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Figure 1. Our method learns to see behind objects in RGB-D sequences in order to achieve robust dynamic object tracking; we predict the

complete underlying geometry of each object beyond the observed view, which enables finding correspondences which can more reliably

persist over time, under various view changes and object motion. From an input RGB-D frame, we first perform 3D object detection, then

jointly infer for each object its complete geometry and dense correspondence mapping to its canonical space. These correspondences on

the predicted complete object geometry help to provide robust multi-object tracking over time.

Abstract

Multi-object tracking from RGB-D video sequences is a

challenging problem due to the combination of changing

viewpoints, motion, and occlusions over time. We observe

that having the complete geometry of objects aids in their

tracking, and thus propose to jointly infer the complete ge-

ometry of objects as well as track them, for rigidly moving

objects over time. Our key insight is that inferring the com-

plete geometry of the objects significantly helps in track-

ing. By hallucinating unseen regions of objects, we can ob-

tain additional correspondences between the same instance,

thus providing robust tracking even under strong change of

appearance. From a sequence of RGB-D frames, we detect

objects in each frame and learn to predict their complete

object geometry as well as a dense correspondence map-

ping into a canonical space. This allows us to derive 6DoF

poses for the objects in each frame, along with their corre-

spondence between frames, providing robust object tracking

across the RGB-D sequence. Experiments on both synthetic

and real-world RGB-D data demonstrate that we achieve

state-of-the-art performance on dynamic object tracking.

Furthermore, we show that our object completion signifi-

cantly helps tracking, providing an improvement of 6.5% in

mean MOTA.

1. Introduction

Understanding how objects move over time is funda-

mental towards higher-level perception of real-world envi-

ronments, with applications ranging from mixed reality to

robotic perception. In the context of static scenes, signifi-

cant progress has been made in RGB-D tracking and recon-

struction [22, 17, 23, 32, 5, 9]; however, the assumption of a

static environment significantly limits applicability to real-

world environments which are often dynamic, with objects
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moving over time. In the case of scenes where a number of

objects might be rigidly moving, robust tracking remains a

significant challenge, as views and occlusion patterns of the

objects can change appreciably over time.

Several approaches have been developed to address the

problem of dynamic object tracking in RGB-D sequences

by detecting objects and then finding correspondences be-

tween frames [24, 25, 34]. While results have shown no-

table promise, these methods only consider the observed

geometry of the objects, and so tracking objects under faster

object or camera motion can result in insufficient overlap of

observed geometry to find reliable correspondences, result-

ing in tracking failure.

To address these challenges, we observe that humans can

effectively track objects by leveraging prior knowledge of

the underlying object geometry, which helps to constrain

the problem even under notable view changes or significant

occlusions. Thus, our key idea is to learn to ‘see behind

objects’ by hallucinating the complete object geometry in

order to aid object tracking. We learn to jointly infer for

each object its complete geometry as well dense tracking

correspondences, providing 6DoF poses for the objects for

each frame.

From an RGB-D sequence, we formulate an end-to-end

approach to detect objects, characterized by their 3D bound-

ing boxes, then predict for each object its complete geome-

try as well as a dense correspondence mapping to its canon-

ical space. We then leverage a differentiable pose optimiza-

tion based on the predicted correspondences of the complete

object geometry to provide the object poses per frame as

well as their correspondence within the frames.

Our experiments show that our joint object completion

and tracking provides notably improved performance over

state of the art by 6.5% in MOTA. Additionally, our ap-

proach provides encouraging results for scenarios with chal-

lenging occlusions. We believe this opens up significant

potential for object-based understanding of real-world envi-

ronments.

2. Related Work

RGB-D Reconstruction of Static Scenes Scanning and

reconstruction 3D surfaces of static environments has been

widely studied [22, 17, 5, 32, 9], with state-of-the-art re-

construction approaches providing robust camera tracking

of large scale scenes. While these methods show impressive

performance, they rely on a core, underlying assumption of

a static environment, whereas an understanding of object

movement over time can provide a profound, object-based

perception.

