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Abstract

Unsupervised domain adaptation (UDA) methods for

learning domain invariant representations have achieved

remarkable progress. However, most of the studies were

based on direct adaptation from the source domain to the

target domain and have suffered from large domain dis-

crepancies. In this paper, we propose a UDA method

that effectively handles such large domain discrepancies.

We introduce a fixed ratio-based mixup to augment mul-

tiple intermediate domains between the source and tar-

get domain. From the augmented-domains, we train the

source-dominant model and the target-dominant model that

have complementary characteristics. Using our confidence-

based learning methodologies, e.g., bidirectional matching

with high-confidence predictions and self-penalization us-

ing low-confidence predictions, the models can learn from

each other or from its own results. Through our proposed

methods, the models gradually transfer domain knowledge

from the source to the target domain. Extensive experi-

ments demonstrate the superiority of our proposed method

on three public benchmarks: Office-31, Office-Home, and

VisDA-2017. 1

1. Introduction

Recently, we have seen considerable improvements in

several computer vision applications using deep learning;

however, this success has been limited to supervised learn-

ing methods with abundant labeled data. Collecting and la-

beling data from various domains is an expensive and time-

consuming task. To address this problem, semi-supervised

learning [45, 3, 34] and unsupervised learning [9] have been

studied; however, in most cases, it was assumed that learn-

ing of the model occurred in a similar domain.

UDA refers to a set of transfer learning methods for

transferring knowledge learned from the source domain to

the target domain under the assumption of domain discrep-

ancy. Moreover, it is useful when the source domain con-

1Our code is available at https://github.com/NaJaeMin92/FixBi.

Figure 1. Comparison of previous domain adaptation meth-

ods and our proposed method. Top: Previous methods try

to adapt directly without any consideration of large domain

discrepancies. Bottom: Our proposed method utilize aug-

mented domains between the source and target domain for

efficient domain adaptation.

tains enough labeled data to learn, but not much labeled data

are present in the target domain. Domain adaptation (DA)

generally assumes that the two domains have the same con-

ditional distribution, but different marginal distributions.

Under these assumptions, effective knowledge transfer is

difficult when the two domains have large marginal distri-

bution gaps. This becomes much more challenging in a sce-

nario where the target domain has no labeled data at all.

In previous UDA methods, a domain discriminator [8,

37] was introduced to encourage domain confusion through

domain-adversarial objectives and minimize the gap be-

tween the source and target distributions. In [21, 24],

domain discrepancy based approaches used metrics such

as maximum mean discrepancy (MMD) and joint MMD

(JMMD) to reduce the difference between two feature
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spaces. Moreover, inspired by the generative adversarial

network (GAN), GAN-based DA methods [15, 7] have at-

tempted to generate transferable representations to mini-

mize domain discrepancy. Most of these studies have di-

rectly adapted the knowledge learned from the source do-

main to the target domain. However, fundamentally, this

does not take into account the case where the distance be-

tween the source and target domain is large, as shown in

Figure 1.

In this paper, our goal is to compensate efficiently for

the large domain discrepancies. To address this challenge,

we construct multiple intermediate augmented domains,

whose characteristics are different and complementary to

each other. To achieve this, we propose a fixed ratio-based

mixup. Our proposed mixup approach minimizes the do-

main randomness of [41, 43] between the source and tar-

get samples and generates multiple intermediate domains,

as shown in Figure 1. For example, an augmented domain

close to the source domain has more reliable label infor-

mation, but it has a lower correlation with the target do-

main. By contrast, label information in an augmented do-

main close to the target domain is relatively inaccurate, but

the similarity to the target domain is much higher.

In these augmented domains, we train the complemen-

tary models that teach each other to bridge between the

source and target domain. Specifically, we introduce a bidi-

rectional matching based on the high-confidence predic-

tions of each model for the target samples, moving the inter-

mediate domains to the target domain. We also apply self-

penalization, which penalizes its own model to improve per-

formance through self-training. Moreover, to properly im-

pose the characteristics of models that change with each it-

eration, we use an adaptive threshold by the confidence dis-

tribution of each mini-batch, not a predefined one [12, 44].

Finally, to prevent divergence of the augmented models

generated in different domains, we propose a consistency

regularization using an augmented domain with the same

ratio of source and target samples.

We conduct extensive ablation studies for a detailed

analysis of our proposed method and achieve compara-

ble performance to state-of-the-art methods in standard DA

benchmarks such as Office-31 [29], Office-Home [40], and

VisDA-2017 [27]. The main contributions of this paper are

summarized as follows.

• We propose a fixed ratio-based mixup to efficiently

bridges the source and target domains utilizing the in-

termediate domains.

• We propose confidence-based learning methodologies:

a bidirectional matching and a self-penalization using

positive and negative pseudo-labels, respectively.

• We empirically validate the superiority of our method

to UDA with extensive ablation studies and evaluations

on three standard benchmarks.

