
House-GAN++: Generative Adversarial Layout Refinement Network

towards Intelligent Computational Agent for Professional Architects

Nelson Nauata

Simon Fraser University

nnauata@sfu.ca

Sepidehsadat Hosseini

Simon Fraser University

sepidh@sfu.ca

Kai-Hung Chang

Autodesk Research

kai-hung.chang@autodesk.com

Hang Chu

Autodesk Research

hang.chu@autodesk.com

Chin-Yi Cheng

Autodesk Research

chin-yi.cheng@autodesk.com

Yasutaka Furukawa

Simon Fraser University

furukawa@sfu.ca

Input bubble diagram Mix of a ground-truth and generated house layouts

Living
room

Study
room

Balcony

Outside

Bedroom

Bedroom

Bathroom

BathroomKitchen

Figure 1. The paper makes a breakthrough in automated house layout generation. The right is the mix of a ground-truth design by

an architect and our generated samples, based on the input bubble-diagram. (The second from the right is the ground-truth.) A novel

generative adversarial layout refinement network is trained to repeatedly apply and refine the design towards perfection.

Abstract

This paper proposes a generative adversarial layout re-

finement network for automated floorplan generation. Our

architecture is an integration of a graph-constrained rela-

tional GAN and a conditional GAN, where a previously gen-

erated layout becomes the next input constraint, enabling

iterative refinement. A surprising discovery of our research

is that a simple non-iterative training process, dubbed

component-wise GT-conditioning, is effective in learning

such a generator. The iterative generator further allows us

to improve a metric of choice via meta-optimization tech-

niques by controlling when to pass which input constraints

during iterative refinement. Our qualitative and quantita-

tive evaluation based on the three standard metrics demon-

strate that the proposed system makes significant improve-

ments over the current state-of-the-art, even competitive

against the ground-truth floorplans, designed by profes-

sional architects. Code, model, and data are available at

https://ennauata.github.io/houseganpp/page.html.

1. Introduction

House design is a time-consuming iterative process,

requiring multiple rounds of refinements. An architect

sketches out a design, evaluates, adjusts, and repeats the cy-

cles until being satisfied with a design within a given time

budget. Unfortunately, designing an effective floorplan is

possible only by professional architects, where a small frac-

tion of buildings (less than 10% in North America) employ

a design professional for custom design due to the cost. Au-

tomatic floorplan generation will have tremendous impacts

on the trillion-dollar real-estate/construction industries.

Floorplan generation has been an active area of re-

search. Early methods formulated it as iterative optimiza-

tion [22, 21]. The surge of deep neural networks has made a

breakthrough, where state-of-the-art algorithms [24, 7] uti-

lize Generative Adversarial Networks (GANs) [10]. GAN

is a one-shot generation process, converting a noise vec-

tor into a sample. A conditional GAN could take a design

in progress and produce a refined version iteratively [25].

However, there does not exist a database of incomplete

floorplans during design iterations, making such a training

infeasible.

This paper proposes a novel generative adversarial lay-

out refinement network, where the generator is trained to

generate a floorplan as a graph of segmentation masks

by iteratively refining its design (See Fig. 1). We bor-

row the problem setup from the state-of-the-art system

House-GAN [24], while making a few extensions towards a

13632

Living room

Kitchen

Balcony

Unknown

Outside

Bedroom

Entrance

Dining room

Front door

Interior door

Study room

Storage

Bathroom

Figure 2. We have parsed the RPLAN dataset [30] to prepare 60k house layouts with the corresponding bubble-diagrams. Our task is to

generate a realistic and diverse set of floorplans that are compatible with the input bubble-diagram.

more challenging production-level task (i.e., handling non-

rectangular room shapes, generating doors/entrances, and

using a functional graph instead of an adjacency graph).

The technical contribution of this paper is three-fold:

an architecture, a training algorithm, and a test-time meta-

optimization algorithm. First, the architecture is an inte-

gration of a graph-constrained relational GAN (i.e., based

on the current state-of-the-art [24]) and a conditional

GAN [25], where a previously generated model becomes

the next input constraint, enabling iterative layout refine-

ment. Second, a surprising discovery of our research is

that a computationally affordable non-iterative training pro-

cess, dubbed component-wise GT-conditioning, is effective

in learning an iterative generator, where a ground-truth seg-

mentation is passed to each component as a condition at a

random probability. Third, our framework creates a new op-

portunity in further optimizing a metric of choice via meta-

optimization, such as Bayesian optimization by controlling

when to pass which constraints.