Various approaches have also been developed for static

scene reconstruction to simultaneously reconstruct the

scene while also segmenting the observed geometry into

semantic instances [28, 27, 20, 19]. Notably, Hou et

al. [15] propose to jointly detect objects as well as infer their

complete geometry beyond the observed geometry, achiev-

ing improved instance segmentation performance; however,

their method still focuses on static environments. In con-

trast, our approach exploits learning the complete object ge-

ometry in order to object tracking in dynamic scenes.

RGB-D Object Tracking Several approaches have been

proposed towards understanding dynamic environments by

object tracking. To achieve general non-rigid object track-

ing, research focuses on the single object scenario, typ-

ically leveraging as-rigid-as-possible registration [35, 21,

16, 10, 13, 4]. For multiple object tracking, object rigid-

ity is assumed, and objects are detected and then tracked

over time. In the context of SLAM, SLAMMOT [30],

and CoSLAM [36] demonstrated detection and tracking

of objects, operating with sparse reconstruction and track-

ing. Co-Fusion [24], MID-Fusion [34], and MaskFu-

sion [25] demonstrated dense object tracking and recon-

struction, with promising results for dynamic object track-

ing, but can still suffer noticeably from occlusions and view

changes, as only observed geometry is considered. Our

approach not only reconstructs the observed geometry of

each object, but infers missing regions that have not been

seen, which is crucial to achieve robust object tracking un-

der these challenging scenarios.

3. Method Overview

Our method takes as input an RGB-D sequence, and

learns to detect object instances, and for each instance the

per-frame 6DoF poses and dense correspondences within

the frames. We then associate the predicted locations and

correspondences to obtain object tracking over time.

Each RGB-D frame of the sequence is represented by

a sparse grid Si of surface voxels and a dense truncated

signed distance field (TSDF) Di.

The TSDF for an RGB-D frame is obtained by back-

projecting the observed depth values, following volumetric

fusion [7].

As output, we characterize each detected object in every

frame with a 3D occupancy mask representing its complete

geometry along with a dense grid of correspondences to the

object’s canonical space, from which we compute the 6DoF

pose. We then use the complete correspondence prediction

to associate objects across time steps, resulting in robust

multi-object tracking over time.

From the input sparse surface grid, we detect objects by

regressing their 3D object centers and extents, and cluster

them into distinct bounding box proposals.

For each object proposal, we crop the TSDF volume us-

ing the respective bounding box, and use this information

to predict the object’s complete geometry as a dense oc-
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Figure 2. Overview of our network architecture for joint object completion and tracking. Input of our network is a TSDF representation of

an RGB-D frame with W,H,L grid dimensions as width, height and length, and N occupied voxels. First, we employ a backbone of sparse

3D convolutions to extract features, where we empirically found ań output feature size of 32 to performs best. We then detect M objects

characterized by 3D bounding boxes, and predict for each object both the complete object geometry beyond the view observation as well

as dense correspondences a canonical space; the correspondences on the complete geometry then inform a differentiable pose optimization

to produce object pose estimates and within-frame dense correspondences. By predicting correspondences not only in observed regions

but also unobserved areas, we can provide strong correspondence overlap under strong object or camera motion, enabling robust dynamic

object tracking.

cupancy grid as well as its normalized object coordinates

mapping the object to its canonical space.

We can then solve for the object pose using a differen-

tiable Procrustes analysis.

To perform multi-object tracking across the RGB-D se-

quence, we associate instances across the frames based on

3D bounding box overlap as well as the 3D intersection-

over-union of the predicted complete canonical geometry.

Predicting the underlying geometric structure of each ob-

ject enables our approach to maintain robustness under large

camera pose changes or object movement, as we can asso-

ciate the complete object geometry beyond the observed re-

gions. Thus, from our object detection and then completion,

we are able to find more correspondences which can persist

over the full sequence of frames, providing more overlap

for an object between frames, and resulting in more robust

object instance tracking.

4. Joint Object Completion and Tracking

From an RGB-D sequence, we first detect objects in

each frame, then infer the complete geometry of each ob-

ject along with its dense correspondences to its canonical

space, followed by a differentiable pose optimization.