2. Related Work

Semi-supervised Learning. Semi-supervised learning

(SSL) [2, 3, 18, 33, 45, 34, 6] leverages unlabeled data to

improve a model’s performance when limited labeled data

is provided, which alleviates the expensive labeling pro-

cess efficiently. Many recently proposed semi-supervised

learning methods, such as MixMatch [3], FixMatch [34],

and ReMixMatch [2], based on augmentation viewpoints.

MixMatch [3] used low-entropy labels for data-augmented

unlabeled instances and mixed labeled and unlabeled data

for semi-supervised learning. On the basis of consistency

regularization and pseudo-labeling, FixMatch [34] gener-

ates pseudo-labels using the model’s predictions on weakly

augmented unlabeled images. Then, when the examples

have high-confidence predictions, they train the model us-

ing strong-augmented images. Note that in general, they as-

sumed that labeled and unlabeled data have similar domains

or feature distributions.

Basically, semi-supervised domain adaptation has more

information about some target labels compared with UDA,

and some related works [1, 30, 28, 19, 44] have been

proposed leveraging semi-supervised signals. Specifically,

in [30], a minimax entropy approach was proposed that ad-

versarially optimizes an adaptive few-shot model. In [28],

the learning of opposite structures was unified whereby it

consists of a generator and two classifiers trained with op-

posite forms of losses for a unified object.

Meanwhile, [44] addresses semi-supervised domain

adaptation by breaking it down into SSL and UDA prob-

lems. Two models are in charge of each sub-problem and

are trained based on co-teaching. One model is trained with

labeled source samples and labeled target samples, and the

other model is trained with unlabeled target samples and

labeled target samples. In this way, by using different com-

binations of data, it provides two different perspectives. By

contrast, in this paper, we guarantee two different perspec-

tives with the two types of our fixed ratio-based mixup. In

addition, [44] used co-teaching [12] concepts to train the

mixup objectives between the source and target domain,

whereas we use this concept to train the pseudo-labels in the

target domain with bidirectional matching. Furthermore,

when applying the mixup operation, [44] uses only selected

target samples, whereas we use all target samples.

Unsupervised Domain Adaptation. Recent works [10,

35, 38, 24, 8, 37, 31, 43] have focused on UDA based on do-

main alignment and discriminative domain-invariant feature

learning methods. For example, a deep adaptation network

(DAN) [21] minimized MMD over domain-specific layers,

and joint adaptation networks [24] aligned the joint distri-

butions of domain-specific layers across different domains
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Figure 2. An overview of the proposed method. The proposed method consists of (a) fixed ratio-based mixup, (b)

confidence-based learning, e.g., bidirectional matching with the positive pseudo-labels and self-penalization with the negative

pseudo-labels, and (c) consistency regularization. Best viewed in color.

based on a JMMD. Deep domain confusion (DCC) [38]

made use of MMD metrics in the fully connected layer

for learning both discriminative and transferable domains.

A domain adversarial neural network (DANN) [8] learned

a domain invariant representation by back-propagating the

reverse gradients of the domain classifier. Adversarial dis-

criminative domain adaptation (ADDA) [37] learned a dis-

criminative representation using the source labels, and then,

a separate encoding that maps the target data to the same

space based on a domain-adversarial loss is used. Maxi-

mum classification discrepancy (MCD) [32] tried to align

the distribution of a target domain by considering task-

specific decision boundaries by maximizing the discrepancy

on the target samples and then generating features that min-

imize this discrepancy. A contrastive adaptation network

(CAN) [17] optimized the metric for minimizing the do-

main discrepancy, which explicitly models the intra-class

domain discrepancy and the inter-class domain discrepancy.

Robust spherical domain adaptation (RSDA) [11] used

a spherical classifier for label prediction and a spherical

domain discriminator for discriminating domain labels and

utilized robust pseudo-label loss in the spherical feature

space. Structurally regularized deep clustering (SRDC) [36]

enhanced target discrimination by clustering intermediate

network features and structural regularization with soft se-

lection of less divergent source examples. Dual mixup reg-

ularized learning (DMRL) [41] guided the classifier to en-

hance consistent predictions between samples and enriched

the intrinsic structures of the latent space. For mixing the

source and target domains, they proposed two mixup regu-

larizations based on randomness.

Note that in this study, we create bridges between the

target and source domain by augmenting multiple interme-

diate domains. For this purpose, unlike [41, 43], the scope

of the augmented domain was not expanded simply by re-

lying on randomness. However, two fixed ratio-based mix-

ups are used to create a source-closed augmented domain,

which has a clear label but is at a distance from the target

domain, and a target-closed augmented domain, which has

the opposite properties. Then, they teach each other in order

to transfer domain knowledge to the target side.

3. Proposed Method

In UDA, we are given labeled data X s = {(xs
i , y

s
i )}

Ns

i=1

from the source domain and unlabeled data X t = {(xt
i)}

Nt

i=1

from the target domain where the Ns and Nt denote the

sizes of X s and X t, respectively. The large distribution gap

between P (X s) and P (X t) is one of the major obstacles

for the UDA problem. Our goal is to ensure that the knowl-

edge learned from the source domain is well generalized in

the target domain. In this section, we introduce our FixBi

algorithm and the detailed ideas it builds on, as shown in

Figure 2.

