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Abstract

Video grounding aims to localize a moment from an

untrimmed video for a given textual query. Existing ap-

proaches focus more on the alignment of visual and lan-

guage stimuli with various likelihood-based matching or

regression strategies, i.e., P (Y |X). Consequently, these

models may suffer from spurious correlations between the

language and video features due to the selection bias of

the dataset. 1) To uncover the causality behind the model

and data, we first propose a novel paradigm from the per-

spective of the causal inference, i.e., interventional video

grounding (IVG) that leverages backdoor adjustment to

deconfound the selection bias based on structured causal

model (SCM) and do-calculus P (Y |do(X)). Then, we

present a simple yet effective method to approximate the

unobserved confounder as it cannot be directly sampled

from the dataset. 2) Meanwhile, we introduce a dual con-

trastive learning approach (DCL) to better align the text

and video by maximizing the mutual information (MI) be-

tween query and video clips, and the MI between start/end

frames of a target moment and the others within a video to

learn more informative visual representations. Experiments

on three standard benchmarks show the effectiveness of our

approaches.

1. Introduction

Video grounding [3, 24], which aims to automatically lo-

cate the temporal boundaries of the target video span for a

given textual description, is a challenging multimedia infor-

mation retrieval task due to the flexibility and complexity of

text descriptions and video content. It has been widely used
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Figure 1: (a) Illustration of video grounding. (b) Spuri-

ous correlations between object “people” and “vacuum” and

the activity “people are holding a vacuum” in the Charades-

TA [24] dataset.

in many applications, such as video question answering [40]

and video summarization [74]. As shown in Figure 1 (a),

the query “People are shown throwing ping pong balls into

beer-filled cups” involves two actions “shown” and “throw-

ing”, one role “people”, and three objects “ping pong balls”,

“beer” and “cups”, which will be located in the video with

a start time (61.4s) and an end time (64.5s). To retrieve the

most relevant segment, a model needs to well understand

the complex interactions among these actions and objects

from both language and video context, and then properly

align the two sides semantic information for a prediction.

Extensive works have been proposed for the aforemen-

tioned challenging video grounding task, which can be

mainly categorized into three groups: 1) ranking meth-

ods that typically count on a two-stage propose-and-rank

pipeline [24, 3, 87], or attention-based localization ap-

proach [82] to find out the target video span among can-

didates with the best matching score. 2) regression meth-
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ods [46, 86, 50] that directly predict the start and end time

of the target moment to avoid the heavy computations for

a large number of candidates. 3) reinforcement learning

[70, 30, 11] approaches that dynamically filter out a se-

quence of video frames conditioned on the given textual

query and finally outputs temporal boundaries. The above

studies keep pushing the boundary of state-of-the-art perfor-

mance for the moment localization, and have made it possi-

ble to benefit the downstream applications [40, 23, 74].

Despite the enormous success of the current neural mod-

els, we argue that these approaches may suffer from the spu-

rious correlations between textual and visual features due to

the selection bias of the dataset. As shown in Figure 1 (b), a

dataset involves many relevant training instances for some

queries that contain the action description word “hold” and

two objects “people” and “vacuum’. Meanwhile, there are

a very limited number of queries with the action “fix” and

two objects “people” and “vacuum’. We can draw a conclu-

sion that the tokens “people” and “vacuum’ are highly cor-

related to the video moments relevant to “people are holding

a vacuum”, and have low correlations to the video moments

“people are fixing a vacuum”. Hence, a query that contains

the description “people are fixing a vacuum” may be incor-

rectly located to the video segment “people are holding a

vacuum” with high probability. We observe that such bi-

ased distributions commonly exist in many datasets, such

as Charades-STA [24] and TACoS [57].

Many methods [47, 18, 69, 90] attempt to address the

above issue. However, these re-sampling [18] and re-

weighting [47] methods are mainly designed for the clas-

sification tasks, and it can be difficult for them to be ap-

plied to temporal localization. One may also consider that

pre-trained knowledge is immune to the issue as they are

learned from large-scale datasets. However, as highlighted

by Zhang et al. [84], the pre-trained models, such as BERT

[20] and ResNET [32], may still suffer from the biased is-

sue. From a very different direction, causal inference [54]

based on structured causal model (SCM) [54] and potential

outcomes [58] have recently shown great promise, achiev-

ing state-of-the-art performance on many applications such

as scene graph generation [65], data clustering [71], image

classification [84], and visual question answering [2, 56].