An overview of our network architecture for joint ob-

ject completion and correspondence regression is shown in

Figure 2. From an object detection backbone, we simulta-

neously predict an object’s complete geometry and dense

correspondences, which informs its pose optimization. For

a detailed architecture specification, we refer to the supple-

mental.

4.1. Object Detection

We first detect objects from the sparse surface grid S
for each RGB-D frame by predicting their object bound-

ing boxes. We extract features from the sparse surface

grid using a series of sparse convolutions [12, 6] structured

in encoder-decoder fashion, with features spatially bottle-

necked to 1/16 of the original spatial resolution, and the

output of the final decoder layer equal to the original spatial

resolution. The feature map F from the last decoder layer

is passed as input to a multi-head object detection module.

The detection module predicts objectness, with each voxel

v predicting O(v) as the score that v is associated with an

object, the 3D center location C(v) of the object as a rel-

ative offset from v, and the 3D extents D(v) of the object

as well as the semantic class S(v). We then train using the

following loss terms:

Lo = BCE(O,Ot), Ls = CE(S, St)

Lc =

{

1

2
(C − Ct)2 for |C − Ct| ≤ 0.5,

|C − Ct| − 1

2
, otherwise

Ld =

{

1

2
(D −Dt)2 for |D −Dt| ≤ 0.5,

|D −Dt| − 1

2
, otherwise,

with Ot denoting the target objectness as a binary mask of

the target objects’ geometry, and Ct, Dt and St the target
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object centers, extents and semantic class, respectively, de-

fined within the mask of the target objects’ geometry.

To obtain the final object proposals, we perform a mean-

shift clustering (20 steps, with 8 voxel radius) on the pre-

dicted center coordinates of the voxels which produce a pos-

itive objectness score. From the resulting instance clusters,

we filter out small clusters of less than 50 elements. On

the remaining clusters, we perform average pooling on the

bounding box extent predictions and majority voting on the

highest scoring semantic classes for final object location,

shape and semantic class prediction.

Sparse-to-Dense Fusion. For each detected object and its

predicted box, we then crop the corresponding sparse fea-

tures fk from F as well as the dense TSDF grid D. We map

the sparse cropped features densely and add the matching

TSDF values over the feature channels to obtain f ′

k. We

can then leverage this feature to inform object completion

and correspondence regression in both observed and un-

observed space.

4.2. Object Completion

To predict the complete object geometry, we take the

sparse-dense fused feature f ′

k for an object k, which is then

down-scaled by a factor of 2 using trilinear interpolation

and passed through a series of dense 3D convolutions, struc-

tured in encoder-decoder fashion to obtain dense object fea-

tures fo
k . We then apply another series of dense 3D convolu-

tional layers on fo
k to predict the complete object geometry

mk as a binary mask trained by binary cross entropy with

the target occupancy grid.

4.3. Object Correspondences

We predict for each object a dense correspondence map-

ping ck to its canonical space, similar to the normalized ob-

ject coordinate space of [31]. Using both ck and the object

geometry mk, we can perform a robust pose optimization

under the correspondences.

The correspondences ck are predicted from the object

feature map fo
k
′ by a series of dense 3D convolutions struc-

tured analogously to the object geometry completion, out-

putting a grid of 3D coordinates in the canonical space of

the object. We apply an l1 loss to the ck, evaluated only

where target object geometry exists.

To obtain the object pose in the frame, we take the corre-

spondences from ck where there is object geometry (using

target geometry for training, and predicted geometry at test

time), and optimize for the object rotation and scale under

the correspondences using a differentiable Procrustes anal-

ysis.

We aim to find scale c∗, rotation R∗ and translation t∗

that bring together predicted object coordinates Po with

their predicted canonical representation Pn:

c∗, R∗, t∗ := argmin
c∈R+,R∈SO3,t∈R3

‖Po − (cR · Pn + t)‖. (1)

With means µi and variances σi of Pi, i ∈ {o, n},

we perform a differentiable SVD of (Po − µo)(Pn −
µn)

T = UDV T . According to [29], with S =
diag(1, 1, det(UV T )), we obtain the optima

c∗ =
1

σn

tr(DS), R∗ = USV T , and t∗ = µo − c∗R∗µn.

