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Abstract

Pseudo-labeling is a key component in semi-supervised

learning (SSL). It relies on iteratively using the model to

generate artificial labels for the unlabeled data to train

against. A common property among its various methods

is that they only rely on the model’s prediction to make la-

beling decisions without considering any prior knowledge

about the visual similarity among the classes. In this paper,

we demonstrate that this degrades the quality of pseudo-

labeling as it poorly represents visually similar classes in

the pool of pseudo-labeled data. We propose SemCo, a

method which leverages label semantics and co-training to

address this problem. We train two classifiers with two dif-

ferent views of the class labels: one classifier uses the one-

hot view of the labels and disregards any potential similarity

among the classes, while the other uses a distributed view

of the labels and groups potentially similar classes together.

We then co-train the two classifiers to learn based on their

disagreements. We show that our method achieves state-

of-the-art performance across various SSL tasks includ-

ing 5.6% accuracy improvement on Mini-ImageNet dataset

with 1000 labeled examples. We also show that our method

requires smaller batch size and fewer training iterations to

reach its best performance. We make our code available

at https://github.com/islam-nassar/semco.

1. Introduction

Deep neural models require large amounts of labeled

data to achieve their high performance. This quickly be-

comes prohibitive and non-scalable especially when label-

ing data is expensive and/or non practical. Semi-supervised

learning (SSL) [5, 33] has hence emerged to explore a di-

verse set of methods which aim to leverage unlabeled data

to enable learning from a smaller set of labeled data.

In the context of image classification, recent methods

use unlabeled data to guide learning in different ways.

*corresponding author: islam.nassar@monash.edu

Figure 1: A conceptual diagram of our co-training solution

Some methods primarily focus on consistency regulariza-

tion [29, 17], where the model is enforced to produce con-

sistent predictions for different perturbed versions of the

same unlabeled input image. While others focus on pseudo-

labeling [1, 18, 13], where the model is used to produce

artificial labels for the unlabeled data that are then used to

further train the model. Evidently, combining the two ap-

proaches has shown the state-of-the-art results on various

image classification tasks [30].

When it comes to pseudo-labeling, a common problem

which hinders the SSL performance is the so-called con-

firmation bias [32]. This takes place when the model re-

assures its wrong predictions by retraining on them, lead-

ing to an accumulation of the error from which the model

can not recover. To mitigate this behaviour, some methods

use a warm-up phase until the model becomes more reli-

able [13, 32], or limit the number of pseudo-labeled sam-

ples in each mini-batch [1]. Other strategies include using a

confidence threshold whereby a sample is only considered

for pseudo-labeling if the model is highly confident about

its prediction [30, 18]. One property shared by all these

methods, however, is that they only rely on the model’s

output and disregard any prior knowledge about potential

similarities among the classes. As we show in Section 2,

visually similar classes are expected to confuse the model

and therefore get poorly represented in the pseudo-labeled

data pool. This fact is even more exacerbated in confidence-
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based methods [18, 30] as it leads to discarding most of the

visually similar samples simply because the model is rarely

confident about their predictions. We show that this leads to

a class imbalance in the pseudo-labeled pool, and thereby,

misguides the training.

In this paper, we demonstrate that by exploiting class la-

bels semantics, we can account for such similarity among

the classes. We draw inspiration from few-shot learning

methods [9, 41] where we use distributed embeddings to

represent class labels. We present two methods to generate

label embeddings in a way which encodes a weak prior on

the visual similarity among the classes. One such method

is based on knowledge graph embeddings [31], while an-

other is based on visual attributes annotation [35]. Having

such embeddings provides basis to group the class labels

into visually similar concepts and allow considering such

grouping while making pseudo-labeling decisions.

The benefit of using label embeddings goes beyond la-

bel grouping. Earlier work [9] has shown that using em-

beddings as training targets (as opposed to one-hot labels)

allows the model to map the image features to a more mean-

ingful semantic space, and thereby, enables few shot trans-

fer. In our work, we leverage this idea in a co-training [4]

style approach to improve SSL performance. We propose to

train two classifiers with the two different views of the class

labels, i.e. one-hot and distributed. One of the classifiers

makes use of the label grouping during pseudo-labelling,

while the other does not. We then allow the two classifiers

to learn from their disagreements via a shared consistency

regularization loss on the unlabeled data.

