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Abstract

In this paper, we propose a novel learning-based polyg-

onal point set tracking method. Compared to existing video

object segmentation (VOS) methods that propagate pixel-

wise object mask information, we propagate a polygonal

point set over frames. Specifically, the set is defined as a

subset of points in the target contour, and our goal is to

track corresponding points on the target contour. Those

outputs enable us to apply various visual effects such as

motion tracking, part deformation, and texture mapping. To

this end, we propose a new method to track the correspond-

ing points between frames by the global-local alignment

with delicately designed losses and regularization terms.

We also introduce a novel learning strategy using synthetic

and VOS datasets that makes it possible to tackle the prob-

lem without developing the point correspondence dataset.

Since the existing datasets are not suitable to validate our

method, we build a new polygonal point set tracking dataset

and demonstrate the superior performance of our method

over the baselines and existing contour-based VOS meth-

ods. In addition, we present visual-effects applications of

our method on part distortion and text mapping.

1. Introduction

Object mask tracking in a video is one of the most fre-

quently required tasks in visual effects (VFX). However, the

task (i.e. rotoscoping) is so painstaking and time-consuming

that even a highly-skilled designer processes only a dozen

frames on average per day [28]. Therefore, propagating ob-

ject mask information through subsequent frames becomes

a critical problem to reduce human labor for rotoscoping.

Propagation methods are categorized into four groups based

on object representations: point, region, contour, and polyg-

onal point set (Figure 2). Each representation carries differ-

ent amount of information.

Patch tracking [14, 33, 13, 7] denotes a target object as

point representation and tracks a target point over frames

by matching the patch around the point. The tracking en-

ables visual effects that require positional information such
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Figure 1: Our method tracks a set of points in a polygon

over frames. The output represents mask contour with point

correspondences across frames. It allows multiple applica-

tions, e.g., a non-rigid transformation of a specific part of

an object over time as shown here.

as motion tracking and texture mapping. These applications

often require multiple patch tracking to compute point-to-

point information. However, conducting each patch track-

ing independently ignores strong correlations between tar-

get points, thus multiple patch tracking are susceptible to a

drift problem and are not suitable for mask propagation.

Meanwhile, video object segmentation (VOS) [44, 8, 22,

47, 35, 34] and contour tracking [20, 49, 11, 39] propagate

target object information over subsequent frames by repre-

senting the target as a region (i.e. mask) and a contour re-

spectively. These representations can describe only the tar-

get area without any pixel correspondences, therefore they

are not applicable to complex VFX scenarios that require

point-to-point relation information (e.g., Figure 1).

On the other hand, polygonal point set tracking com-

bines the positional information with the target region. The

polygonal point set is defined as a subset of contour points

that represent an object in a polygonal shape. By track-

ing the point set, we can get both the object contour and

the point-to-point matching information. Previous works in

this category [2, 28, 32, 37] focus on making the user inter-
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(a) Patch Tracking (b) Video Object Segmentation (c) Contour Tracking (d) Point Set Tracking (Ours)

Figure 2: Illustration of different approaches for object mask propagation. (a) Independent multi-patch tracking represents

an object coarsely and drifts easily. (b) Region-based video object segmentation achieves high accuracy in pixel-level

dense prediction, but it usually may yield cattery boundaries due to a high degree of freedom and does not provide point

correspondences. (c) In contour tracking, the constrained contour representation can give us clean boundary, but point

correspondence information is still missing. On the other hand, (d) Polygonal point set tracking provides both clean polygonal

object mask and point correspondences across frames.

action easier for highly customizable results rather than tak-

ing the point-to-point matching (or tracking) into account.

Therefore, they assume heuristic shape priors of an object

and often exhibit propagation failures for challenging object

motions.

In this paper, we aim to track all points directly through a

learning-based approach without assuming a heuristic shape

prior and propose a novel point set tracking method. Ac-

cording to the hypothesis that the target object state in adja-

cent frames is highly correlated, we train a network to learn

progressive alignment of a point set between frames. We

first match the point set globally using a simple rigid trans-

formation. Then, we further tune each point position in a

coarse to fine manner using a local alignment module. Our

local alignment module (LAM) adopts recurrent neural net-

works (RNN) to take into account the temporal history of

each point and also uses multi-head attention (MHA) mod-

ules for non-local communication among the points. In ad-

dition, we regularize the alignments to avoid drifting and

honor the original topology of a target polygon in challeng-

ing situations.