Despite these success, directly applying these causal meth-

ods to the video grounding task may not yield good results,

due to the more complex interactions for moment retrieval

compared with the image-based bi-modal alignment.

To address the above problem, this paper presents a novel

paradigm named interventional video grounding (IVG)

based on Pear’s SCM [54] from the perspective of causal

inference. Theoretically, SCM uses the graphical formalism

to treat nodes as random variables and directed edges as the

direct causal dependencies between variables. We borrow

the idea of the backdoor adjustment and do-calculus theory

P (Y |do(X)) [54] to deconfound the aforementioned spu-

rious correlations. The main challenge here is to get the

unobserved confounders Z that influences both bi-modal

representations and the predictions, leading to the unex-

pected correlations between language and video features

by only learning from the likelihood P(Y |X). Previous

studies on image-based tasks treat the latent confounder as

the prior knowledge or dataset distribution, and approxi-

mate them with static probabilities [56, 68] of the image

objects from the dataset, or the probabilities predicted by

pre-trained classifiers [84]. We propose a simple yet effec-

tive method to approximate the prior P (Z) and then ob-

tain P (Y |do(X)). Meanwhile, we introduce a dual con-

trastive learning method (DCL) to learn more informative

visual representations by maximizing the MI between query

and video clips to better align the bi-modal features, and

the MI between the start/end time of the target moment and

other clips in the video. With the above two key compo-

nents IVG and DCL, our proposed IVG-DCL can alleviate

the confounder bias and learn high-quality representations

for the challenging video grounding task. Experiments on

three public datasets show the effectiveness of our proposed

IVG-DCL. Specifically, our main contributions are:

• We propose IVG, a novel model for video ground-

ing by introducing causal interventions P (Y |do(X))
to mitigate the spurious correlations from the dataset.

We also present a novel approximation method for the

latent confounder based on SCM.

• We propose a dual contrastive learning method DCL

based on MI maximization to learn more informative

feature representations in an unsupervised manner.

• We conduct quantitative and qualitative analyses on

three benchmark datasets and show interesting find-

ings based on our observations.

2. Related Work

2.1. Video Grounding:

The task of video grounding or moment localization

[3, 24] aims to retrieve video segments for the given tex-

tual queries. Previous works can be mainly categorized into

three groups. 1) The ranking methods [24, 3, 33, 73, 43,

44, 76, 25, 87] rely on bi-modal matching mechanisms to

obtain the target moment that has the best score. Typi-

cal works [24, 3, 76, 87] in this direction resort to a two-

stage propose-and-rank pipeline. These approaches highly

rely on the quality of proposals and may suffer from heavy

computation cost. 2) Regression approaches [46, 86, 50]

that regress the visual boundaries without matching scores.

There are also some works [14, 26, 89] that frame the video

grounding as a question answering problem [4] and treat the
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target moments as the answering span. 3) Reinforcement

learning methods [70, 30, 11] that progressively localize

the targeting moment by treating the problem of temporal

grounding as a sequential decision-making process. There

also exist some other studies [22, 78, 21, 23, 79, 42, 49, 92]

for the relevant vision-language tasks. Unlike these pre-

vious approaches, we advance the video grounding in the

perspective of causal inference by mitigating the spurious

correlation between video and language features.

2.2. Causal Inference:

Compared to the conventional debiasing techniques [90,

69], causal inference [54, 58, 27] shows its potential in al-

leviating the spurious correlations [6], disentangling the de-

sired model effects [9], and modularizing reusable features

for better generalization [53]. It has been widely adopted

in many areas, including image classification [12, 45],

imitation learning [19], visual question answering (QA)

[15, 1, 51], zero-shot visual recognition [83], long-tailed

image recognition and segmentation [65, 64, 88], stable pre-

diction [37], policy evaluation [94], and treatment effect es-

timation [38]. Specifically, Tang et al. [64] and Zhang et

al. [88] rely on backdoor adjustment [54] to compute the

direct causal effect and mitigate the bias introduced by the

confounders. Most similar to our work are DIC [80] and

CVL [1] which are proposed for image captions and image-

based visual QA, and both of them adopt SCM to eliminate

the bias for vision-language tasks. The key difference be-

tween our work and the previous ones is: our SCM is pro-

posed for video-based moment localization and the latent

confounder approximation considers roles, actions and ob-

jects in a moment, while DIC and CVL are designed for

static image-based vision-language tasks.