We show that our method achieves new state-of-the-art

results across five different datasets, while using smaller

batch size with fewer training iterations. To summarize, our

contributions are:

1. We propose an approach which leverages the seman-

tic similarity among the classes to improve pseudo-

labeling quality by addressing the confusion events.

2. We present a co-training-based SSL method which in-

volves two classifiers co-operating via pseudo-labels

obtained using their different views of the class label.

3. We show our approach outperforms the state-of-the-

art in SSL by a large margin on 5 different datasets

including 5.6% on Mini-Imagenet with 1000 labeled

point, i.e. 10 labels per class.

2. Background

We are interested in a K-way semi-supervised im-

age classification problem, where we train a model us-

ing batches of both labelled and unlabelled examples.

Specifically, each batch comprises labeled examples, X =
{(xi,yi)}

n
i=1

and unlabeled examples, U = {uj}
µ·n
j=1

,

where the scalar µ denotes the ratio between the number

of unlabeled and labeled examples in a given batch, and yi

denotes the one-hot representation of the label. But before

we introduce our approach, we begin by reviewing three key

concepts underpinning our method.

Consistency Regularization These methods exploit the as-

sumption that predictions for different perturbed versions of

a sample should be consistent [19, 29]. One way to opera-

tionalise this idea is to produce several augmented versions

of a given unlabeled image, then apply a loss to ensure that

the predictions for all such versions are consistent. Inspired

by recent methods [30, 3], we make use of two types of aug-

mentations, namely, weak augmentations Aw(.) and strong

augmentations As(.), where the notion of intensity relates

to how perturbing an augmentation is to an image.

Pseudo-labeling These methods rely on producing syn-

thetic labels for unlabeled data which are then used to re-

train the model. Recent alternative variations of pseudo-

labeling [18, 3, 30] can broadly be formalized as methods

trying to account for unlabeled data by minimizing the fol-

lowing objective,

L(θ) =
−1

µ · n

µn∑

j=1

ηj log p(y = ŷj |uj ,θ), (1)

where θ represents learnable model parameters, ŷ denotes

the pseudo-label, and η is an arbitrary function. The choice

of ŷ and η gives rise to different variations of pseudo-

labeling methods [18, 3, 30, 18]. We are particularly in-

terested in confidence-based methods where

ŷj = argmax
y′

p(y = y′ |uj ,θ) (2)

and ηj = 1(p(y = ŷj |uj ,θ) ≥ τ),

with 1 denoting the Indicator function. In such methods,

the unlabeled sample is only retained for pseudo-labeling

if the model’s maximum confidence score exceeds a prede-

fined threshold, τ , and the pseudo-label is then selected to

be the class with the maximum score1. This approach mit-

igates confirmation bias (see Sec. 1) by only retaining high

confidence samples. Simultaneously, it encourages entropy

minimization [10] whereby the model is encouraged to pro-

duce high confidence predictions on the unlabeled data.

Recently, Sohn et al. [30] combined such approach with

consistency regularization to propose FixMatch, a method

which achieves state-of-the-art results on several SSL im-

age classification benchmarks.

Co-training The idea of co-training [4] is to train two mod-

els with different views of the data, where each model is

trained on the other’s most confident predictions. Given

sufficiently diverse views of the data, this approach was

shown to improve learning, as it allows the two models to

1For notation simplicity, we assume here that the argmax in Eqn. 2

produces a one-hot probability distribution
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Figure 2: Confidence-based pseudo-labeling comparison between the baseline (left) and our method (right). Accuracy values

show how much, on average, pseudo-labels for a given class match the true label, while Ratio values show the percentage of

samples of a given class which are retained for pseudo-labeling (i.e. with confidence score above the threshold). The two

metrics are calculated for the 4 most (red) and least (green) visually similar classes over the first 10 epochs of training.

learn based on their disagreements [33]. We adopt a simi-

lar strategy, albeit, we use two different views of the label

rather than the data. We use the regular one-hot view as

well as a distributed view (i.e. label embedding). As we

introduced in Sec. 1, using a distributed view of the label

grants the ability to map from the image feature space to

another meaningful semantic space. This is under the as-

sumption that the label embeddings are learnt in a way that

captures semantic similarities among the labels. In [9], au-

thors show how semantic information gleaned from text, in

form of word embeddings [21], can be exploited to enable

prediction of labels never observed during training. In this

work, we combine the above ideas to propose our method.