(2)

We employ a Frobenius norm loss on the estimated rota-

tion matrix, an ℓ1 loss on the predicted scale, and an ℓ2 loss

on the translation.

Since objects possessing symmetry can result in ambigu-

ous target rotations, we take the minimum rotation error be-

tween the predicted rotation and the possible valid rotations

based on the object symmetry.

4.4. Object Tracking

Finally, to achieve multi-object tracking over the full

RGB-D sequence, we associate object proposals across time

steps, based on location and canonical correspondences in

camera space. Each detected object has a predicted bound-

ing box and canonical object reconstruction, represented as

a 643 grid by mapping the dense correspondences in the

predicted object geometry to canonical space. To fuse de-

tections over time into tracklets, we construct associations

in a frame-by-frame fashion; we start with initial tracklets

T i for each detected object in the first frame.

Then, for each frame, we compute pairwise distances

between current tracklets T i and incoming proposals Dj

based on the 3D IoU of their bounding boxes. We employ

the Hungarian algorithm [18] to find the optimal assignment

of proposals to tracklets, and reject any matches with 3D

IoU below 0.3. Any new object detections with no matches

form additional new tracklets. The canonical object recon-

struction for a tracklet is then updated as a running average

of the canonical reconstructions for each object detection in

that tracklet; we use a 4:1 weighting for the running mean

for all our experiments. After computing the tracklets and

their canonical reconstructions from the frames in sequen-

tial order, we then aim to match any objects which might

have not have been matched in the greedy sequential pro-

cess (e.g., seen from a very different view, but able to match

to the full reconstruction from many views). For all track-

lets and all non-assigned proposals, we compute pairwise

distances using a 3D volumetric IoU of the canonical rep-

resentations (binarized at threshold 0.5). We again compute

the optimal assignment and reject a matching if this mask

IoU is below 0.3.

We find that by matching objects based on their canoni-

cal correspondences, we observe higher matching accuracy,
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MOTA(%) bathtub bed bookshelf cabinet chair desk sink sofa table toilet seq. avg

MaskFusion [25] 27.7 76.4 25.4 24.4 25.3 33.8 39.2 5.7 45.8 27.7 17.2

MID-Fusion [34] 55.8 100 94.7 21.7 38.6 45.8 63.9 9.6 53.8 35.7 30.1

F2F-MaskRCNN 25.7 100 73.7 15.2 28.3 79.2 73.2 21.2 59.6 33.9 35.8

Ours (no corr., no compl. ) 39.8 54.5 22.6 21.8 27.2 37.5 49.5 13.8 60.4 36.7 29.3

Ours (no corr.) 39.8 54.5 24.0 23.2 32.2 37.5 50.3 13.8 61.8 38.1 30.6

Ours (no compl.) 24.9 45.5 50.0 26.1 42.3 66.4 63.3 18.0 63.2 38.0 35.6

Ours 24.9 45.5 50.1 26.1 51.8 66.4 63.3 17.3 67.4 49.0 42.3

Table 1. Evaluation of MOTA on DYNSYNTH. Our approach to jointly predict complete object geometry along with tracking provides

robust correspondences over the full object rather than only the observed regions, resulting in notably improved tracking in comparison to

our approach without object completion (no compl.), purely IoU based matching (no corr.) as well as state of the art.

leading to robust object tracking (see Section 5).

4.5. Training Details

We train our joint object completion and correspondence

regression on a single Nvidia GeForce RTX 2080, using an

ADAM optimizer with learning rate 0.001 and weight decay

of 1e-5. We use a batch size of 2, and up to 10 proposals

per input. To provide initial stable detection results, we first

train the object detection backbone for 100K iterations, and

then introduce the object completion and correspondence

prediction along with the differentiable pose optimization,

training the full model end-to-end for another 250K itera-

tions until convergence. Full training takes approximately

72 hours.