2.3. Contrastive Learning and Mutual Information

Contrastive learning [28, 75, 93, 48, 31, 17] methods

are proposed to learn representations by contrasting positive

pairs against negative pairs. Some prior works consider to

maximize the mutual information (MI) between latent rep-

resentations [34, 5]. MI [8, 35] quantifies the “amount of

information” achieved for one random variable through ob-

serving the other random variable. There are many estima-

tors [7, 52] to calculate the lower bounds for MI, which have

been proven to be effective for unsupervised representation

learning [34, 67, 63]. Our DCL is mainly inspired by the

Deep InfoMax [34], which maximizes the MI between

input data and learned high-level representations. The main

differences between our work and the prior studies: 1) our

DCL discriminates between positive samples and negative

samples based on the temporal moment. 2) our dual con-

trastive learning module achieves two goals, i.e., guiding

the encoder to learn better video representation, as well as

better alignment between text and video.

Video 
Encoder

Query 
Encoder

QV-CL

VV-CL

Fusion
P(Y|do(X))

Start Point 
Predictor

End Point 
Predictor

Query: They 
are playing ball

Confounders

Figure 2: The architecture of our IVG-DCL. VV-CL and

QV-CL refer to two contrastive modules with losses ex-

pressed asLvv andLqv . Ls andLe denote the cross-entropy

losses for predicting the boundary of the target span.

3. Model

3.1. Overview

Figure 2 depicts the architecture of our IVG-DCL. 1)

Given an input query and video, the two encoders out-

put contextualized visual and textual representations re-

spectively. 2) Then, these representations will be fed into

two contrastive modules VV-CL and QV-CL respectively

to learn high-quality representations with two contrastive

losses Lvv and Lqv . 3) The output of two feature encoders

are fed to a fusion module with a context-query attention

mechanism to capture the cross-modal interactions between

visual and textual features. 4) Next, to mitigate the spuri-

ous correlations between textual and visual features, we use

causal interventions P (Y |do(X)) with event as surrogate

confounders to learn representations. 5) Finally, two losses

Ls and Le for the start and end boundaries are introduced.

We use the multi-task learning paradigm to train the model

with the above four different losses.

3.2. Feature Encoder:

Feature Extraction: Let V = {ft}
T̂
t=1 and Q = {wi}

N
i=1

be a given untrimmed video and textual query, respectively,

where ft and wi denote the t-th frame and i-th word of the

inputs, and T̂ and N denote the total number of frames and

tokens. We use feature extractor, eg., C3D [66], to obtain

the video features V = {vi}
T
i=1 ∈ R

T×dv , where T indi-

cates the number of extracted features from the video, vi

represents the i-th video feature, and dv refers to the di-

mension of the video features. As we aim to learn to predict

the boundaries of the target moment, which can be denoted

as T s and T e, we convert the boundaries T s and T e to the

index of the video features to facilitate our learning process.

Let T denote the video duration, the start and end time in-

dex of the moment can be expressed as Is = T × T s/T
and Ie = T ×T e/T , respectively. For the query Q, we also

use pre-trained word embeddings, eg., Glove [55], to obtain

high-dimensional word features Q = {wi}
N
i=1 ∈ R

N×dw ,

where wi is the i-th word feature of dw dimensions.
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Figure 3: Our DCL. V′ and Q′ refer to contextualized video

and query representations, respectively. V′

a and V′

b repre-

sent the positive and negative samples in V′, respectively.

(a) our VQ-CL module. We generate q by max-pooling on

Q′. (b) our VV-CLmodule. v′

s and v′e refer to the video rep-

resentations of start and end index of a target moment. The

representations (color purple) indicate the other features in

the target moment except for starting and ending point.

Encoders: We use two linear layers to project the video

features V and query features Q to the same dimension

d. Then we refer to the previous works [82, 89] and use

four convolutions layers, a multi-head attention layer, and

a feed-forward layer to generate contextualized representa-

tions Q′ = {w′

i}
T
i=1 ∈ R

N×dv and V′ = {v′

i}
T
i=1 ∈ R

T×dv .