3.1. Fixed Ratio­based Mixup

In general, the mixup [46] is a kind of data augmentation

method to increase the robustness of neural networks when

learning from corrupt labels. Recent studies [3, 34] have

utilized the mixup to construct virtual samples with convex

combinations between labeled and unlabeled data. In this

context, most domain adaptation methods [26, 43, 44, 41]

based on the mixup use mixup-ratio λ with randomly sam-

pled values from the beta distribution: λ ∼ Beta(α, α)
where α is a hyperparameter. It is because they have tried to

generate training samples that exist somewhere between the

source and target domain without any consideration of the

domain gap. However, we propose to use two fixed mixup

ratios λsd and λtd to provide more clarity and less random-
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ness. Given a pair of input samples and their corresponding

one-hot labels in the source and target domain: (xs
i , y

s
i ) and

(xt
i, ŷ

t
i ), our mixup settings are defined as follows:

x̃st
i = λxs

i + (1− λ)xt
i

ỹsti = λysi + (1− λ)ŷti ,
(1)

where λ ∈ {λsd, λtd} s.t. λsd + λtd = 1. Note that ŷti
is the pseudo-labels obtained by the baseline model, e.g.,

DANN [8] or MSTN [42], for the unlabeled target samples.

The detailed analysis of our fixed ratio-based mixup is cov-

ered in Section 4.2.

Taking advantage of the fixed ratio-based mixup, we

construct two network models that act as bridges between

the source and target domain. The key point here is to ob-

tain two networks with different perspectives through our

mixup strategies. For this purpose, we leverage two differ-

ent models made by the proposed mixup ratios λsd and λtd:

“source-dominant model” (SDM) and “target-dominant

model” (TDM). The source-dominant model has strong su-

pervision for the source domain but relatively weak supervi-

sion for the target domain. By contrast, the target-dominant

model has strong target supervision but weak source super-

vision. As both types of mixups are not confined to a single

domain, they can serve as bridges between the two different

domains.

Consequently, we apply two fixed ratios λsd for SDM

and λtd for TDM. Let p(y|x̃st
i ) denote the predicted class

distribution produced by the model for an input x̃st
i . Then

the objective of our fixed ratio-based mixup is defined as

follows:

Lfm =
1

B

B∑

i=1

ŷsti log(p(y|x̃st
i )), (2)

where ŷsti = argmax p(y|x̃st
i ) and B is a mini-batch size.

3.2. Confidence­based Learning

Through our fixed ratio-based mixup, the two networks

have different characteristics and can develop with mutu-

ally complementary learning. To utilize the two models

as bridges from the source domain to the target domain,

we propose a confidence-based learning where one model

teaches the other model using the positive pseudo-labels or

teach itself using the negative pseudo-labels.

Bidirectional Matching with positive pseudo-labels.

Inspired by [34, 12, 4], when one network assigns the class

probability of input above a certain threshold τ , we assume

that this predicted label as a pseudo-label. Here, we refer

to these labels as positive pseudo-labels. Then we train the

peer network to make its predictions match these positive

pseudo-labels via a standard cross-entropy loss. Let us de-

note probability distributions p and q of two models. Then

the objective of our bidirectional matching is defined as fol-

lows:

Lbim =
1

B

B∑

i=1

1(max(p(y|xt
i) > τ)ŷti log(q(y|x

t
i)), (3)

where ŷti = argmax p(y|xt
i). Note that in [34], only one-

way matching is used according to input augmentations.

However, since our method derives the results from both

networks for the same input, bidirectional matching is avail-

able.

Self-penalization with negative pseudo-labels. As

well as the bidirectional matching that matches the posi-

tive pseudo-labels to the predictions of the peer network,

each network learns through the self-penalization using the

negative pseudo-labels. Here, the negative pseudo-label in-

dicates the most confident label (top-1 label) predicted by

the network with a confidence lower than the threshold τ .

Since the negative pseudo-label is unlikely to be a correct

label, we need to increase the probability values of all other

classes except for this negative pseudo-label. Therefore, we

optimize the output probability corresponding to the nega-

tive pseudo-label to be close to zero. The objective of self-

penalization is defined as follows:

Lsp =
1

B

B∑

i=1

1(max(p(y|xt
i) < τ)ŷti log(1− p(y|xt

i)).

(4)

Unlike the recent studies [12, 34, 44] that ignore the low-

confidence predictions (or large loss samples), it is worth

noting that we utilize the low-confidence predictions as the

meaningful knowledges for learning the models. Further-

more, we apply the learnable temperature of the softmax to

adjust the output distributions.

Looking back to the confidence threshold τ , the basic

strategy is to set a fixed value as a hyperparameter. How-

ever, a deep neural network (DNN) tends to start at a low

level of confidence value and its value gradually increases

as the network learns. The fixed threshold cannot prop-

erly reflect the confidence which is changed constantly dur-

ing training, therefore the number of positive and negative

pseudo-labels can be biased to one side. To overcome this

problem, we adopt an adaptive threshold which is changed

adaptively by the sample mean and standard deviation of a

mini-batch, not a fixed one.