3. Problem Statement and Motivation

While achieving great results, approaches that rely on

pseudo-labeling share a limitation. As Eqn. (1) suggests,

they solely rely on the model’s prediction to decide about

pseudo-labeling, while disregarding any prior information

about possible similarities among the classes. We find

in our work that visually similar classes often produce

low-confidence predictions, hence are either discarded (for

methods which use confidence thresholds such as Fix-

Match) or confused with others. This leads to class imbal-

ance among the pseudo-labeled instances which potentially

misguides SSL training. In Fig. 2 - left, we demonstrate

such behaviour by examining the pseudo-labeling statistics

of FixMatch method. We use the true labels of the unla-

beled data2 to calculate the true accuracy of pseudo-labeling

for each class. Further, we calculate the ratio of samples

retained for pseudo-labeling (i.e. where the classifier confi-

dence exceeds the threshold). We plot these two metrics for

the 4 most and least visually similar classes3. We observe

that visually similar concepts are chosen less frequently (i.e.

2Note that we have access to the true labels but they are discarded dur-

ing training to emulate an SSL setting
3We elaborate on how we identify similarity in Sec. 4

less ratio) for pseudo-labeling and are often mislabeled (i.e.

less accuracy) as opposed to visually distinct concepts. Mo-

tivated by this observation, we consider the label similari-

ties as a particularly essential prior that is easy to obtain. In

the subsequent sections, we will discuss how to obtain and

incorporate such a prior for an improved pseudo-labeling.

4. Our Method (SemCo)

We aim to address the issues demonstrated for visually

similar classes. We build on top of recent approaches, but

we additionally propose to condition pseudo-labeling on

our prior knowledge of class similarities. Effectively, we

enhance the model by incorporating knowledge about po-

tential confusions based on semantic and visual similari-

ties4. To that end, we encode the notion of similarity among

the classes using a label embeddings matrix M ∈ R
K×d

where each row represents a d-dimensional label embed-

ding of class k ∈ {1, · · · ,K}5. We further group the labels

using a density-based clustering approach such as [6] us-

ing a hyperparameter ǫ so that the number of groups are not

pre-defined. Subsequently, we obtain Q class groups.

Thereafter, we train two classifiers sharing the same

backbone network (see Fig. 1). The Semantic Classifier

fsc : Rh×w → R
d maps an input image closer to its corre-

sponding label in the embedding space spanned by the rows

of M ; and the One-Hot Classifier foh : Rh×w → R
K maps

input images to a one-hot view of the label. Note that, for

brevity, we define the classifiers fsc and foh to implicitly

include the shared backbone network and its parameters.

For each of the two classifiers we minimize a supervised

loss on the labeled data and an unsupervised consistency

loss on the unlabeled data. Additionally, we add a loss term

for co-training to allow the two classifiers to co-operate on

pseudo-labeling.

4We present a probabilistic interpretation of our method in the supple-

mentary material
5We defer the discussion on how to obtain M to Sec. 4.5.
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4.1. Semantic Classifier

For the supervised loss, we minimize the cosine loss be-

tween the true label embedding and the predicted label em-

bedding,

Lsc
s =

1

n

n∑

i=1

C(MTyi, fsc(xi)), (3)

with C(z, z′) = 1− CosineSim(z, z′).

For the unsupervised loss (see Fig. 3), we draw inspira-

tion from FixMatch [30], where we use a weakly augmented

version of the image to obtain a pseudo-label and enforce

that against the model’s prediction for a strongly augmented

version of the same image. Specifically, for an unlabeled

image uj , we obtain the predicted embedding for a weakly

augmented version of the image: qj = fsc(Aw(uj)). Then

we calculate class scores, pj = p(yj |uj) by normalizing

the vector-wise cosine similarity between qj and M .

Unlike FixMatch, we consider an unlabeled sample for

pseudo labeling if the prediction score for one of the class

groups (as opposed to the individual classes) exceeds a pre-

defined threshold (τe). To elaborate, referring to Fig. 3, due

to the visual similarity between “bicycle” and “motorbike”,

the class scores for each of them, individually, is falling be-

low the threshold. However, since they are both identified

as “visually similar” based on clustering their embeddings,

their scores are added first before applying the threshold.