We introduce a new learning strategy to train our

model without fully annotated data. Currently available

VOS datasets [9, 48] only contain region information (i.e.

masks), thus it cannot be directly applied to our point cor-

respondence learning. To overcome the data issue, we pro-

pose an unsupervised learning method based on cyclic con-

sistency between predicted frames [45, 46]. We also obtain

the supervision for point set tracking by synthesizing data

from image instance segmentation data. To the best of our

knowledge, this is the first work on learning-based point set

tracking that considers the point correspondence.

Figure 1 shows an example application that utilizes our

network results. In this example, to exaggerate the upper

body, the same effect is applied to the target across the entire

frame, even if the user edits the points in the set individually

only in the first frame.

Popular evaluation datasets for video object segmenta-

tion are not suitable for evaluating point-set tracking as

they only provide mask annotations [9, 16, 27, 32]. While

CPC [32] provides annotations of object contours, it is also

not sufficient for the evaluation as there is no point corre-

spondence annotation. To this end, we introduce an evalu-

ation dataset for polygonal point set tracking, consisting of

30 sequences. To build the dataset, named PoST, we aug-

ment video clips from existing VOS datasets with additional

point set annotations with correspondence. We evaluate our

method on PoST and the existing VOS datasets [9, 32], and

we show that our method outperforms competing methods

with a large margin.

Our contributions are summarized as follows:

• We propose a novel learning-based method for polyg-

onal point set tracking with point correspondence for

the first time.

• We design a local alignment module for point tracking

with taking temporal history and communication with

other points into account.

• We present a learning strategy to train a deep network

for point set tracking using unsupervised learning and

synthesized data.

• We introduce a new dataset for evaluating performance

of point set tracking.

2. Related Work

Object Mask Propagation Patch tracking is a naive ap-

proach of the object mask propagation at the point level. By

tracking a given patch through all frames, the patch location

provides the positional information of the tracked part of an

object across frames. However, recent research based on a

deep learning approach has focused on object-level track-

ing rather than patch-level because it is hard to annotate
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corresponding patches over frames [4, 5, 12]. Although

optimization-based methods [14, 33, 13, 7] bypass this data

issue, it is not robust enough since they rely on hand-crafted

features. Moreover, while multiple patch tracking is per-

formed on the different parts of the same object in the case

of VFX, such as texture mapping, they drift easily because

each patch is tracked independently.

On the other hand, region-based video object segmenta-

tion estimates pixel-wise masks. In this approach, the user-

supplied mask is temporally propagated to other frames to

aid the time-consuming per frame segmentation. Recently,

thanks to the representational power of deep learning, the

region-based methods have reached a milestone in its object

mask propagation performance [44, 8, 22, 47, 35, 34]. De-

spite the success of the aforementioned methods, its shape

representation inherently limits many editing applications

as it cannot provide point-to-point information.

Contour tracking methods [20, 49, 11, 39] also propa-

gate the object masks but use a more constrained represen-

tation (i.e. object boundary). Contour tracking has been

performed by probabilistic [20, 49] and hidden Markov

models [11]. More recently, Saboo et al. [39] propose a

learning-based framework that solves the problem by adopt-

ing an attention mechanism. By employing the contour

representation, these methods reduce prediction noise and

yield a clean object boundary but still lack temporal point-

to-point correspondence similar to the region-based object

segmentation methods.

In polygonal point set tracking, different from region-

based segmentation and contour tracking, each point can be

tracked. In this problem setting, various cues for propagat-

ing an object mask are previously explored. In [2], an inter-

polation between two key frames is performed. Some meth-

ods try to find sharp object edges using snakes [6, 23] after

a global tracking through either using shape manifold [28]

or shape prior [32, 37]. However, the previous point set

tracking methods rather focus on its convenience for user

interaction for controlling object shapes than establishing

an accurate point-to-point correspondence. Thus, many of

them are limited to applications that require matching points

over time.

Point Set Representation in Deep Learning While point

set representation is not popular in modern deep learning

architectures in computer vision, there are some efforts to

employ it. To find an efficient way against manual anno-

tation for segmentation, the shape representation is defined

as polygon structure in [10, 1, 31]. In these methods, sev-

eral architectures of recurrent neural networks (RNN) [10],

graph neural network (GNN) [1] and graph convolution net-

work (GCN) [31] are suggested to deal with point set in

deep approach. Point set representation is also employed for

image instance segmentation as well [36, 29]. Other options

to handle the representation are proposed in those meth-

ods such as circular convolution [36] and transformer [29].