3.3. Consistency Regularization

Through our confidence-based learning, the two mod-

els with different characteristics gradually get closer to the

target domain because they are trained with more reliable

pseudo-labels of the target samples. We introduced a new

consistency regularization to ensure a stable convergence of

training both models. Here, we assume that the well-trained
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models should be regularized to have consistent results in

the same space. It helps to construct the domain bridging

by ensuring that the two models trained from the different

domain spaces maintain consistency in the same area be-

tween the source and target domain. For the intermediate

space, both fixed mixup-ratios λsd and λtd are set to 0.5.

The consistency regularization loss can be defined as fol-

lows:

Lcr =
1

B

B∑

i=1

‖p(y|x̃st
i )− q(y|x̃st

i )‖2
2
. (5)

Algorithm 1: FixBi Training Procedure

Input : Network weights wsd and wtd, total

epochs E, mini batch B, warm-up epochs

k, mixup-ratios λsd, λtd, and λcr(= 0.5),
source samples xs, target samples xt, and

mixup samples M̃ .

for e=1 to E do

for i=1 to B do

Obtain M̃sd using Eq. (1) with λsd;

Obtain M̃td using Eq. (1) with λtd;

Update Lfm(M̃sd;wsd) and Lsp(x
t;wsd);

Update Lfm(M̃td;wtd) and Lsp(x
t;wtd);

if e > k then

if max(y|xt;wtd) > τtd then

Update Lbim(xt;wsd);
end

if max(y|xt;wsd) > τsd then

Update Lbim(xt;wtd);
end

Obtain M̃cr using Eq. (1) with λcr;
Update Lcr(M̃cr;wsd);
Update Lcr(M̃cr;wtd);

end

end

end

Output: Learned model parameters wsd and wtd.

3.4. Training Procedure

The training process of our FixBi is summarized in Al-

gorithm 1. First, we start to train our networks with pre-

trained baseline weights, similar to [11]. Then, we copy the

pre-trained weights to wsd and wtd. In each iteration, we

generate two types of samples with different mixup ratios

λsd and λtd. Initially, to ensure that the two networks have

independent characteristics, we apply a warm-up period of

k epochs where each network is independently trained only

with the fixed ratio-based mixup and the self-penalization.

After enough training, we begin to train with bidirectional

matching that can teach each other. Note that one network

Table 1. Comparison of three different mixup-ratio rules on

the task A→W.

Type
w/o Lbim w/ Lbim

SDM TDM SDM TDM

Random 86.5±1.0 85.3±0.9 86.7±0.8 85.6±0.7

Range 86.0±1.7 29.6±6.8 83.3±6.2 81.0±5.4

Fixed (Ours) 86.3±0.6 86.0±0.7 89.3±0.4 90.1±0.3

is trained with pseudo-labels from the peer network which

satisfies the confidence threshold constraint. At the same

time, we also apply the consistency regularization loss to

guarantee stable convergence in training.

4. Experiments

We evaluate our proposed method on three domain adap-

tation benchmarks such as Office-31, Office-Home and

VisDA-2017, compared with state-of-the-art domain adap-

tation methods. In addition, we validate the contributions of

the proposed method through extensive ablation studies.

4.1. Setups

Datasets. We evaluated our method in the following

three standard benchmarks for UDA.

Office-31 [29] is the most popular dataset for real-world

domain adaptation. It contains 4,110 images of 31 cate-

gories in three domains: Amazon (A), Webcam (W), DSLR

(D). We evaluated all methods on six domain adaptation

tasks.

Office-Home [40] is a more challenging benchmark than

Office-31. It consists of images of everyday objects orga-

nized into four domains: artistic images (Ar), clip art (Cl),

product images (Pr), and real-world images (Rw). It con-

tains 15,500 images of 65 classes.

VisDA-2017 [27] is a large-scale dataset for synthetic-

to-real domain adaptation. It contains 152,397 synthetic

images for the source domain and 55,388 real-world images

for the target domain.

Baselines. Since our proposed method can be flexi-

bly applied in any UDA methods, we use DANN [8] as

a baseline for a detail analysis of our contributions and

MSTN [42] for performance comparisons with the state-of-

the-art methods.

Implementation details. Following the standard proto-

col for UDA, we use all labeled source data and all unla-

beled target data. For Office-31 and Office-Home, we use

ResNet-50 [13, 14] as the backbone network. We use mini-

batch stochastic gradient descent (SGD) with a momentum

of 0.9, an initial learning rate of 0.001, and a weight de-

cay of 0.005. We follow the same learning rate schedule

as in [8]. The mixup ratios are set up with λsd = 0.7
and λtd = 0.3. The confidence threshold τ is calculated

as (mean − 2 × std) across all mini-batches. We train
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Figure 3. Class-wise accuracy (%) on the task A→W of the

Office-31. Best viewed in color.

the model for a total of 200 epochs and set the warm-up

epochs to 100. For VisDA-2017, we use ResNet-101 as the

backbone architecture. We use the SGD optimizer with a

momentum of 0.9, an initial learning rate of 0.0001, and a

weight decay of 0.005. We train the model for 25 epochs

with warm-up epochs of 10.