The visual and textual encoders share the same parameters.

3.3. Contrastive Learning Module

Contrastive loss [34] is able to measure the similarities

between sample pairs in the representation space, and it can

be served as an unsupervised objective function for train-

ing the encoder networks with discriminative positive and

negative samples. To guide the encoder to better align the

textual and video representations Q′ and V′, we treat the

video clips that reside in the boundaries of the target mo-

ment as the positive samples, and the ones that are outside of

the boundaries as the negative samples. And then we use a

discriminative approach based on mutual information (MI)

maximization [67] to compute the contrastive loss. In infor-

mation theory, the mutual information refers to the measure-

ment of mutual dependence between two random variables

and quantifies the amount of information obtained about one

variable by observing the other variable.

3.3.1 VQ Contrastive Learning

Figure 3 (a) presents our VQ-CL module. We denote q as

the query representation pooled from Q′, and Ivqθ as the MI

between q and V′ with parameter θ. However, MI estima-

tion is generally intractable for continuous and random vari-

ables. We therefore alternatively maximize the value over

lower bound estimators of MI by Jensen-Shannon MI esti-

mator [34]. We divide the video representation V′ into two

parts, i.e., V′

a as positive samples which denote the features

that reside within a target moment, and V′

b as negative sam-

ples that denote the features are located outside of the target

segment. The MI Ivqθ can be estimated by:

Ivqθ (q,V′) := EV′

a
[sp(C(q,V′)]

−EV′

b
[sp(C(q,V′))]

(1)

where C : Rdv × R
dv → R refers to the MI discriminator,

and sp(z) = log(1 + ez) is the softplus function. Then we

can get the contrastive loss Lvq as follows.

Lvq = −Ivqθ (2)

3.3.2 VV Contrastive Learning

Figure 3(b) depicts the details of our VV-CL module. We

denote I
vv(s)
θ (v′s,V′)) and I

vv(e)
θ (v′e,V′)) as the MIs be-

tween the start and end boundaries of the video and the

other clips, respectively, where v′

s and v′e refer to the video

representations of the start and end boundaries of the target

moment. We follow the same algorithm in Eq. 1 to achieve

the results. The loss Lvv can be expressed as follows.

Lvv = −I
vv(s)
θ − I

vv(e)
θ (3)

Therefore, we are able to train a better encoder with the

proposed DCL by maximizing the MIs as follows.

θ̂ = argmax
θ

Ivqθ + I
vv(s)
θ + I

vv(e)
θ (4)

3.4. Fusion Module

We leverage context-query attention (CQA) [59] and fol-

low VSLNet [89] to capture the bi-modal interaction be-

tween video and text features. We denote CQA as the func-

tion for the interaction, which takes the V′, Q′ as the inputs.

The output of the fusion module X can be expressed as:

X = FFN(CQA(V′,Q′)) (5)

where FFN refers to a single feed-forward layer.

3.5. Interventional Causal Model

3.5.1 Structural Causal Model

In the case of video grounding, we employ Pearl’s SCM

[54] to obtain the causal effect between a query and the tar-

get moment as illustrated in Figure 4 (a), where the nodes

are variables and edges are causal relations. We can justify
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Figure 4: The proposed interventional video grounding

(IVG) based on structured causal model (SCM). U : selec-

tion bias for generating a video grounding dataset. Z : the

unobserved confounders that may lead to spurious corre-

lations. Q: textual query. V : untrimmed video. X: the

multi-modal representations. D: the mediator. S and E:

the start and the end boundaries of the target moment.

the correctness of the graph by detailed interpretation for

the subgraphs as follows:

U → Z → {V,Q}. An unknown confounder Z (proba-

bly imbalanced distribution of dataset caused by sampling

bias U ) may lead to spurious correlations between video

clips and certain words. The do-operation on {V,Q} is able

to enforce their values and cuts off the direct dependency

between {V,Q} and their parent Z (Figure 4 (b)).