We weight the object center and extent loss, Lc and Ld

by 0.1, as they are evaluated in voxel units with have larger

absolute value. After a warm-up phase of 100k iterations,

where segmentation, detection and completion are trained

individually, we weight the completion and correspondence

loss by 4, and the rotation, translation and scale loss by 0.2,

0.1,0.1, respectively, to bring the loss values into similar

ranges.

5. Results

We evaluate our approach both quantitatively and qual-

itatively on synthetic RGB-D sequences of moving ob-

jects, as well as on real-world RGB-D data. We use the

synthetic dataset, DYNSYNTH, from [33] which contains

3, 300 RGB-D sequences of indoor scenes (2900/300/100

train/val/test), comprising 97, 626 frames. This dataset has

been created by manipulating 3D objects in synthetic 3D

environments, with object motion randomly generated us-

ing the path planning library OMPL. Camera motions are

also generated by random samples based on the target ob-

ject’s trajectory and visibility. We focus on detecting and

tracking objects of 10 class categories covering a variety of

bedroom, living room, and bathroom furniture. Each se-

quence contains camera trajectories and an object moving

parallel to the ground, and ground truth object symmetries

are provided.

As ground truth is available by nature of the synthetic

data generation, we can train and fully evaluate our ap-

proach on DYNSYNTH. We also evaluate our object pose

estimation on real-world, static RGB-D scans from the

ScanNet data set [8] with ground truth object annota-

tions provided by Scan2CAD [1]. We follow the offi-

cial train/val/test split with Scan2CAD annotations with

944/149/100 scans, resulting in 114, 000 frames (sampled

every 20th frame from the video sequences).

Evaluation metrics. To evaluate our dynamic object

tracking, we adopt the Multiple Object Tracking Accuracy

metric [2], which summarizes error from false positives,

missed targets, and identity switches:

MOTA = 1−
∑

t

(mt + fpt +mmet)
∑

t gt
(3)

where mt, fpt, mmet are number of misses, of false posi-

tives and of mismatches at time t.

A match is considered positive if its ℓ2 distance to ground

truth center is less than 25cm. The state-of-the-art ap-

proaches that we evaluate predict only surface correspon-

dences, so we establish their trajectories by shifting from

the initial pose towards the ground truth center. We report

the mean MOTA over all test sequences.

Comparison to state of the art. In Table 1, we show that

our approach to jointly complete and track objects provides

significant improvement over state of the art on synthetic

sequences from the DYNSYNTH dataset.

We compare to MaskFusion [25], a surfel-based ap-

proach for dense object tracking and reconstruction. Mask-

Fusion’s segmentation refinement step is unable to handle

objects with non-convex surface or disconnected topology

due to the self-occlusion and its weighted surfel tracking

mechanism is not robust in the highly dynamic scenes (i.e.

new information tends to be discarded).
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Figure 3. Our joint object completion and tracking on real-world RGB-D sequences maintains consistent objects tracks and accurate object

shapes over time. The colors and the line segments show the instance ID and the estimated trajectories, respectively.

We evaluate against MID-Fusion [34], a volumetric

octree-based, dense tracking approach; MID-Fusion use

volumetric representation to alleviate the low recall issue

of its detection backend. However, it has a limited ability

to align occluded objects with the existed models and as-

sociate proposals under fast object movement such as the
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Figure 4. Qualitative comparison to state of the art on DYNSYNTH test sequences. Our approach predicting the complete object geometry

maintains strong correspondence overlap even when objects or camera undergo stronger motions, resulting in notably more robust tracking

that state-of-the-art approaches considering only the observed geometry.

qualitative examples in Figure 3 and 4..

Additionally, we provide a baseline approach which per-

forms frame-to-frame tracking for each object using the

Iterative Closest Point algorithm [3, 26], given 2D de-

tection provided by Mask R-CNN [14] trained on DYN-

SYNTH (F2F-MaskRCNN). Searching correspondences be-

tween frames performs better under fast motion but it can-

not resolve the weak geometry signals issue [11] of the oc-

cluded objects such as the chair objects in Figure 3.