We have used the RPLAN dataset [30], which offers 60k

vector-graphics floorplans designed by professional archi-

tects. Qualitative and quantitative evaluations based on the

three standard metrics (i.e., realism, diversity, and compat-

ibility) in the literature demonstrate that the proposed sys-

tem outperforms the current-state-of-the-art by a large mar-

gin. The system is even competitive against the ground-

truth floorplans, based on user studies judged by profes-

sional architects. Code, model, and data are available at

https://ennauata.github.io/houseganpp/page.html.

2. Related Work

This section reviews generative models for structured

data such as objects, 3D buildings, or floorplans.

Traditional methods: Classical algorithms formulate op-

timization or design hand-crafted rules for structured data

generation. Procedural modeling is an early successful ap-

proach for 3D building models, where shape-grammars de-

fine iterative generation processes [23, 3]. Integer program-

ming is formulated to generate an arrangement of tiles [26].

Optimization has also proven effective for game-level de-

sign [20, 12]. For floorplans specifically, Bayesian network

is trained to learn distributions of architectural components

for stochastic sample generation [22].

Neural approach (one-step generation): With the surge

of deep learning, researchers started to train deep neural

networks (DNNs) to learn a single-step model generation.

Convolutional neural networks are trained to add objects

into a room one by one for indoor scene generation [29, 27].

A scene graph generation in addition to the object place-

ment are learned step by step via DNNs [28]. Neural turtle

graphics learns RNNs to encode incoming paths and gener-

ate outgoing edges at one node [8]. An iterative algorithm

uses the RNN modules repeatedly to generate road layouts.

While being a reconstruction task as opposed to a generative

one, RoadTracer learns a CNN that takes the current partial

network then decides on a next action for reconstructing a

road network from a satellite image [4].

Neural approach (joint generation): Joint generation of

multiple components in an entire structured model is more

challenging. Room boundaries as a raster image is esti-

mated from a house foot-print by a CNN, followed by a

series of heuristics to generate a vectorized floorplan [30].

Image generation has been an active area of research, where

realistic object arrangements are learned via variational auto

encoder [15], a differentiable renderer [16], or graph convo-

lutional networks [14, 2]. Graph generation is modeled as a

sequence of graph editing operations, whose entire process

is learned by recurrent neural networks [31] or graph recur-

rent attention networks [17]. Natural language generation

is another related area of research, where an auto-regressive

model is trained by masking words from ground-truth sen-

tences in the input [18]. The adversarial training is also

13633

Condition

Bubble Diagram

Generator Segmentation
mask graph

House layout
Noise+ typeFlagSegment Relational graph

Conv
MPN

Figure 3. Our architecture is built on top of a relational GAN from the state-of-the-art system [24]. An additional 2D segmentation mask

for each room/door can be specified as an input condition, enabling iterative design refinement.

employed for the same language task [9] in a seq2seq ar-

chitecture. This paper takes the idea of masking and adver-

sarial training to the task of 2D layout generation, where

our architecture jointly estimates segmentation masks for

all architectural components (as opposed to a recurrent for-

mulation) and is capable of iteratively refining a design.

Neural approach (joint refinement generation): GAN-

Hopper [19] is the closest to ours in the spirit of iterative re-

finement. The key differences are that our system produces

a structured model (as opposed to a raster image), employs

non-sequential training process, and is a generative model

from a noise vector (as opposed to an image-to-image trans-

lation model between two domains).

3. Problem Formulation

In a standard design process, architects incorporate con-

straints from clients into a sketch called a bubble-diagram,

then convert it into a floorplan through design explorations

and iterations. We borrow the problem setup from the state-

of-the-art system House-GAN [24], while adding a few ex-

tensions towards the production-level task.

Input: The input to the system is a bubble-diagram, which

is represented as a graph where a node encodes a room with

its room type (See Fig. 2) 1. In the original problem, an

edge encoded spatial adjacency of two rooms. In this work,

an edge encodes a functional connection (“interior door”

or “front door”) as in real architect’s sketches. An “inte-

rior door” is a connection between two rooms, and a “front

door” is a connection between a room and the outside area.