Z → D → {S,E}. Since Z is the set of confounders for

the dataset, we must also have Z connected to prediction

{S,E} via directed paths excluding {V,Q}. This ensures

the consideration of confounding impact from Z to {S,E}.
X → D ← Z. D is a mediator that contains the specified

representation of Z considering the presence of X . The

adoption of D is a more flexible notation compared to di-

rectly have the edge Z → S as it permits additional effect

of X towards the computation of {S,E} through D. This

allows us to compare a variety of model architectures under

the same causal framework. Besides, unlike previous mod-

els [88] that emphasize the mediation effect of X through

D, we believe that the main constituent of D should still

come from Z, despite having only an approximation.

3.5.2 Causal Intervention

Conventional video grounding models, which are based

on correlations between query and video, directly learn

P (S,E|Q, V ) without considering the confounder set Z.

In our SCM, the non-interventional prediction can be ex-

pressed using Bayes rule as:

P (S,E|Q, V ) =
∑

z

P (S,E|Q, V , z)P (z|Q, V ) (6)

However, the above objective learns not only the main di-

rect correlation from {Q, V } → X → {S,E} but also the

spurious one from the unblocked backdoor path {Q, V } ←
Z → D → {S,E}. An intervention on {Q, V }, denoted as

do(Q, V ), forces their value and removes the dependency

from their parent Z. Therefore, we can adopt do-calculus

and backdoor adjustment [54] to alleviate the backdoor cor-

relation and compute the interventional objective:

P (S,E|do(Q, V ))

=
∑

z

P (S,E|do(Q, V ), z)p(z|do(Q, V ))

=
∑

z

P (S,E|do(Q, V ), z)p(z)

=
∑

z

P (S,E|do(X), z)p(z)

(7)

3.5.3 Latent Confounder Approximation

Unfortunately, the confounder set Z caused by selection

bias cannot be observed directly in our case, due to the un-

availability of the sampling process. To estimate its distri-

bution, existing approaches [84] mainly rely on image rep-

resentations from pre-trained classifier, which is expensive

and ignores actions embedded in video sequence. Here we

propose a novel and efficient approach to approximate the

confounder set distribution from the perspective of natural

language. Our surrogate confounder set includes the vo-

cabulary of roles, actions and objects extracted from cap-

tions, since most video clips are described as “somebody

does something”. With this in mind, we use the state-of-

the-art Open Information Extraction model RnnOIE [62]

to extract verb-centered relation tuples (subject, verb, ob-

ject) from caption texts and construct three sets of vocabu-

lary accordingly. We also compute the prior probability for

phrases z in each set based on the dataset statistics:

p(z) =
#z∑
i∈C #i

, ∀z ∈ C (8)

where #i is the number of occurrences of the phrase i and

C is one of the three vocabulary sets. Equipped with ap-

proximated Z and its prior distribution, we also propose to

model the representation of Z by linear projection g and a

word embedding layer embed:

z = g(embed(z)) (9)

while making sure dim(z) = dim(x), where x ∈ col(X)
and col denotes the column space of a matrix and dim indi-

cates the dimension of the vector. Since P (S,E|do(X))
is calculated using softmax, we can apply Normalized

Weighted Geometric Mean (NWGM)[77] and the decon-

founded prediction can be approximated by:

P (S,E|do(X = X)) =
∑

z

P (S,E|X⊕ z)p(z)

≈ P (S,E|
∑

z

(X⊕ z)p(z))
(10)
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where ⊕ is the broadcast add operator that adds a vector

to each vector on the columns of the matrix. Finally, we

can achieve the start and end index Is and Ie of the target

moment by the above deconfounded prediction, and also

simply use cross entropy to calculate the loss for S (resp.

E) as Ls (resp. Le).

3.6. Training Objectives

The overall training loss L can be computed by:

L = αLvq + βLvv + Ls + Le (11)

where α and β are weights for the dual contrastive losses.

During the inference stage, the DCL will be ignored as it

only facilitates the representation learning and requires the

moment annotation to identify the contrastive samples.

4. Experiments

4.1. Dataset

TACoS is constructed from MPII Cooking Composite Ac-

tivities dataset [57]. We follow the same split of [24] for

fair comparisons, where 10,146, 4,589 and 4,083 instances

are used for training, validation, and test, respectively. Each

video has 148 queries on average.