4.2. Ablation studies and discussions

For a more detailed analysis of our proposed method,

we conducted ablation studies on the Office-31 dataset with

DANN [8] as the baseline model.

Comparison of different mixup-ratio rules. We com-

pare our fixed-ratio mixup with two existing general ratios

in Table 1. The “Random” refers to the ratio randomly sam-

pled from the beta distribution, as in the traditional mixup

approaches [46, 44, 26, 43]. The “Range” refers to the ra-

tio randomly sampled from the beta distribution and limited

to a specific range. In this case, the mixup ratio λ′ is de-

termined by λ′ ∼ max(λ, 1 − λ), where λ ∼ Beta(α, α).

In this experiment, SDM and TDM are trained with λ′ and

1 − λ′, respectively, intending to give them different per-

spectives. We set the hyperparameter α of the beta distribu-

tion to 1.0 for “Random” and “Range”, as used in [44, 26].

Lastly, the “Fixed” refers to using two fixed mixup ratios

(λsd, λtd). We set λsd = 0.7 and λtd = 0.3, which satisfies

λsd + λtd = 1. Note that our final accuracy is the result of

an ensemble of the output probabilities of both models.

The left side of Table 1 shows the accuracy when only a

fixed ratio mixup is applied without the bidirectional match-

ing. In the case of “Random”, the accuracy is similar to that

of “Fixed”. However, in the case of “Range”, extreme ac-

curacy degradation is noticeable in TDM. It shows that a

mixup which is too target-biased negatively affects learning

when the target labels are incorrect. The right side of Ta-

ble 1 presents the accuracy when applying the bidirectional

matching with the fixed ratio mixup. In the case of “Ran-

Figure 4. Visualization of the confidence threshold τ on the

task A→W of the Office-31. Best viewed in color.

(a) Baseline (DANN) (b) FixBi (Ours)

Figure 5. The visualization of embedded features on the

task A→W. Blue and orange points denote the source and

target domains, respectively. Best viewed in color.

dom” and “Range”, it is difficult to expect performance im-

provement through the bidirectional matching. By contrast,

we observe that the networks trained through the fixed ratio-

based mixup can benefit from the bidirectional matching.

Why is it better to use a fixed ratio? We claim that

this difference occurs because the two networks have dif-

ferent perspectives through our fixed ratio-based mixup. To

verify this, we analyzed the class-wise accuracy of SDM

and TDM. We apply Lfm with fixed ratios λsd = 0.7
and λtd = 0.3 to the models, respectively. We pick the

top-10 accuracies with the largest difference between class-

wise accuracies for the two network models. As shown in

Figure 3, we observe that these two models have different

strengths and weaknesses from the viewpoint of class-wise

accuracy. Note that the performances of these two models

are similar at 86.3% and 86.0%.

Comparison with simple ensemble models. To show

that our two perspectives have a different meaning to a sim-

ple ensemble of a single-perspective, we compare the en-

semble of a single-perspective with our proposed method.

For the single-perspective, we train models with the mixup

ratios of (0.3, 0.3) and (0.7, 0.7), respectively. For a fair

comparison, we apply only Lfm and Lbim. As shown in Ta-

ble 2, the accuracy of our two-perspective model is higher

than that of the other single-perspective models.
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Table 2. Comparison of ensemble networks on Office-31.

Method (λsd, λtd) A→W D→W W→D A→D D→A W→A Avg

Single-perspective
(0.3, 0.3) 88.6 96.5 100.0 85.6 69.4 65.1 84.2

(0.7, 0.7) 89.2 96.5 100.0 85.5 69.1 67.8 84.7

Two-perspective (Ours) (0.7, 0.3) 90.1 98.5 100.0 88.4 72.5 72.5 87.0

Table 3. Ablation results (%) of investigating the effects of our components on Office-31.

LDANN Lfm Lbim Lsp Lcr A→W D→W W→D A→D D→A W→A Avg

X 82.0 96.9 99.1 79.7 68.2 67.4 82.2

X X 86.5 98.4 100.0 85.5 71.4 71.5 85.5

X X X 90.1 98.5 100.0 88.4 72.5 72.5 87.0

X X X X 92.3 98.6 100.0 90.4 76.3 74.1 88.6

X X X X X 94.2 99.3 100.0 91.3 76.5 74.3 89.3

Table 4. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50). The best accuracy is indicated in bold

and the second best one is underlined. * Reproduced by [5]

Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 [13] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DANN [8] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2