The combined score exceeds the threshold so the sample

is retained for pseudo-labeling where the pseudo-label is

calculated as the average of the “bicycle” and “motorbike”

embeddings weighted by their normalized class prediction

scores.

To put it formally, to obtain the score for a given class label

group, we sum the normalized class scores of all its mem-

bers (where the membership is defined based on clustering

M ). This gives rise to our group scores gj
6.

Thereafter, we apply our mask to select samples for pseudo-

labeling as per,

ηscj = 1(max(gj) ≥ τe). (4)

If a sample is selected for pseudo-labeling, we obtain

a pseudo-label embedding (ŷj)7 for such sample as a

weighted average of the group members embedding, where

we weigh the average based on the original class scores pj .

Consequently, we apply the loss against the embedding pre-

diction of a strongly augmented version of uj as per,

Lsc
u =

1

µ · n

µ·n∑

j=1

C(ŷj , fsc(As(uj))) · η
sc
j . (5)

6
gj is calculated as the inner product of pj with the cluster assignment

matrix
7
ŷj is calculated as the inner product of M with the normalised class

scores.

4.2. One­Hot Classifier

For the One-Hot Classifier, we follow the same proce-

dure as the Semantic Classifier with two crucial differences:

1) we use cross-entropy loss instead of cosine loss, and 2)

we don’t apply label grouping before comparing with the

confidence threshold. We note here that this classifier oper-

ates in a similar way to FixMatch, yet we include the loss

equations for completeness. By analogy, the supervised loss

is calculated as,

Loh
s =

1

n

n∑

i=1

H(yi, foh((xi))). (6)

Here, we use H to represent the cross-entropy loss function.

To this end, the unsupervised loss is formulated as,

Loh
u =

1

µ · n

µ·n∑

j=1

H(ŷj , foh(As(uj))) · η
oh
j , (7)

where ŷj = argmaxAw(uj); ηohj = 1(max(ŷj) ≥
τo). We note that our motivation behind using two dif-

ferent types of loss functions is related to the concept of

co-training. An assumption underlying the success of co-

training is to ensure that the learners are sufficiently diverse

so that they learn better based on their different views [33].

We validate such choice in our ablations (Sec. 5.4)

4.3. Co­training Loss

This loss is meant to enable both classifiers to learn from

each other. The intuition is that due to each classifier’s dif-

ferent view of the labels, they will each be confident about

different samples of the unlabeled data. We exploit that by

retaining a sample for pseudo-labeling if either of the classi-

fiers is confident about its prediction. In case the two classi-

fiers disagree about a sample (i.e. they are both confident

about two different labels), the sample is included twice

in the loss, once with each of the two pseudo-labels. We

experimented with another approach, where in such event,

the sample gets discarded but it degraded the performance.

We conjecture that it’s because the former approach encour-

ages the two classifiers to be consistent while the latter com-

pletely ignores the confusion event. Formally, we define the

co-training loss as,

Lco =
1

µ · n

µ·n∑

j=1

C(MT ŷj , fsc(As(uj))) · η
oh
j

+H(argmax(pj), foh(As(uj))) · η
sc
j (8)

4.4. Total Loss

We now define our final training loss function by com-

bining all five losses (Eqns. 3, and 5 to 8) as per,

Ltotal = Lsc
s + Loh

s + λu(L
sc
u + Loh

u ) + λcoLco. (9)
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Figure 3: Unsupervised loss for the Semantic Classifier - A weakly augmented image is used (upper path) to obtain a predicted

embedding, which is then used to obtain class scores. The class scores are summed for each label group (as identified by our

grouping method) to obtain group scores. If one of the group scores exceeds the threshold, it is retained for pseduo-labeling.

The pseudo-label is then calculated as an average of the group members embeddings weighted by their class scores. The loss

is then enforced against the predicted embedding for a strongly augmented image (lower path).

Here, λu and λco are fixed scalar weights to modulate the

contribution of the unsupervised loss and co-training loss,

respectively.