Charades-STA is a benchmark for the video grounding,

which is generated by [24] based on Charades dataset [60]

mainly for indoor activities, with 12,408 and 3,720 moment

annotations for the training and test, respectively.

ActivityNet Caption involves about 20K videos with 100K

queries from the ActivityNet [10]. We refer to the split used

in [86], with 37,421 moments for annotations for training,

and 17,505 moments for testing. For fair comparisons, we

follow [82, 89] for training, evaluation and testing.

4.2. Experimental Settings

Metrics: We follow [24, 89, 86] to use ”R@n, IoU = µ”

as the evaluation metrics, which denotes the percentage of

testing samples that have at least one correct result. A cor-

rect result indicates that intersection over IoU with ground

truth is larger than µ in top-n retrieved moments.

Settings: We re-implement the VSLBase [89] in Pytorch

and use it as our backbone network. We follow the previous

works [89, 91] to use the same pre-trained video features

[66] and 300-dimension word embedding from Glove [55].

The loss weights α and β are configured as 0.1 and 0.01

respectively.

4.3. Model Zoo

Ranking methods rely on multi-modal matching architec-

tures to obtain the target moment with the highest con-

fidence score, including 2D-TAN [91], MAN [87], etc.

Among them, 2D-TAN [91] relies on a temporal adjacent

Type Model IoU=0.3 IoU=0.5 IoU=0.7 mIoU

RL SM-RL [70] - 24.36 11.17 -

RWM [30] - 36.70 - -

Ranking CTRL [24] - 23.63 8.89 -

ACRN [43] - 20.26 7.64 -

SAP [16] - 27.42 13.36 -

MAC [25] - 30.48 12.20 -

QSPN [76] 54.70 35.60 15.80 -

2D-TAN [91] - 39.70 23.31 -

MAN [87] - 46.53 22.72 -

Regression DEBUG [46] 54.95 37.39 17.69 36.34

DRN [86] - 45.40 26.40 -

VSLBase [89] 61.72 40.97 24.14 42.11

VSLNet [89] 64.30 47.31 30.19 45.15

Ours 67.63 50.24 32.88 48.02

Table 1: Performance comparisons on the Charades-STA

dataset. Note that we do not finetune the feature extractor.

network to localize the target moment. MAN [87] captures

moment-wise temporal relations as a structured graph and

devise an adjustment network to find out the best candidate.

Regression models directly regress the moment boundaries

to avoid heavy computations, including ABLR [82], DE-

BUG [46], DRN [86], and VSLNet[89], etc. DRN [86] re-

lies on a dense regression network to improve video ground-

ing accuracy by regressing the frame distances to the start-

ing (ending) frame. VSLNet [89] obtains the start and end

indexes of the target span based on a QA framework.

Reinforcement learning (RL) methods progressively lo-

calize the moment boundaries for a given query. SM-

RL [70] and RWM [30] treat the problem of temporal

grounding as a sequential decision-making process, which

naturally can be resolved by the RL paradigm [85].

4.4. Performance Comparisons

The results of our method on three benchmark datasets

are given in the Table 1, Table 2, and Table 3, respec-

tively. As shown in Table 1, our proposed IVG-DCL con-

sistently outperforms the baselines under various settings

and achieves the new state-of-the-art performance on the

Charades-STA dataset. Compared with VSLNet, our model

achieves 3.33 points improvement in IoU=0.3 and 2.87

points measured by mIoU. Our model significantly outper-

forms a regression baseline VSLBase by 9.27 over IoU =

0.5 and 6.09 in terms of mIoU. The results indicate the su-

periority of our proposed IVG-DCL in predicting more ac-

curate temporal moment.

Table 2 summarizes the comparisons on the TACoS and

it shows that our IVG-DCL performs best among all base-

lines under IoU=0.1, IoU=0.3, IoU=0.5 and mIoU. For ex-

ample, our IVG-DCL model outperforms a strong baseline

2D-TAN and the recently proposed DRN by 3.75 and 5.9

in IoU=0.5. The results further confirm the superiority of

our approach in capturing the complex interactions of roles,

actions, and objects in the video grounding task. Compared
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Type Model IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mIoU