These previous methods show considerable potential for the

shape representation of point set but only focus on a single

image level. Point set tracking is inherently impossible for

these image-level approaches.

Global-local alignment Since adjacent frames in a video

sequence are highly correlated, global-local alignment is

a common approach in many video-related tasks such as

optical flow [41], video inpainting [26], and object track-

ing [15]. Although not a learning-based nor point-to-point

tracking method, SnapCut [3] is also one of the most popu-

lar rotoscoping approaches that shares a similar philosophy

with ours, where patches are tracked first and then the local

classifier refines the contour. Following this concept, we

adopt the global-local alignment in our framework.

3. Method

Our method tracks a set of polygonal points represent-

ing a subset of points on the contour of the target object.

As shown in Figure 3, our framework is divided into two

steps: global and local alignments. For global alignment,

we compute an affine transformation matrix between the

previous and the current frames. We globally align the pre-

vious frame and its point set using the computed matrix.

In the second step, we forward the transformed frame and

point set to a local feature encoder, and extract point-wise

features for each point in the set. We forward the extracted

point features to Local Alignment Module (LAM) and up-

date the point correspondences locally. LAM computes the

offset of each point to update the point’s location progres-

sively in a coarse to fine manner.

3.1. Global Alignment

Since the deformation of an object or viewpoint change

is small between adjacent frames, a simple geometric trans-

formation like affine transform can align the two frames to

some extent. Inspired by [21, 26], the global alignment net-

work predicts an affine transformation matrix to align the

previous frame It−1 toward the current frame It. To esti-

mate the affine transformation matrix At−1→t, the binary

target mask M̂t−1 obtained from the polygonal point set

P̂t−1 is also given as an additional input into the global

alignment network, allowing it to focus on the target while

disregarding the background. For computational efficiency,

the input is resized into a half and a lightweight backbone

is used for the global alignment network as in [26]. In

short, At−1→t is obtained by the global alignment network

fglob(·) as follows:

At−1→t = fglob(I
↓
t , I

↓
t−1,M̂

↓
t−1), (1)

where I↓ and M̂↓ denote downsized image and mask re-

spectively. The output of the network is a 6-dimensional

vector that represents an affine matrix. The previous frame
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Figure 3: Overview of our framework. In our framework, the alignment steps are divided into global and local alignment.

First, the previous frame and point set are globally aligned by the affine transform matrix from the global alignment networks.

Then, the features encoded from the current and aligned inputs are used for local alignment after sampled as point vectors.

Local alignment module (LAM) yields displacement offsets of points in the set from point vectors and updates the point set.

The local alignment performs iteratively in a coarse to fine manner.

It−1 and its point set P̂t−1 are then warped by the com-

puted At−1→t into It−1→t and P̂t−1→t.

3.2. Local Alignment

After the global alignment, each point in the point set is

further aligned locally. We extract point features using a lo-

cal feature encoder. Specifically, We use resnet50 [18]

as an encoder backbone and take FPN feature maps [30]

for accurate localization. We feed the current frame It,
the warped previous frame It−1→t and the warped tar-

get mask M̂t−1→t to the encoder after concatenating them

along the channel axis.

From the encoded feature maps, we sample point fea-

ture vectors according to the location of each point in the

point set. Given the point vectors, our Local Alignment

Module (LAM) calculates the displacement offset of each

point. The locations of the points are updated using the off-

sets, and we repeat the point feature sampling and the offset

update. In each iteration, we use the feature maps at a dif-

ferent scale from coarse to the finest levels, thus the point

set is aligned in a coarse-to-fine manner.

Local Alignment Module (LAM). Local Alignment Mod-

ule (LAM) takes a set of point feature vectors and yields 2-

channeled offsets (i.e. horizontal and vertical), where each

2-channel offset corresponds to each point. Figure 3 de-

scribes the detailed architecture of LAM. The module can

be divided into four parts: positional encoding, backbone,

temporal information transfer, and prediction.