4.5. Extracting Label Semantics

In this section, we propose two alternatives to obtain the

label embedding matrix M which establishes our prior on

the visual similarity among the classes.

Using Knowledge Graphs In cases where the class labels

are semantically meaningful, we make use of the Concept-

Net knowledge graph [31] together with GloVe [25] and

word2vec [21] distributional embeddings as the basis for

obtaining the distributed label embeddings. ConceptNet

is a multilingual knowledge graph that connects words of

natural language with labeled, weighted relations. Since

our main goal is to obtain label embeddings which cap-

ture visual similarity, we filter the graph to only retain re-

lations which imply such similarity. Specifically, we re-

tain any nodes which share the following relations: Sim-

ilarTo, InstanceOf, IsA, FormOf, Synonym, Etymological-

lyRelatedTo, DefinedAs. A detailed description of such rela-

tions and examples thereof can be found in the ConceptNet

documentation8. On the other hand, GloVe and word2vec

are two prominent sets of word embeddings, the former is

trained on 840 billion words of the Common Crawl [25],

while the latter is trained on 100 billion words of Google

News [21]. The two sets capture the distributional similar-

ity among the different words but don’t necessarily capture

visual similarity. For example, “cat” and “dog” usually ap-

pear in similar contexts (being both animal pets) so they

would have a relatively similar GloVe (or word2vec) word

embedding even though they are not visually similar. Com-

bining the distributional embeddings with the ConceptNet

8https : / / github . com / commonsense / conceptnet5 /

wiki/Relations

filtered graph allows us to address this problem: we follow

a procedure similar to the authors in [31] to retrofit the dis-

tributional embeddings with the filtered knowledge graph.

Retrofitting [7] is a process which adjusts a word embed-

ding matrix based on a knowledge graph by optimizing an

objective function which tries to find for each term a new

vector close to the vector’s original value but also close to

the term neighbours in the graph. Since the retained rela-

tions in the graph are those which implies visual similarity,

this retrofitting results in a new hybrid set of embeddings

which captures distributional similarity but also correlates

well with visual similarity. Finally, to handle class labels

which are not present in the embeddings vocabulary, we

implement a fall-out strategy to find the most reasonable al-

ternative. We provide further description of the retrofitting

process and we show a qualitative comparison to demon-

strate its effectiveness in the supplementary material. We

also provide further details of the fall-out strategy.

Using Class Attributes Annotations In cases where the

class labels are not semantically meaningful, a viable al-

ternative is to use manually annotated class attributes. We

demonstrate (Sec. 5) that by using attributes annotation of

CUB-200 [35] fine-grained dataset as our M matrix, we

achieve significant gains against the baseline. Consider-

ing that the cost of annotating attributes is expected to be

cheaper than annotating data instances, we propose class

attributes annotation as a possible alternative.

5. Experiments

To evaluate SemCo, we compare it to various recent

SSL baselines on 3 standard benchmarks (CIFAR-10 [15],

CIFAR-100 [15], Mini-ImageNet [27]). Further, we experi-

ment on 2 other datasets: CUB-200 [35], to test SemCo on

fine-grained tasks; and DomainNet [24], to verify its perfor-

mance on larger more complex images.
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Table 1: Error rates for CIFAR-10, CIFAR-100 and Mini-ImageNet. We report results for two different values of µ - i.e.

ratio between unlabeled and labeled data in a mini-batch, for our method and FixMatch. † denotes that the results reported

are using the same codebase. ∗ denotes that the result is based on using CNN-13 model. We report the mean and standard

deviation across 3 different splits of labeled data for each experiment.

CIFAR-10 CIFAR-100 Mini-ImageNet

Total Labelled Samples 250 4000 2500 4000 10000 1000 4000 10000

Pseudo-labeling [18] 49.78±0.43 16.09±0.28 - - - - - -

Mean teacher [32] 32.32±2.30 9.19±0.19 - - - - 72.51±0.22 57.55±1.11

UDA [40] 8.82±1.08 4.88±0.18 33.13±0.22 - 24.50±0.25 - - -

Label Propagation [13] - 12.69±0.29∗ - - - - 70.29±0.81 57.58±1.47

PLCB [1] 24.81±5.35 6.28±0.30 - 37.55±1.09∗ 32.15±0.50∗ - 56.49±0.51 46.08±0.11

MixMatch† [3] 11.29±0.75 6.24±0.07 39.70±0.27 - 28.59±0.31 60.97±0.31 49.79±0.11 44.27±0.23