RL SM-RL [70] 26.51 20.25 15.95 - -

TripNet [29] - 23.95 19.17 - -

Ranking ROLE [44] 20.37 15.38 9.94 - -

MCN [3] 14.42 - 5.58 - -

CTRL [24] 24.32 18.32 13.30 - -

ACRN [43] 24.22 19.52 14.62 - -

QSPN [76] 25.31 20.15 15.23 - -

MAC [25] 31.64 24.17 20.01 - -

SAP [16] 31.15 - 18.24 - -

TGN [13] 41.87 21.77 18.90 - -

2D-TAN [91] 47.59 37.29 25.32 - -

Regression SLTA [36] 23.13 17.07 11.92 - -

VAL [61] 25.74 19.76 14.74 - -

ABLR [82] 34.70 19.50 9.40 - -

DEBUG [46] - 23.45 11.72 - 16.03

DRN [86] - - 23.17 - -

VSLBase [89] - 23.59 20.40 16.65 20.10

VSLNet [89] - 29.61 24.27 20.03 24.11

Ours 49.36 38.84 29.07 19.05 28.26

Table 2: Performance comparisons on the TACoS dataset.

Type Model IoU=0.3 IoU=0.5 IoU=0.7 mIoU

RL TripNet [29] 48.42 32.19 12.93 -

RWM [30] - 36.90 - -

Ranking MCN [3] 39.35 21.36 6.43 -

TGN [13] 43.81 27.93 - -

CTRL [24] 47.43 29.01 10.34 -

ACRN [43] 49.70 31.67 11.25 -

QSPN [76] 52.13 33.26 13.43 -

ABLR [82] 55.67 36.79 - 36.99

2D-TAN [91] 59.45 44.51 26.54 -

Regression DRN [86] 45.45 24.36 - -

DEBUG [46] 55.91 39.72 - 39.51

VSLBase [89] 58.18 39.52 23.21 40.56

VSLNet [89] 63.16 43.22 26.16 43.19

Ours 63.22 43.84 27.10 44.21

Table 3: Performance comparisons on ActivityNet Caption.

to VSLNet, our IVG-DCL achieves comparable results on

IoU=0.7, and beats it on other settings with significant im-

provements, e.g., 9.23 gains over IoU=0.3.

Table 3 reports the results on the ActivityNet Caption.

We observe that our model achieves state-of-the-art results

in most settings. However, the performance gain on this

dataset is much smaller than the previous two datasets. One

possible reason is that the activities on the ActivityNet Cap-

tion are much more complex with more roles, actions, and

objects, and the target moment duration is much longer.

For example, the average duration of the target moment is

36.18s [89], while the ones on Charades-STA and TACoS

are 8.22s and 5.45s, respectively.

4.5. Comparisons with Causal Models

We also adapt four causal models from the image-based

tasks and compare them with our proposed IVG-DCL, in-

cluding feature-wise adjustment (FWA) [84], class-wise ad-

justment (CWA) [84] and VCR-CNN [68]. The detailed de-

scriptions are given as follows. 1) FWA divides the final

feature representation to disjoint subsets with respect to the

Causal Model IoU=0.3 IoU=0.5 IoU=0.7 mIoU

FWA 60.67 40.99 22.85 41.70

CWA 64.35 48.60 30.30 45.63

VCR-CNN 65.62 47.58 28.47 45.94

IVG(Ours) 67.63 50.24 32.88 48.02

Table 4: Comparisons with different causal models on the

Charades-STA dataset.

Causal Model IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mIoU

FWA 48.34 36.87 26.19 16.17 26.47

CWA 49.59 36.37 27.07 17.62 27.18

VCR-CNN 47.91 36.87 27.27 16.97 26.76

IVG(Ours) 50.99 38.79 28.89 18.25 28.35

Table 5: Results of different causal models on the TACoS.

dimensions and treats the confounder as feature subset se-

lector. 2) Primarily designed for image classification, CWA

uses image classes as data stratum to approximate the con-

founder distribution. Since we entirely rely on pre-trained

video features in our video grounding task, we, therefore,

adjust this technique for object phrases and compute aver-

age word embedding of the object phrases as “class” rep-

resentation. 3) VCR-CNN is similar to class-wise adjust-

ment but adds an attention-based method to combine the

representation between X and the confounding variable.