In contrast to these approaches which only reason based

on the observed geometry from each view, our approach to

infer the complete object geometry enables more robust and

accurate object tracking.

Does object completion help tracking? We analyze the

effect of our object completion on both dynamic object

tracking performance as well as pose estimation in sin-

gle frames. In Table 1, we evaluate our approach on
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variants without object completion (no compl.) or no

correspondence-based object association (no corr.); When

matching is fully based on 3D bounding box overlap, we

notice a small improvement of tracking performance of the

variant with completion (no corr.) over no completion (no

corr., no compl.) of 1.6% mean MOTA. When association

is based on canonical correspondences without using object

completion (no compl.), we observe a performance gain of

5% mean MOTA. Utilizing object completion with canoni-

cal correspondences matching further improves the tracking

performance by 6.7% mean MOTA and achieves best results

(42.3% mean MOTA).

Additionally, we show that our joint approach improves

on pose estimation for each object in individual frames. Ta-

bles 2 and 3 evaluate our method with and without object

completion on RGB-D frames from synthetic DYNSYNTH

data and real-world ScanNet [8] data, respectively. We sim-

ilarly find that for object pose estimation, inferring the com-

plete underlying geometric structure of the objects provides

more accurate object pose estimation. Furthermore, we

analyse in Figure 5 the tracking performance of our method

with respect to the average completion performance on pre-

dicted tracklets. We observe that better completion also re-

sults in improved tracking, by facilitating correspondence

in originally unobserved regions.

Real-world dynamic RGB-D sequences. In addition to

the static RGB-D sequences of ScanNet [8], we apply our

approach to eight real-world dynamic RGB-D sequences

which we captured with a Structure Sensor1 mounted to an

iPad. In this scenario, we lack ground truth annotations,

so we pre-train our model on DYNSYNTH and fine-tune on

ScanNet+Scan2CAD data. Qualitative results are shown in

Figure 3; our approach finds persistent correspondences on

the predicted complete object geometry, enabling robust ob-

ject pose estimation and surface tracking.

DYNSYNTH Med rot. err. Med transl. err.

Ours (no compl.) 7.4◦ 15.4cm

Ours 5.7◦ 12.3cm

Table 2. Evaluation of object pose estimation on individual RGB-

D frames from DYNSYNTH.

Runtime analysis. Our not highly optimized implemen-

tation runs at ≈ 1 fps. See Table 4 for a more-detailed

breakdown.

6. Conclusion

We introduce an approach for multi-object tracking in

RGB-D sequences by learning to jointly infer the complete

1https://structure.io/

ScanNet+Scan2CAD Med rot. err. Med transl. err.

Ours (no compl.) 16.6◦ 22.0cm

Ours 13.3◦ 18.3cm

Table 3. Evaluation of object pose estimation on individual RGB-

D frames from ScanNet [8]. Understanding the complete object

geometry enables more reliable correspondence prediction for ob-

ject pose estimation.

Figure 5. Average tracking performance against average com-

pletion performance evaluated on DYNSYNTH using our method.

Better completion performance results in improved tracking, as

correspondences can be more robustly established.

Per-frame runtime in seconds Avg.

Sparse detection 0.347

Completion & Pose 0.328

Postprocessing 0.274

Data Association 0.152

Total 0.936

Table 4. Runtime performance in seconds.

underlying geometric structure for each object as well as

its dense correspondence mapping for pose estimation and

tracking. By predicting object geometry in unobserved re-

gions, we can obtain correspondences that are more reliably

persist across a sequence, producing more robust and accu-

rate object tracking under various camera changes and oc-

clusion patterns. We believe that this provides significant

promise in integration with a full reconstruction pipeline to

perform live tracking and reconstruction of dynamic scenes

towards object-based perception of environments.

Acknowledgments

This work was supported by the ZD.B (Zentrum Digi-

talisierung.Bayern), a TUM-IAS Rudolf Mößbauer Fellow-
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