Output: The output of the system is a segmentation mask

for each room and door. We also utilize an off-the-shelf

floorplan vectorization algorithm [6] to convert the layout

into a vector floorplan image, where a room is represented

by an axis-aligned closed-polygon, adjacent rooms share

1Room types are: “living room”, “kitchen”, “bedroom”, “balcony”,

“entrance”, “dining room”, “study room”, “storage”, “unkown”, or “out-

side”. Note that “outside” is not an actual room and we define for the

convenience of defining a “front door” as an edge.

the walls with the common line segments, and a door is rep-

resented as a line-segment on a wall.

Metrics: Realism, diversity, and compatibility are the

three metrics, evaluating the performance as in the prior

work [24]. Roughly speaking, realism is an average

user rating, diversity is the Fréchet Inception Distance

(FID) [13], and the compatibility is the graph edit distance

(GED) [1] between the input bubble-diagram and the one

constructed from the output layout. To account for the ad-

dition of doors, we adjusted the metric definitions slightly,

whose details are referred to the supplementary document.

We describe the details of the user study in Sect. 5.

4. Technical Innovations

Learning an iterative refinement process is non-trivial

due to the lack of databases containing step-by-step design

iterations. Our architecture is a straightforward integration

of a relational GAN [24] and a conditional GAN [25]. A

surprising discovery of our research is that a simple non-

iterative training procedure is effective in training such an it-

erative generator. The iterative refinement capability opens

up a new opportunity in further improving the metric of

choice by meta-optimizing the refinement scheme at test-

time. The section explains the architecture, the training al-

gorithm, and the meta-optimization algorithm.

4.1. Architecture

Following House-GAN [24], our network backbone is a

convolutional message passing network (Conv-MPN [32]),

whose relational graph structure is defined by the bubble-

diagram (See Fig. 3). There are three key differences in our

architecture: 1) Edges in addition to nodes carry features

for the generation of doors; 2) Each node/edge takes a 2D

segmentation mask as an additional input constraint with an

associated new loss; and 3) Conv-MPN feature pooling [32]

is reformulated to allow feature-exchange between nodes

and edges. We now explain the three differences in detail.

Edge features: House-GAN has a 10-d one-hot vector,

13634

Training Testing

Init. OutputOutput

OutputOutput

OutputCond.

Cond.

Cond.

Cond.

G G

G G

Masking

G

G

G

D

D

D

Ground-truth
y/n

y/n

y/n

Figure 4. During training, we specify a GT segmentation mask for each room/door with a 50% chance. The generator learns the task of

inpainting missing components when many GT masks are given, or the task of generating a complete design when few masks are given.

During testing, previously generated layouts are passed to the generator as potential input constraints, enabling iterative design refinement.

which encodes a room type and initializes a node feature

vector. In our work, doors have two types, and we extend

the one-hot vector to 12-d over the mix of 10 room types and

2 door types. With the common type vector, door generation

from an edge becomes the same as room generation from a

node, except the pooling mechanism in the convolutional

message passing as detailed in the following paragraph.

Mask condition: House-GAN initializes each node with

a noise vector and a room-type, which is transformed into

a 8 × 8 × 16 feature volume. Our relational generator

takes in an additional 64 × 64 × 2 condition image for

each node/edge. The first channel provides the segmen-

tation mask, which we expect the generator to learn to

keep unchanged. The second channel becomes 1 for every

pixel when the segmentation mask is specified, otherwise

0. We use a 3-layer CNN to convert the condition image to

8 × 8 × 16, which is concatenated to the original feature.

When the segmentation mask is specified, we enforce an

L1-loss between the condition image m̂i and the generated

mask mi. i is the index of a node or an edge. Precisely, let

I denote the set of node/edge indices where the condition

masks are specified. The loss function is defined as follows,

where Lorg is the original generator adversarial loss [11] in

House-GAN and λ is 1000:

L = Lorg + λ
1

|I|

∑

i∈I

|mi − m̂i|. (1)

Conv-MPN pooling: Conv-MPN message passing is de-

fined based on the connectivity of the relational graph [32]:

gr ← CNN

[

gr ; Pool
s∈N (r)

gs ; Pool
s∈N (r)

gs

]

. (2)

[; , ;] indicates concatenation, gr feature volumes for a com-

ponent r (i.e. either a room or a door) and Pool gs sum-

pooling over feature volumes gs. N (r) and N (r) denote

the neighbors of r and its complement. We redefine N (r)
to allow feature exchange between rooms and doors. First,

a room is a neighbor of its connected rooms and the doors

in-between. Second, a door is a neighbor of its inciden-

tal two rooms. The rest of the architecture is the same as

House-GAN, except that we upsample the feature volume

three times instead of twice, where the final segmentation

mask is produced in the resolution of 64× 64.