FixMatch†(µ = 3) [30] 5.78±0.23 4.52±0.01 38.45±0.51 32.22±0.21 28.42±0.09 66.23±1.13 59.73±5.45 44.66±0.12

FixMatch†(µ = 7) 4.55±0.12 4.49±0.05 33.64±0.07 31.27±1.30 26.13±0.18 60.97±0.31 49.79±0.11 44.27±0.23

Ours (SemCo)†(µ = 3) 5.87±0.31 4.43±0.01 33.80±0.57 29.40±0.18 25.07±0.04 55.35±0.71 46.01±0.93 41.25±0.76

Ours (SemCo)†(µ = 7) 5.12±0.27 3.80±0.08 31.93±0.01 28.61±0.23 24.45±0.12 59.35±0.23 49.46±2.20 42.78±0.35

5.1. Datasets

CIFAR-10/100 Both datasets comprise natural images of

10, and 100 classes respectively. Their training set consists

of 50k images while the test set consists of 10k images. All

the images have a fixed resolution of 32x32. We conduct

three different experiments on each of them with varying

amounts of labeled data as shown in Table 1.

Mini-ImageNet A subset of the well-known Ima-

geNet [28]. It consists of 100 classes with 600 images per

class (84x84 each). We use the same train/test split used by

[13] and we create splits for 40 and 100 labeled images per

class to enable comparing with the baseline systems. How-

ever, we also experiment with 10 images per class to test

SemCo in the low data regime.

CUB-200 A fine-grained image classification dataset com-

prising 11k images from 200 different types of birds anno-

tated with 312 attributes per class. We experiment with 5

and 10 images per class corresponding to 1000 and 2000

total labeled data.

DomainNet The dataset contains 345 classes of images

coming from six domains: Clipart, Infograph, Painting,

Quickdraw, Real, and Sketch. We report results only on the

Real domain to evaluate how our method works on larger

more complex datasets.

5.2. Experimental Setup

Across all experiments, we follow the standard approach

where we randomly select a certain number of samples to

represent our labeled set and ignore the labels of the remain-

ing samples and use them to form our unlabeled set. For the

standard benchmarks, we compare our results to various ex-

isting baselines [18, 32, 3, 40, 13, 1, 30], which employ con-

sistency regularization and/or pseudo-labeling (see Sec. 6).

For the two other datasets, we only compare with FixMatch,

being the most similar to our solution and the closest in per-

formance.

Since SemCo bears the most resemblance with [30], [3],

and [2], we follow the recommendation of Oliver et al. [23]

for a realistic comparison: we integrate the implementa-

tion of their methods9 into our codebase and use the unified

codebase to conduct all the experiments. As for the other

baselines, we report the results as mentioned in the orig-

inal papers, provided that the result is based on the same

model architecture we use. We use WideResnet-28-2 [42]

for CIFAR-10/100, Resnet-18 [11] for Mini-ImageNet, and

Resnet50 for CUB-200 and DomainNet. Additionally, we

attach a fully connected layer to the encoder output to act

as our Semantic Classifier (see Fig. 1). We train our model

end-to-end along with the backbone network.

Unless otherwise specified, we use the same hyperpa-

rameters for all our experiments. These were tuned on a

validation set for a single experiment (CIFAR100 - 2500 la-

bels) and then fixed across all other experiments. In general,

we found that our model is not sensitive to the values of λu

and λco. Values between 0.5 - 1 all yielded similar perfor-

mance, albeit, smaller values of λu slightly slowed conver-

gence. Further, we found that our model is mostly sensitive

to ǫ - the label grouping parameter and hence it was the only

parameter we tuned separately for each dataset (see supple-

ments for the full list of hyperparameters).

Since the labels of all datasets are semantically mean-

ingful, we use their retrofitted embeddings (see Sec. 4.5) as

targets for our Semantic Classifier. The only exception is

for CUB-200 where we use human annotated attributes as

targets to test our alternative proposal in Sec. 4.5. We start

from the 312 dimensional class attributes given in [35] and

reduce their dimensionality to 128 using PCA [36]. We,

then, use the obtained class attributes matrix as targets for

our Semantic Classifier.