Positional encoding allows the network to identify the

order of each point in the set. We use the sinusoidal po-

sitional embedding as in [43]. However, in our positional

embedding, the first point should meet the last point reflect-

ing the cyclic characteristic of a polygon. Therefore, we

adjust the period of the sinusoidal function according to the

number of points N in the point set as follows:

Ei
order = [sin(2πi/N), cos(2πi/N)], (2)

where Ei
order denotes the positional embedding of ith vertex.

Backbone is constructed by stacking 8 base blocks where

each block consists of two circular convolutions [36] fol-

lowed by multi-head attention (MHA) [43]. In the last

layer, features from each level are fused by concatenation

and an 1x1 convolution followed by max pooling. Temporal

information transfer improves the temporal consistency of

the estimation by taking the history of each point. We use

Long Short-Term Memory (LSTM) [19] for this purpose.

Finally, prediction layer outputs the offset of each point.

4. Training

4.1. Objective Function

Global Alignment. To train the global alignment net-

work, we use two losses: point set matching loss and pixel

matching loss. The point set matching loss [31] considers

a group of points by measuring a global distance, where

each point of two different point sets is matched one-to-

one with each other along the polygonal path. As there are

multiple global distances between two point sets depend-

ing on the starting index, we minimize the minimum of all

possible distances. With a point set with starting index k,

Pk = [Pk%N ,P(k+1)%N , ...,P(k+N−1)%N ], the point set

matching loss Lg is defined as follows:

Lg = min
k=[0,...,N−1]

N−1
X

i=0

�

�

�
P

ki
− P̂

i
�

�

�

1
, (3)
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where Pi and P̂i denote the points each from the ground-

truth and the globally-aligned point sets with index i (0 
i < N ) respectively, and k·k denotes smooth L1 dis-

tance [17].

Pixel matching loss is based on the hypothesis that the

brightness (or color) of the aligned pixel from the previous

frame should be similar to that of the corresponding pixel

in the current frame [26]. The pixel matching loss Lp is

calculated as follows:

Lp =
1

K

W−1
X

x=0

H−1
X

y=0

xy

obj

�

�Ixy
t − Ixy

t−1→t

�

�

2
, (4)

where
xy
obj is an indicator function to check if pixel (x, y)

belongs to the target mask in the current frame It whose

width and height is W and H respectively, and K =PW−1
x=0

PH−1
y=0

xy
obj.

Local Alignment. We have two different scenarios in

training and use different objective functions for the lo-

cal alignment in each scenario. When we have ground-

truth point correspondences (e.g., synthetic data), we use

the smooth L1 loss between two matching points as Lc =PN−1
i=0 ||Pi � P̂i||1.

Another scenario is with existing VOS datasets, having

only ground-truth masks without point correspondences. In

this case, we sample a polygonal point set along the ground-

truth mask boundary at each frame. Then, we adopt Cham-

fer distance between the predicted point set and the target

point set as our objective for local alignment. The objective

encourages each predicted point to be mapped to a point on

the object boundary and is formally defined as follows:

Lc =
1

N

N−1
X

i=0

min
j=[0,...,N−1]

||Pi
− P̂

j ||2

+
1

N

N−1
X

j=0

min
i=[0,...,N−1]

||Pi
− P̂

j ||2.

(5)

In our implementation, M = N as we sample the same

number of points at each frame.

In addition to the correspondence objective, we include

regularization terms into our objective function to avoid

drifting in challenging situations, e.g., a corresponding

point is occluded. We want to honor the previous shape

topology in the case, therefore we make use of the first and

second derivative regularization (R1 and R2) on the pre-

dicted point set and prevent dramatic changes in the length

and the angle of the point set. The regularization terms are

defined as follows:

R1 =

N−2
X

i=0

(||P̂i
t − P̂

i−1
t ||2 − ||P̂i

t−1 − P̂
i−1
t−1||2)

2
, (6)

R2 =

N−3
X

i=0

||(P̂i+1
t − 2P̂i

t + P̂
i−1
t )

− (P̂i+1
t−1 − 2P̂i

t−1 + P̂
i−1
t−1)||2.

(7)

We observe that these regularization terms greatly improve

the stability of our model outputs.

Unsupervised Learning. To further improve the perfor-

mance of our model when training on a dataset without

point matching annotations, we employ an unsupervised ap-

proach for the correspondence learning [46, 45]. By ex-

ploiting the cycle-consistency in time, we can assume that a

point set tracked forward-then-backward should be matched

to the point set at the same location. To make a cycle, we

run the network forward K frames as usual, and then we run

the network backward from the outputs of the forward pass

to the initial frame. By doing so, we can derive matching

points between the predictions during the forward and the

backward pass. From the point set collected during the for-

ward and backward pass (P̂ and Q̂), an unsupervised loss is

defined as Lu = 1
KN

PK−1
k=0

PN−1
i=0 ||P̂i

k � Q̂i
k||1.