MSTN* [42] 91.3 98.9 100.0 90.4 72.7 65.6 86.5

CDAN+E [23] 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

DMRL [41] 90.8±0.3 99.0±0.2 100.0±0.0 93.4±0.5 73.0±0.3 71.2±0.3 87.9

SymNets [47] 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4

GSDA [16] 95.7 99.1 100 94.8 73.5 74.9 89.7

CAN [17] 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6

SRDC [36] 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8

RSDA-MSTN [11] 96.1±0.2 99.3±0.2 100.0±0.0 95.8±0.3 77.4±0.8 78.9±0.3 91.1

FixBi (Ours) 96.1±0.2 99.3±0.2 100.0±0.0 95.0±0.4 78.7±0.5 79.4±0.3 91.4

Effects of the components of our FixBi. We conduct

ablation studies to investigate the effectiveness of the com-

ponents of our proposed method. In Table 3, our fixed ratio-

based mixup improves the baseline DANN [8] on average

by 3.3%. The bidirectional matching provides an additional

1.5% improvement on average. Especially, in the task of

A→W and A→D, we observe that the bidirectional match-

ing has an impressive impact on performance improvement.

We also observe that self-penalization has a significant im-

pact on both task D→A and W→A. In addition, our con-

sistency regularization loss helps to improve performance.

Overall, FixBi improves the baseline DANN by an average

of 7.1%. This shows that each component is effective in

improving performance.

Analysis of the confidence threshold. We visualize our

confidence threshold τ in Figure 4. Note that our confi-

dence threshold τ is changed adaptively within each mini-

batch, and gradually increased with learning iterations. We

observe a sharp increase in the confidence of TDM at 100

epoch, the point at which Lbim starts to be applied. It can

be seen more clearly, especially when the difference in the

mixup ratio between SDM and TDM is large.

Feature visualization. Figure 5 visualizes the embed-

ded features on the task A→W by t-SNE [39]. For the base-

line (e.g, DANN [8]), the target domain features are em-

bedded around the clusters of the source domain features,

but it fails to form the clusters of the target domain fea-

tures. On the other hand, our FixBi constructs the compact

clusters of the target domain features close to the source

domain features. From this result, we confirm that our pro-

posed method works successfully for an unsupervised do-

main adaptation task.

4.3. Comparison with the state­of­the­art methods

We compare our method with the various state-of-the-art

methods on three public benchmarks. The results of Office-

31, Office-Home, and VisDA-2017 are reported in Tables

4, 5, and 6, respectively. We use MSTN [42] as a baseline

network. Note that our final accuracy is obtained by the sum

of the softmax results of two network models.
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Table 5. Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50). The best accuracy is indicated in

bold and the second best one is underlined. * Reproduced by [11]

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 [13] 34.9 50 58 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN [8] 45.6 59.3 70.1 47 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

CDAN [23] 49 69.3 74.5 54.4 66 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

MSTN* [42] 49.8 70.3 76.3 60.4 68.5 69.6 61.4 48.9 75.7 70.9 55 81.1 65.7

SymNets [47] 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2

GSDA [16] 61.3 76.1 79.4 65.4 73.3 74.3 65 53.2 80 72.2 60.6 83.1 70.3

GVB-GD [7] 57 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81 74.6 59.7 84.3 70.4

RSDA-MSTN [11] 53.2 77.7 81.3 66.4 74 76.5 67.9 53 82 75.8 57.8 85.4 70.9

SRDC [36] 52.3 76.3 81 69.5 76.2 78 68.7 53.8 81.7 76.3 57.1 85 71.3

FixBi (Ours) 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

Table 6. Accuracy (%) on VisDA-2017 for unsupervised domain adaptation (ResNet-101). The best accuracy is indicated in

bold and the second best one is underlined. * Reproduced by [5]

Method aero bicycle bus car horse knife motor person plant skate train truck Avg

ResNet-101 [13] 72.3 6.1 63.4 91.7 52.7 7.9 80.1 5.6 90.1 18.5 78.1 25.9 49.4

DANN [8] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

DAN [22] 68.1 15.4 76.5 87 71.1 48.9 82.3 51.5 88.7 33.2 88.9 42.2 61.1

MSTN* [42] 89.3 49.5 74.3 67.6 90.1 16.6 93.6 70.1 86.5 40.4 83.2 18.5 65.0

JAN [24] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7

DM-ADA [43] - - - - - - - - - - - - 75.6

DMRL [41] - - - - - - - - - - - - 75.5

MODEL [20] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

STAR [25] 95 84 84.6 73 91.6 91.8 85.9 78.4 94.4 84.7 87 42.2 82.7

CAN [17] 97 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2

FixBi (Ours) 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

Office-31. Table 4 shows the comparative performance

on the Office-31 dataset based on ResNet-50. The average

accuracy of our method is 91.4%, which outperforms the

other methods such as SRDC [36] and RSDA-MSTN [11].

Our method shows a significant performance improvement

over the baseline MSTN [42] method in situations with very

large domain shifts, e.g., A→W, W→A, A→D, and D→A

tasks. In particular, compared to baseline, the task with

the most improved accuracy was W→A, achieving a perfor-

mance improvement of 13.8%. Compared with the mixup-

based method DMRL [41], a large performance improve-

ment is also observed.