9we don’t report results for [2] due to adaptation difficulties
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5.3. Main Results

We report standard benchmarks results in Table 1 and

CUB-200 and DomainNet results in Table 2. We observe

that SemCo outperforms all the baselines with a large mar-

gin across the different datasets and amounts of labeled data

(except for one case). Notably, SemCo achieves an average

error rate of 55.35% on Mini-ImageNet with 1000 labels

(i.e. 10 samples per class). This is almost 5.6% improve-

ment compared to the closest baseline. We note here that

Mini-ImageNet classes include 13 different species of dogs

which share many visual similarities. SemCo grouped 7 of

these classes into a single group based on clustering their

label embeddings. To understand why the performance de-

grades on CIFAR10 (250 labeled samples), we looked into

the clustering results for CIFAR-10 class embeddings. We

observed that the 10 classes were deemed visually distinct

by our clustering component, leading to one-member clus-

ters for all 10 classes. The two above results align with our

original hypothesis that SemCo is particularly useful when

there are visually similar concepts among the classes. Ev-

idently, in such cases, using label grouping in conjunction

with our co-training routine helps improving the pseudo-

labeling quality. This is also consistent with the pseudo-

labeling statistics shown in Fig. 2 - right, where we can see

that SemCo significantly improves both the quality and the

quantity of pseudo-labeled data.

Ratio of unlabeled data We observe that SemCo achieves

better results with less batch size as opposed to the baseline.

As shown in Table 1, we experiment with different values

of µ, which defines the ratio between unlabeled and labeled

data in each training batch. We find that our method con-

sistently achieves better results even when using less unla-

beled data. For example, for CIFAR-100 (4000 labels), we

achieve less average error rate (29.4%) with µ = 3 than

FixMatch does with µ = 7 (31.27%). More notably, we

achieve 13% improvement on Mini-ImageNet (4000 labels)

when fixing µ to 3.

Co-training Analysis Further, we investigate the effective-

ness of our co-training routine. We use the same experimen-

tal setup of capturing pseudo-label metrics (see Fig. 2), but

this time, we monitor the rate of disagreement on pseudo-

labels among the two classifiers fsc and foh (i.e. per-

centage of time the two classifiers are confident about dif-

ferent pseudo-labels for the same unlabeled sample). In

Fig. 4 c, we report disagreement curves for the same 8

classes shown in Fig. 2. As the training progresses, we

track the pseudo-labeling accuracy (Fig. 4 d) for each of:

1) our classifier ensemble, 2) our one-hot classifier foh, and

3) the baseline (FixMatch). Note that foh is using the same

method for pseudo-labeling (i.e. confidence threshold on

non-grouped labels) as FixMatch. We find that at the begin-

ning of the training, both classifiers highly disagree about

pseudo-labeling, especially for visually similar classes. As

the training progresses, we witness a sharp reduction in dis-

agreements coupled with an increase in accuracy for both

classifiers. Interestingly, we find that the accuracy of our

foh is considerably higher than FixMatch although both

are using the same basis for pseudo-labeling. This demon-

strates the success of co-training in making pseudo-labeling

consistent and accurate by leveraging the co-operation be-

tween the two classifiers.

Convergence Speed In Fig. 4 a and b, we study the con-

vergence plots on Mini-ImageNet and CIFAR-100 (1000

labels). We observe that SemCo achieves the best perfor-

mance of the baseline with significantly less training itera-

tions. This can be explained through Fig. 4 d: the higher

accuracy of pseudo-labeling in the early phase of the train-

ing helps better guide the learning and thereby translates to

faster convergence.

Table 2: Error rates on CUB-200 dataset and DomainNet

Real. Errors are reported based on 1 split for each of the

amounts of labeled data. Poor baseline results are omitted.

CUB-200 Total Labeled Samples

Method 1000 2000

Supervised baseline - 70.11

FixMatch 84.35 72.15

Ours (SemCo) 79.44 66.76

DomainNet Real Total Labeled Samples

Method 6900 10350

Supervised baseline 47.9 45.2

FixMatch 41.34 39.04

Ours (SemCo) 35.32 32.89

5.4. Ablation

We are interested in isolating the contribution of each of

the three key components of SemCo towards the witnessed

performance gain.