4.2. Data Augmentation by Synthetic Data

Supervision for point-to-point matching is crucial for our

model to learn polygonal point set tracking with accurate

correspondences. However, this information is not avail-

able in existing datasets. To complement it, we take an im-

age instance segmentation dataset [25] and synthesize video

data with full supervision signals. We first crop one or

two objects from randomly sampled images in the dataset.

For each cropped object, we extract a polygonal point set

and deform it using the moving least squares method [40]

with randomly chosen control points within the point set.

These deformed objects are randomly pasted using the lin-

ear blending to a background image that is also randomly

sampled. Then, we generate a sequence with synthetic

movement by applying random affine transforms to each

object and background. This procedure allows us to gen-

erate data with full supervisory signals, and we used it to

augment our training data.

5. Experiments

5.1. Implementation Details

To train our model, we use video object segmenta-

tion datasets, including the training sets from YouTube-

VOS [48] and DAVIS [9]. We randomly choose a short

clip from each sequence and extract contours from ground-

truth masks using the method proposed in [42]. We filter

out samples containing partial occlusion, where a contour

is divided into several pieces as they cannot be tracked over

frames. From a contour, a polygonal point set is sampled for

the network input. In addition to the real data, we also make

use of the synthetic dataset as described in Section 4.2.

We train our model using Adam [24] optimizer with the

initial learning rate of 0.0001, decayed by a factor of 10 af-

ter 70k iterations. The backbone network of the local align-

ment module is initialized with pretrained weights on Ima-
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geNet [38]. Our model is trained for 100k iterations with a

batch size of 8 on four NVIDIA RTX 2080 Ti GPUs for 4

days. The number of sampled frames increases over epochs

from 2 to 7.

We uniformly sample 128 vertices from the contour for

the polygonal point set during both training and test time.

An input image is cropped into a patch based on the bound-

ing box of the predicted contour with margin. The cropped

area is defined as the method proposed in [4]. For the local

alignment, the point set is updated with 5 iterations, and we

use the FPN layer with stride from 1/32 to 1/4 as our feature

map for each iteration except the last iteration. For the last

iteration, the layer with stride 1/4 is used again.

5.2. Evaluation Dataset

Video Object Segmentation Datasets. Because our

method is closely related to the video object segmentation

task, we evaluate our model on DAVIS2016 [9], one of the

most popular benchmarks for the task. The dataset con-

sists of 20 sequences under challenging scenarios. Because

only mask annotation is given for each target object in the

dataset, we sample a point set as described in Section 5.1.

For the evaluation of contour-based video segmentation,

Lu et al. [32] proposed CPC dataset, where target object

motions are mostly rigid. The dataset consists of 9 se-

quences of 34 frames in average without any training data.

These sequences are annotated by professional designers

using a standard editing tool. The annotation is given as

a parametric line of Bézier curves.

PoST. To evaluate our polygonal point set tracking prop-

erly, we need annotations not only object masks but also

point correspondences across frames. However, the exist-

ing VOS benchmark datasets aim to evaluate the quality of

object masks only. CPC [32] has parametric contour anno-

tations, but its control points do not correspond with each

other across frames. Furthermore, CPC evaluation is not re-

liable because it only contains nine sequences, and each se-

quence has mostly too small motions resulting in saturated

performance.

To this end, we propose a new challenging dataset for

point set tracking, named as PoST (Point Set Tracking).

We take a few sequences from the existing datasets of

DAVIS [9], CPC [32], SegTrack v2 [27] and JumpCut[16]

in order to cover various target object classes in different

video characteristics. To ensure that the point set tracking

is possible, we avoid sequences where a target object ex-

hibits extreme occlusions. For each sequence, we annotate

point set correspondences every 10 frames throughout the

sequence. If there are no accurate corresponding points in

a specific frame, we marked the points and excluded them

from the evaluation. In the end, we annotated 30 sequences

and use this dataset as our main benchmark.