As shown in Table 4 and Table 5, our proposed causal

model outperforms these baselines on both Charades-STA

and TACoS under various video grounding settings. We be-

lieve that the improvement stems from our novel latent con-

founder approximation method, which considers the roles,

actions, as well as objects. These factors are important

clues to distinguish activities. The comparisons confirm

our hypothesis that such a novel design is useful for the

video grounding task. Whereas the previous image-based

approaches only consider objects in SCMs.

4.6. Ablation Study

The ablation study is given in Table 6 to illustrate the

contributions of each component of our model. As shown,

removing the proposed IVG module will result in 4 points

of performance drop on average, indicating that the causal

model plays the key role to the performance gain. We also

observed that the removal of any contrastive learning mod-

ule, i.e., QV-CL or VV-CL will decrease the performance

by 1 point on average. While the removal of DCL will bring

about 2 points of performance drop on average. This indi-

cates that both contrastive modules contribute to the tem-

poral localization, and combing these two will bring more

gains. It is not surprising that removing both IVG and DCL

will sharply decrease by 10 points on average, as essentially
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11.5s 17.2s

Query #1: A person eats out of a bag then fixes a vacuum 

31.0s 35.8s

Query #2: He starts holding a vacuum to clean up

Ground Truth
VSLNet 22.4s 33.1s 34.2s24.2s

DCL
IVG
IVG-DCL

23.1s 33.6s32.1s14.3s
12.3s 18.3s 32.9s

11.9 16.9s 31.5s 35.9s

Figure 5: A case study on the Charades-STA dataset to demonstrate the capability of our model in mitigating the spurious

correlations between textual and video features.

it becomes the VSLBase model.

Model IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Full Model 67.63 50.24 32.88 48.02

w/o IVG 64.70 47.60 30.80 45.34

w/o QV-CL 66.30 49.31 31.19 47.15

w/o VV-CL 66.75 49.16 32.17 47.24

w/o DCL 65.21 48.76 31.93 46.94

w/o IVG+DCL 61.72 40.97 24.12 42.11

Table 6: Ablation study on the Charades-STA dataset.

4.7. Sensitivity on α and β

To understand how the loss weights α and β influence the

performance, we manually set different values to the two

hyper-parameters. Figure 7 reports the results. We found

that the best combination is {α = 0.1, β = 0.01}. These

weights indicate the importance of each loss in our multi-

task learning paradigm for temporal localization. We found

that increasing the α and β will lead to performance drop,

and this aligns with our hypothesis that the IVG plays more

important role compared with DCL. We also observed that

the combination {α = 1, β = 1}will even decrease the per-

formance by 5 points on average. This implies that directly

integrating unsupervised representation learning to SCMs

may not yield good performance.

{α, β} IoU=0.3 IoU=0.5 IoU=0.7 mIoU

{0.1, 0.01} 67.63 50.24 32.88 48.02

{1, 1} 62.93 43.49 26.08 43.65

{0.5, 0.1} 64.44 49.97 31.45 46.09

{0.1, 0.5} 63.23 44.68 27.37 44.08

{1.5, 1} 64.33 44.78 27.04 44.89

Table 7: Sensitivity analysis on the Charades-STA dataset.

4.8. Qualitative Analysis

We show a case in Figure 5 from Charades-STA dataset

to demonstrate how our proposed ICV-DCL alleviates the

spurious correlation between text and video features. As

there are a lot more relevant training instances for query #2

“he starts holding a vacuum to clean up” compared to query

#1 “a person fixes a vacuum” (208 instances vs. 35 in-

stances) in the training set, there will exist unexpected high

correlations between vacuum-cleaning queries and vacuum-

related video moments. The conventional VSLNet that is

trained only based on the correlations will tend to incor-

rectly localize the query #1 to the query #2 related seg-

ments. We observe that our IVG-DCL outputs more ac-

curate retrieval for both two queries as it is able to better

distinguish between “holding” and “fixing”. We believe

such improvement mainly stems from the proposed causal

model.

5. Conclusion

This paper proposes IVG-DCL, a novel model which

aims to eliminate the spurious correlations between query

and video features based on causal inference. Experiments

on three standard benchmarks show the effectiveness of our

proposed method. In the future, we plan to extend our ap-

proach to more unbiased vision-language tasks that involve

dialogues [41, 72, 39] and question answering [4, 81, 15].
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