Label Grouping & Co-training In Table 3, we investi-

gate the effect of label grouping (by controlling our clus-

tering hyperparameter ǫ), and co-training (by toggling λco).

We observe that both components are almost equally im-

portant towards the witnessed performance gain. However,

co-training seems to provide a slight advantage over label

grouping in both experiments.

Label Embeddings as Training Targets We experiment

on CIFAR-100 and Mini-ImageNet in another setting where

we use the one-hot target for both our classifiers. In such

case, the only difference between the two classifiers is that

the Semantic Classifier implements label grouping while

the One-Hot Classifier does not. In Table 4, we observe
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Convergence - CIFAR-100 (1000) Convergence - Mini-ImageNet (1000) Co-training Disagreements Pseudo-Labelling Accuracy

Figure 4: Experimental analysis plots showing: (a,b): Convergence trends of our method and the baseline for CIFAR-100 (a)

and Mini-ImageNet (b) with 1000 labeled examples. (c,d): Co-training analysis plots showing the disagreements between our

two classifiers for visually similar and distinct classes (c) and the associated pseudo-labeling accuracies (d). The co-training

plots are spanning only the first 10 epochs of training.

Table 3: Error Rates for different settings of Co-training and

Label Grouping

Mini-ImageNet

1000

CIFAR-100

2500

Label Grouping Co-training Error Rate

X X 55.35 31.93

- X 59.60 33.09

X - 60.39 33.19

- - 62.16 34.25

a significant decrease in performance when using the one-

hot view for both the classifiers. This strongly supports our

hypothesis that co-training with different views of the label

does indeed help the learning.

Table 4: Error Rates when using Embedding Targets versus

One-Hot Targets for our Semantic Classifier, reported on

CIFAR-100 and Mini-ImageNet

Embeddings Target One-Hot Target

CIFAR-100 (2500) 31.93 33.33

Mini-ImageNet (1000) 55.35 60.33

6. Related Work

Since the seminal “Π-model” [26], consistency regular-

ization and pseudo-labelling SSL solutions have seen im-

provements in the consistency propagation [32, 17], and ap-

proaches for generating diverse views [8, 16, 22]. For in-

stance, the Mean-Teacher [32] proposes a teacher model,

where its parameters are updated according to an expo-

nential moving average (EMA) rule. Temporal Ensem-

bling [17], maintains an EMA over the predictions for the

consistency loss computation. French et al. [8] explore a

masking based approach for generating diverse views. The

interpolation training given in [34] computes the consis-

tency between interpolated views of unlabelled instances.

Miyato et al. [22] explores using adversarial methods for

perturbation to create diverse views.
Our solution bears a lot of similarity to FixMatch and

ReMixMatch [30, 2] where the main idea is to use a weakly

augmented image to obtain a pseudo-label then enforce it

against the model’s prediciton for a strongly augmented

one. ReMixMatch uses a soft pseudo-label via sharpening,

while FixMatch uses a hard label based on confidence. Our

method compliments theirs by also conditioning on label

semantics while pseudo-labeling.

Using label semantics to benefit learning is not a new

idea, prior knowledge from language models [25], graph

embeddings [31], and attribute vector representaions [35]

has helped pushing the performance of computer vision

models. In the pioneering work, DeViSE [9] showed dis-

tributed label representations derived from unannotated text

are helpful for image classification. They also extend their

solution to Zero-Shot Learning (ZSL) [39]. Ye et al. [41]

proposes distributed labels for Few-shot learning. Such

label representations are informative to even generate de-

scriptive representations for classification [38] and has be-

come the backbone representation for ZSL [14, 20]. To

this end, literature provides explorations on learning visual-

semantic embedding spaces with better discriminative prop-

erties [37, 12]. However, to our best knowledge the capacity

of such label representations has not been explored for SSL.

7. Conclusion

In this paper, we have introduced a novel semi-

supervised learning approach leveraging class label seman-

tics and co-training for more effective and efficient learn-

ing. We operationalize this approach for image classifica-

tion, and demonstrate that it leads to significant gains. We

believe the key ingredients of our approach are general and

can be extended to supervised and unsupervised learning

settings, which we will explore in the future work.
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