4.2. Componentwise GTconditional training

Our training strategy is similar in spirit to “masking”

in NLP [9] (See Fig. 4). In each training step, we pick a

ground-truth layout at random, initialize a relational graph

with its bubble-diagram, then specify a ground-truth seg-

mentation mask as the input condition for each room/door

with a 50% chance. This strategy forces the generator to

either create a whole layout when few GT conditions are

specified, or simply inpaint the missing components when

many GT conditions are given. Surprisingly, this simple

training process allows the generator to iteratively improve

a design by passing the previously generated layout as the

input condition.

4.3. Metaoptimizing iterative refinement scheme

Iterative layout refinement starts by running a genera-

tor without input constraints. From the second iteration,

we have an option of specifying the previously generated

room/edge masks. What is the best strategy? Is it the

best to always pass all the constraints? We propose three

strategies that control when to pass which constraints based

on: 1) fixed heuristics; 2) static node/edge properties; or

3) dynamic layout information. In the latter two cases, we

parameterize the space of strategies and employ a meta-

optimization algorithm to seek for good solutions subject

to either our diversity or compatibility metrics. In all strate-

gies, we run the generator 10 times to refine a layout.

13635

Fixed heuristics: The first heuristic is to pass the segmenta-

tion mask for each room/door at a 50% chance at every iter-

ation (Ours50%heur). The second heuristic is to always specify

all the conditions (Ours100%heur).

Static scheme (Oursstatic): Our static scheme is based

on the observation that architects start by designing cer-

tain spaces first (e.g., a living room). We parameterize the

scheme by a 12-d vector {Vi}, where i is an index over 10

room types and 2 door types. Each element takes a value

in the range [1, 10]. Suppose V3 is 4. In this scheme, the

previous mask is specified as the input condition for the 3rd
room (or door) type after the 4th iteration. FID (i.e., diver-

sity) score is the target metric for the optimization.

Dynamic scheme (Oursdyna): Another intuitive strategy is

to control the conditioning based on the compatibility of

the current model with the input bubble-diagram. We pa-

rameterize the scheme by two 12-d vectors {Ti} and {Ui},
where i is again the index over the room/door type. Suppose

T3 is 4, and U3 is 7. In this scheme, the previously gener-

ated mask is specified after the 4th (resp. 7th) iteration if

the current room (door) is compatible (resp. incompatible)

for the 3rd room type. FID (i.e., diversity) or a graph edit

distance (i.e., compatibility) is the target metric.

5. Implementation Details

We use PyTorch for implementation and a workstation

with dual Xeon CPUs and dual NVIDIA Titan RTX GPUs.

We adopt the same training configuration as in House-GAN

except for the batch size (1 instead of 32) and the number

of iterations (500k instead of 300k). 2 For the meta scheme

optimization, we use the Python library Hyperopt [5] with

Tree-structured Parzen Estimators. In each round, we com-

pute the target metric on 1,000 bubble-diagrams from the

training set, and pick the best scheme after 500 rounds.

Testing framework: To avoid a network from simply copy-

ing and pasting layouts, we use the k-fold cross validation

from House-GAN [24], while dividing the samples into four

groups based on the number of rooms: (5, 6, 7, 8): When

generating layouts with 8 rooms, we use samples from the

other three groups for training. At test time, we randomly

pick a GT layout from the test set, use its bubble-diagram to

initialize a relational graph. The process repeats 1,000 times

to generate 1,000 samples for the evaluation. For the diver-

sity and compatibility evaluations, we compute the mean

and the standard deviation of the metrics over five rounds.