5.3. Metrics

For the evaluation on video object segmentation datasets

(CPC and DAVIS2016), we use the region similarity J and

boundary accuracy F . In addition, we measure average ac-

curacy of pixel-level mask prediction introduced in [37].

To evaluate the point tracking, we modify the metrics,

spatial accuracy (SA) and temporal accuracy (TA), intro-

duced in [32]. These metrics measure the contour tracking

accuracy by computing the distance from the ground truth

points to their closest points in the predicted contour. Dif-

ferent from the original metrics, we measure the distance

between the exact corresponding points as follows:

SAτ (P,Q) = λ

T−1X

t=0

N−1X

i=0

||Pi
t � Qi

t||2 < τ,

TAτ (P,Q) = λ

T−1X

t=1

N−1X

i=0

||(Pi
t � Qi

t)

� (Pi
t−1 � Qi

t−1)||2 < τ,

(8)

where Pi
t and Qi

t are the corresponding points with index i
each in the prediction and ground-truth sets at time t, and

τ and λ denote a relative spatial threshold and an averaging

scale factor of 1
TN

.

5.4. Ablation Study

To verify the importance of our proposals, we conduct

an ablation study on three main components: local align-

ment module (LAM), unsupervised loss (UL), and synthetic

data (SD). For a baseline, we use our local alignment net-

work only with circular convolution blocks after the global

alignment.

We perform the ablation study on PoST and summarize

the results in Table 1. For better analysis, spatial accu-

racy (SA) and temporal accuracy (TA) are measured with

multiple threshold settings. Throughout all experiments,

when we use the synthetic data, point tracking performance

increases dramatically with an absolute gain of more than

10 points on average in terms of SA.04. Under the condi-

tion of the absence of point matching loss (without UL and

SD), positional encoding and temporal information transfer

in LAM does not improve performance due to no match-

ing point supervision (see row 1 and 3). However, this ad-

ditional information enhances point tracking performance

when given point matching supervision by an absolute gain

of 3 points on average in terms of SA.04 (see row 2 and

5). Without the point supervision, the cycle consistency

of unsupervised loss only increases SA since it helps to re-

cover the point correspondence when tracking is failed (see

row 3 and 4). The unsupervised loss, however, further im-

proves the performance by exploiting the synthetic data for

the point matching supervision (see row 5 and 6).

5574



LAM UL SD SA.16 SA.08 SA.04 TA.16 TA.08 TA.04

0.906 0.776 0.615 0.976 0.943 0.846

X 0.907 0.820 0.701 0.974 0.943 0.881

X 0.909 0.774 0.599 0.969 0.924 0.819

X X 0.909 0.808 0.672 0.961 0.920 0.829

X X 0.950 0.865 0.736 0.977 0.943 0.884

X X X 0.964 0.902 0.803 0.977 0.956 0.896

Table 1: Ablation studies on PoST. Three different com-

ponents of our framework are validated: local alignment

module (LAM), unsupervised learning by temporal cycle

consistency (UL) and synthetic data (SD).

Method SA.16 SA.08 SA.04 TA.16 TA.08 TA.04

CSRT [33] 0.925 0.878 0.807 0.973 0.927 0.842

MaskFlownet [50] 0.664 0.497 0.345 0.941 0.831 0.640

STM [35] + CSRT [33] 0.856 0.715 0.550 0.965 0.910 0.815

Roto++ [28] 0.769 0.530 0.366 0.841 0.630 0.403

ROAM [37] 0.871 0.717 0.512 0.965 0.873 0.697

Ours 0.964 0.902 0.803 0.977 0.956 0.896

Table 2: Comparison with other methods on PoST.

Avg.

Acc.
J F

STM [35] 0.997 0.957 0.982

MaskFlownet [50] 0.948 0.625 0.627

CPC∗ [32] 0.998∗ 0.963∗ 0.997∗

Roto++ (1 kf) [28] 0.976 0.640 0.527

Roto++ (2 kf) [28] 0.989 0.840 0.810

ROAM [37] 0.995 0.951 -

ROAM† [37] 0.995† 0.859† 0.893†

Ours 0.997 0.948 0.995

∗ partial evaluation.
† reproduced with default setting.

Table 3: Quantitative Results on CPC.