Office-Home. In Table 5, we compare our method with

recent UDA methods on the Office-Home dataset based

on ResNet-50. Our FixBi shows particularly strong per-

formances in tasks with the large domain discrepancy be-

tween the real-world domain and the artificial domain,

e.g., Rw→Ar, Rw→Cl, Rw→Pr, and Cl→Rw tasks. Our

method has an average accuracy of 72.7%, which outper-

forms the state-of-the-art results achieved by SRDC [36].

Note that our method achieves approximately 2% better ac-

curacy compared with RSDA-MSTN [11] on Office-Home.

VisDA-2017. Table 6 presents the classification accu-

racy for the VisDA-2017 dataset based on ResNet-101. Our

FixBi achieves 22.2% performance improvement on an av-

erage compared with the baseline method [42]. Above all,

our method shows about 12% better accuracy than other

mixup-based methods [41, 43] and achieves comparable

performance compared to the state-of-the-art methods.

5. Conclusion

In this paper, we proposed a FixBi algorithm that bridg-

ing the domain spaces to deal with the large domain dis-

crepancy problem in an unsupervised domain adaptation

scenario. Our main methodology is to construct an inter-

mediate domain with different characteristics between the

source domain and the target domain. We completed this

through our fixed ratio-based mixup with different mixup-

ratios, and further proposed bidirectional matching, self-

penalization, and consistency regularization for efficient use

of intermediate space. Extensive ablation studies demon-

strate the effectiveness of our proposed algorithm and ex-

periments on the three standard benchmarks show that our

proposed method achieves competitive performance to the

state-of-the-art methods.

Acknowledgement. This work was partially supported

by NRF-2020R1F1A1066049 and Technology Innovation

Program (TIP-20000316) funded by the Ministry of Trade,

Industry & Energy (MOTIE, Korea).

1101



References

[1] S. Ao, X. Li, and C. X. Ling. Fast generalized distillation

for semi-supervised domain adaptation. In Thirty-First AAAI

Conference on Artificial Intelligence (AAAI), 2017. 2

[2] D. Berthelot, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang,

and C. Raffel. Remixmatch: Semi-supervised learning with

distribution alignment and augmentation anchoring. In In-

ternational Conference on Learning Representations (ICLR),

Apr. 2020. 2

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot,

A. Oliver, and C. Raffel. Mixmatch: A holistic approach

to semi-supervised learning. In Thirty-third Conference

on Neural Information Processing Systems (NeurIPS), Dec.

2019. 1, 2, 3

[4] A. Blum and T. Mitchell. Combining labeled and unlabeled

data with co-training. In Eleventh Annual Conference on

Computational Learning Theory (COLT), 1998. 4

[5] W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han. Domain-

specific batch normalization for unsupervised domain adap-

tation. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 7, 8

[6] J. Chen, V. Shah, and A. Kyrillidis. Negative sampling in

semi-supervised learning. In International Conference on

Machine Learning (ICML), 2020. 2

[7] S. Cui, S. Wang, J. Zhou, C. Su, Q. Huang, and Q. Tian.

Gradually vanishing bridge for adversarial domain adapta-

tion. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2020. 2, 8

[8] Y. Ganin and V. Lempitsky. Unsupervised domain adapta-

tion by back propagation. In International Conference on

Machine Learning (ICML), 2015. 1, 2, 3, 4, 5, 6, 7, 8

[9] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised rep-

resentation learning by predicting image rotations. In arXiv

preprint arXiv:1803.07728, 2018. 1

[10] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for

object recognition: An unsupervised approach. In The IEEE

International Conference on Computer Vision (ICCV), pages

999–1006, 2011. 2

[11] X. Gu, J. Sun, and Z. Xu. Spherical space domain adapta-

tion with robust pseudo-label loss. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

9101–9110, 2020. 3, 5, 7, 8

[12] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang,

and M. Sugiyama. Robust training of deep neural networks

with extremely noisy labels. In Thirty-fourth Conference on

Neural Information Processing Systems (NeurIPS), 2020. 2,

4

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 5, 7, 8

[14] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings

in deep residual networks. In The European Conference on

Computer Vision (ECCV), 2016. 5

[15] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola,

K. Saenko, A. A. Efros, and T. Darrell. Cycada: Cycle-

consistent adversarial domain adaptation. In arXiv preprint

arXiv:1711.03213, 2017. 2

[16] L. Hu, M. Kan, S. Shan, and X. Chen. Unsupervised do-

main adaptation with hierarchical gradient synchronization.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020. 7, 8

[17] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann. Con-

trastive adaptation network for unsupervised domain adap-

tation. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 3, 7, 8

[18] D. Lee. Pseudo-label: The simple and efficient semi-

supervised learning method for deep neural networks. In

ICML Workshop on Challenges in Representation Learning,

2013. 2

[19] D. Li and T. Hospedales. Online meta-learning for multi-

source and semi-supervised domain adaptation. In arXiv

preprint arXiv:2004.04398, 2020. 2

[20] R. Li, Q. Jiao, W. Cao, H.-S. Wong, and S. Wu. Model adap-

tation: Unsupervised domain adaptation without source data.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020. 8

[21] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning

transferable features with deep adaptation network. In arXiv

preprint arXiv:1502.0279*1,, 2015. 1, 2

[22] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning trans-

ferable features with deep adaptation networks. In Interna-

tional Conference on Machine Learning (ICML), 2015. 8

[23] M. Long, Z. CAO, J. Wang, and M. I. Jordan. Conditional

adversarial domain adaptation. In Thirty-second Conference

on Neural Information Processing Systems (NeurIPS), 2018.