Realism user study: We have carried out the user study

with 10 amateurs (i.e. engineers and graduate students)

and 10 professional architects on two layout representa-

2WGAN-GP [11], ADAM (b1 = 0.5, b2 = 0.999), the learning rate

(0.0001), the number of critics (1), and leaky-ReLUs (α = 0.1) for all

non-linearities except for the last one with hyperbolic tangent.

tions. The first is the raw output of the systems as pixel-

wise segmentation masks. The second is a vector-floorplan

representation where we have used an off-the-shelf floor-

plan vectorization system (Floor-SP [6]) for the conversion

of the samples except for the ground-truth. Each room/door

is assigned a unique color based on its type as in Fig. 2. A

subject is presented a pair of layouts as in Fig. 5, and asked

which one is more realistic or a tie. A method scores (+1)

for a win, (−1) for a loss, and (0) for a tie. For each pair

of methods, we generate 100 pairs to be presented to 10

amateurs and 10 professional architects, where the average

score becomes the realism metric. Please see the supple-

mentary document for the full details of the user study.

Competing methods: We compare against the three com-

peting methods with their official implementations: House-

GAN [24], Ashual et al. [2], and Johnson et al. [14]. For

House-GAN [24], the room shapes were simplified to rect-

angles via pre-processing in their work. In our experiments,

non-rectangular room shapes are used for fair comparison.

For Ashual et al. [2] and Johnson et al. [14], we convert our

bubble-diagram and floorplan data into their scene-graph

representations, while limiting to three connection types

(“room-room”, “room-door”, or “none”).

6. Experimental Results

Table 1 provides the main results, where we use the

proposed approach with a baseline refinement scheme

(Ours50%heur). The table shows that our system outperforms

all the other methods in all the metrics with clear margins,

which are the greatest for the most challenging task (i.e.,

column “8”, generating layouts of 8 rooms, where layouts

of 5, 6, or 7 rooms are used for training). Note that a realism

metric is first computed for pairs of methods as described

above, then their average is reported for each method.

Qualitative evaluations on realism, diversity, and com-

patibility are in Figs. 5, 6, and 7, respectively. The fig-

ures show that our layouts are more realistic with better

room arrangements and shapes. House-GAN does a rea-

sonable job especially in the diversity evaluation, but doors

are often missing and room boundaries have noticeable ar-

tifacts. Compatibility is more challenging in our problem,

where the functional connectivity is given in the bubble di-

agram and small doors need to be placed precisely at the

room boundaries. Fig. 8 shows how the iterative refine-

ment improves the design quality over time with our method

Oursstatic. Both the room spatial arrangement and their

shapes make significant improvements over the iterations.

The complete pairwise realism scores are provided in

Fig. 10. The left is the results with raw segmentation

visualization, where two of our methods (Ours50%heur and

Oursstatic) are compared against the three competing meth-

ods and the ground-truth. Our scheme-optimized system

13636

Table 1. The main quantitative evaluations. Realism is measured by a user study with amateurs and professional architects. Diversity is

measured by the FID scores. Compatibility is measured by the graph edit distance. (↑) and (↓) indicate the-higher-the-better and the-lower-

the-better metrics, respectively. The cyan, orange, and magenta colors indicate the first, the second, and third best results, respectively.

Realism (↑) Diversity (↓) Compatibility (↓)

Model 8 5 6 7 8 5 6 7 8

Ashual et al. [2] -0.7 120.6±0.5 172.5±0.2 162.1±0.4 183.0±0.4 7.5±0.0 9.2±0.0 10.0±0.0 11.8±0.0

Johnson et al. [14] -0.7 167.2±0.3 168.4±0.4 186.0±0.4 186.0±0.4 7.7±0.0 6.5±0.0 10.2±0.0 11.3±0.1

House-GAN [24] 0.0 37.5±1.1 41.0±0.6 32.9±1.2 66.4±1.7 2.5±0.1 2.4±0.1 3.2±0.0 5.3±0.0

Ours50%heur 0.2 30.4±4.4 37.6±3.0 27.3±4.9 32.9±4.9 1.9±0.3 2.2±0.3 2.4±0.3 3.9±0.5

Input graph Ashual et al. Johnson et al. House-GAN Ours Ground-truthstatic

Figure 5. Realism evaluation. One generated layout is shown for each input bubble diagram.

