact infor-

mation. S++ is S+ but uses pseudo ground truth computed

with SMPLify-XMC on MTP images; thus self-contact is

used to generate the data but nowhere else. S+ vs. SPIN

suggests that, while poses in 3DCP Scan appear in MTP,

just seeing similar poses for training and testing does not

yield improvement. S+ vs. TUCH is a fair comparison as

both see the same images during training. The improved

results of TUCH confirm the benefit of using self-contact.

7. Conclusion

In this work, we address the problem of HPS estimation

when self-contact is present. Self-contact is a natural, com-

SPIN S+ S++ TUCH

3DPW 96.9/ 59.2 96.1/ 61.4 85.0/ 56.3 84.9/ 55.5

3DCP Scan 82.2/ 52.1 86.9/ 52.3 74.8/ 45.7 75.2/ 45.4

MI 105.2/ 67.5 105.8/ 69.4 103.1/ 69.0 101.2/ 68.6

Table 5. MPJPE/PA-MPJPE (mm) to examine the impact of data

and algorithm on 3DPW, 3DCP Scan, and MPI-INF-3DHP (MI).

mon occurrence in everyday life, but SOTA methods fail to

estimate it. One reason for this is that no datasets pairing

images in the wild and 3D reference poses exist. To address

this problem we introduce a new way of collecting data: we

ask humans to mimic presented 3D poses. Then we use our

new SMPLify-XMC method to fit pseudo ground-truth 3D

meshes to the mimicked images, using the presented pose

and self-contact to constrain the optimization. We use the

new MTP data along with discrete self-contact annotations

to train TUCH; the first end-to-end HPS regressor that also

handles poses with self-contact. TUCH uses MTP data as

if it was ground truth, while the discrete, DSC, data is ex-

ploited during SPIN training via SMPLify-DC. Overall, in-

corporating contact improves accuracy on standard bench-

marks like 3DPW, remarkably, not only for poses with self-

contact, but also for poses without self-contact.
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