7, 8

[24] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer

learning with joint adaptation network. In Thirty-fourth In-

ternational Conference on Machine Learning (ICML), 2017.

1, 2, 8

[25] Z. Lu, Y. Yang, X. Zhu, C. Liu, Y.-Z. Song, and T. Xiang.

Stochastic classifiers for unsupervised domain adaptation.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2020. 8

[26] X. Mao, Y. Ma, Z. Yang, Y. Chen, and Q. Li. Virtual

mixup training for unsupervised domain adaptation. In arXiv

preprint arXiv:1905.04215, 2019. 3, 6

[27] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and

K. Saenko. Visda: The visual domain adaptation challenge.

In arXiv preprint arXiv:1710.06924, 2017. 2, 5

[28] C. Qin, L. Wang, Q. Ma, Y. Yin, H. Wang, and Y. Fu. Op-

posite structure learning for semi-supervised domain adapta-

tion. In arXiv preprint arXiv:2002.02545, 2020. 2

[29] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-

sual category models to new domains. In The European Con-

ference on Computer Vision (ECCV), 2010. 2, 5

[30] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko.

Semi-supervised domain adaptation via minimax entropy.

In The IEEE International Conference on Computer Vision

(ICCV), 2019. 2

[31] K. Saito, Y. Ushiku, T. Harada, and K. Saenko. Adversar-

ial dropout regularization. In International Conference on

Learning Representations (ICLR), 2018. 2

1102



[32] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum

classifier discrepancy for unsupervised domain adaptation.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3723–3732, 2018. 3

[33] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization

with stochastic transformations and pertuations for dep semi-

supervised learning. In Thirtieth Conference on Neural In-

formation Processing Systems (NeurIPS), 2016. 2

[34] K. Shon, D. Berthelot, C. Li, Z. Zhang, N. Carlini, E. D.

Cubuk, A. Kurakin, H. Zhang, and C. Raffel. Fixmatch:

Simplifying semi-supervised learning with consistency and

confidence. In arXiv preprint arXiv:2001.07685, 2020. 1, 2,

3, 4

[35] B. Sun and K. Saenko. Deep coral: Correlation alignment

for deep domain adaptation. In The European Conference on

Computer Vision (ECCV), 2016. 2

[36] H. Tang, K. Chen, and K. Jia. Unsupervised domain adap-

tation via structurally regularized deep clustering. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2020. 3, 7, 8

[37] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial

discriminative domain adaptation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

7167–7176, 2017. 1, 2, 3

[38] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial

discriminative domain adaptation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

7167–7176, 2017. 2, 3

[39] L. van der Maaten and G. Hinton. Visualizing data using

t-sne. In Journal of Machine Learning Research (JMLR),

2008. 7

[40] H. Venkateswara, J. Eusebio, S. Chakraborty, , and S. Pan-

chanathan. Deep hashing network for unsupervised domain

adaptation. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 2, 5

[41] Y. Wu, D. Inkpen, and A. El-Roby. Dual mixup regularized

learning for adversarial domain adaptation. In The European

Conference on Computer Vision (ECCV), 2020. 2, 3, 7, 8

[42] S. Xie, Z. Zheng, L. Chen, and C. Chen. Learning seman-

tic representations for unsupervised domain adaptation. In

Thirty-fifth International Conference on Machine Learning

(ICML), 2018. 4, 5, 7, 8

[43] M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and

W. Zhang. Adversarial domain adaptation with domain

mixup. In Thirty-Fourth AAAI Conference on Artificial In-

telligence (AAAI), 2020. 2, 3, 6, 8

[44] L. Yang, Y. Wang, M. Gao, A. Shrivastava, K. Q. Wein-

berger, W.-L. Chao, and S.-N. Lim. Mico: Mixup co-training

for semi-supervised domain adaptation. In arXiv preprint

arXiv:2007.12684, 2020. 2, 3, 4, 6

[45] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer. S4l: Self-

supervised semi-supervised learning. In The IEEE Interna-

tional Conference on Computer Vision (ICCV), Oct. 2019. 1,

2

[46] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.

Mixup: Beyond empirical risk minimization. In Interna-

tional Conference on Learning Representations (ICLR), Apr.

2018. 3, 6

[47] Y. Zhang, H. Tang, K. Jia, and M. Tan. Domain-symmetric

networks for adversarial domain adaptation. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019. 7, 8

1103