5.5. Comparison with Other Methods

PoST. We found only few works [28, 37] that perform a

point tracking mechanism in their framework. For com-

pleteness, we also compare our method against alterna-

tive methods such as optical flow-based tracking and patch

tracking combined with a video object segmentation tech-

nique. In the case of optical flow, the given point set is

tracked through all frames by propagating each point fol-

lowing the flow map from a current state-of-the-art optical

flow method [50]. Patch tracking can also be used to track

each point by extracting patches centered on given points.

For the patch tracking method, we can additionally guide

the result to stick to the object boundary using object masks

from the-state-of-the-art video object segmentation method,

STM [35]. We use CSRT [33] for the patch tracking here.

Results of each method on PoST is reported in Table 2.

Avg.

Acc.
J F

STM [35] 0.992 0.887 0.899

MaskFlownet [50] 0.873 0.300 0.289

Roto++ (1 kf) [28] 0.908 0.217 0.195

Roto++ (2 kf) [28] 0.926 0.329 0.290

ROAM [37] 0.952 0.583 -

ROAM† [37] 0.929† 0.378† 0.335†

Ours 0.971 0.642 0.637

† reproduced with default setting.

Table 4: Quantitative Results on DAVIS2016 Val.

As the results show, our model yields superior performance

compared with existing competitors in point set tracking in

terms of SA and TA with entire thresholds. Note that patch

tracking shows impressive results in terms of SA, but the

outlines of the object were not preserved well in this setting.

Video Object Segmentation Datasets. Although video

object segmentation is not the main goal in this paper,

our method can represent object contour using a polygonal

point set. For evaluation, we report performance on video

object segmentation dataset, CPC [32] and DAVIS2016 [9].

Quantitative results on CPC are summarized in Table 3.

In CPC, even though the performance is saturated due to the

rigidity and the static motion of the targets in the dataset,

our method shows a comparable accuracy with other meth-

ods. Note that STM [35] aims to derive a region-based ob-

ject mask thus does not track a point set. We report the

performance of CPC [32] only for a subset of the dataset as

reported in the original paper, because their codes are not

available. In Roto++, we also test with two ground-truth

keyframes of the first and last frames because interpolation

between keyframes plays an important role in the mecha-

nism. The performance of ROAM [37] is reported in two

cases: the number reported in the original paper and our re-

produced results with an official code in the default setting.

For DAVIS2016 validation set, the performance of vari-

ous methods is shown in Table 4. Since the dataset targets

non-rigid object motion and occlusions, contour-based ob-

ject segmentation methods inherently have many challenges

on this dataset. Despite the limitation, our method outper-

forms other point set tracking approaches with significant

gaps in all metrics.

Runtime Performance. Table 5 shows runtime perfor-

mance on DAVIS2016. We use GeForce TITAN X as in

[37]. Our method is the fastest one among other point set

tracking approaches.

5.6. Qualitative Results

Figure 4 shows some qualitative results of our method.

Given an initial polygonal point set of the target object, our

model propagates the set over frames. Each corresponding
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Figure 4: Qualitative results on various datasets. The images in the first column are the initial frames of each clip. Points in a

predicted point set are colored as white and several identical points with the same index are visualized in the same color. For

better analysis, we select samples in different categories and scenarios.
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Figure 5: Applications of our point set tracking method. (a) Text is mapped by motion tracking in front of the truck. (b) The

head of a man is exaggerated by part distortion.

Roto++ [28] ROAM [37] STM+CSRT [35, 33] Ours

Time (ms) / Frame 118∗ 5639∗ 2158 84

∗ reported in [37].

Table 5: Runtime Performances on DAVIS2016 Val.

point is marked with unique indices in different colors. Our

model yields successful results in terms of both regional

segmentation and point set propagation for the target object

through all sequences.

5.7. Applications

Figure 5 showcases some applications of the point set

tracking. We can apply text mapping by motion tracking for

a rigid object in Figure 5 (a) and part-level deformation for

non-rigid object in Figure 5 (b). Our method makes it easy

to apply these effects, whereas patch tracking and region-

based segmentation require additional information.

6. Conclusion

In this paper, we proposed a learning-based method for

polygonal point set tracking. We designed global and lo-

cal alignment networks for polygonal point set tracking. To

train the network, we introduced our learning scheme using

synthetic data and the unsupervised cycle-consistency loss.

We demonstrated that our model successfully propagates a

polygonal point set over time with accurate point-wise cor-

respondences even without any fully annotated ground-truth

data. We achieved state-of-the-art performance on multiple

benchmarks and showcased interesting applications.
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