(Oursstatic) is the best among the competing methods but

is still behind GT with a big margin. In direct comparisons

between Oursstatic and GT, subjects choose “Ours is better”

only 6% of the time (“tie” is 20%). The right is the results

with the vector-floorplan visualization, comparing against

the best competing method House-GAN and the ground-

truth. For this evaluation, in addition to Oursstatic, we have

prepared another variant Oursstatic∗ where only fully com-

patible samples (roughly 10% in our generations) are used

in the evaluation. While GT is still the winner, Oursstatic∗
scores -0.18 against GT, where 0.0 is the ultimate score

when our results become indistinguishable from GT. Sub-

jects chose “Ours is better”, “tie”, and “GT is better” at

25%, 32%, and 43% of the time, respectively, indicating

that even professional architects struggle to distinguish our

results from GT (See Figs. 9 and 10).

Lastly, Table 2 demonstrates the effectiveness of the

scheme optimization, where the diversity or the compati-

bility is the target metric. The compatibility optimization

requires the information of the current design (i.e., dynamic

information) and cannot be optimized with Oursstatic.

Overall, optimized refinement schemes outperform heuris-

tic schemes consistently. The best compatibility measure is

achieved when the compatibility metric is the target. Look-

ing at the scheme parameters, we found that in 9 out of

12 node/edge types, the scheme passes the mask-conditions

at earlier iterations when being compatible, which agrees

with our intuition. The best diversity measure is achieved

when the diversity is the metric. Looking at the parameters

of Oursstatic, we found that the scheme passes the mask-

13637

O
u
rs
s
ta
ti
c

Figure 6. Diversity evaluation. Given an input bubble-diagram, we show six samples generated by each method.

Missing edges Wrong edges Correct edges

Oursdyna

Figure 7. Compatibility evaluation. The figure shows the inconsistency between the input bubble diagram and the ones constructed by the

output layouts. The orange, red and green colors indicate if an edge is missing, wrongly predicted, or correctly predicted.

conditions in the order of doors, living room, kitchen, bed-

room, and bathroom. This was counter-intuitive at first, be-

cause one designs doors last. This is due to the fact that

doors are small and the effects of the L1-loss are minimal.

We found that the doors often move when the input condi-

tions are specified. The rest of the room order makes sense,

as it is easy to start with rooms at the core (i.e., living room).

7. Conclusion

This paper makes a breakthrough in the task of auto-

mated house layout generation via a novel generative ad-

versarial refinement network, generating vector floorplans

often indistinguishable from ground-truth. While we have

evaluated the offline layout generation task, the capability

13638

Imput graph After 1st iteration After 3rd iteration After 6th iteration After 10th iteration

Figure 8. Iterative layout refinement. Each row shows the input bubble-diagram and the iterative refinement process over the 10 iterations.

G
ro
u
n
d
-t
ru
th

O
u
rs
s
ta
ti
c

G
ro
u
n
d
-t
ru
th

O
u
rs
s
ta
ti
c
*

Figure 9. Representative user study results. The left is the raw segmentation visualization and the right is the vector-floorplan visualization.

Each column is a pair presented to the subjects. A green mark denotes the preferred design. Two green marks denote a tie.

Table 2. Refinement scheme optimization. The diversity and the

compatibility metrics are shown for House-GAN and five variants

of our method. Meta optimization is used to optimize the refine-

ment scheme in the last three rows. “Target” column indicates

the target metric of the scheme-optimization, where “Divers.” and

“Compat.” indicate FID and the graph edit distance metrics.

Model Target Divers. (↓) Compat. (↓)

House-GAN N/A 66.4±1.7 5.3±0.0

Ours50%heur N/A 32.9±4.9 3.9±0.5

Ours100%heur N/A 31.2±0.6 3.7±0.1

Oursstatic Divers. 27.3±1.1 3.2±0.1

Oursdyna Divers. 24.7±0.8 3.7±0.0

Oursdyna Compat. 35.7±1.3 2.6±0.0

of refining an incomplete design has huge potentials for in-

corporating user inputs: Architects can take a design, makes

adjustments, and pass back to the system for refinement.

GT

-0.17 -0.45 -0.70

0.17 -0.37 -0.68

0.370.45 -0.18

0.680.70 0.18

[24]

[2
4
]

G
T

static
Ours

st
at

ic
O

u
rs

static*
Ours

st
at

ic
*

O
u
rs

 0.00 -0.73 -0.84 -0.85 -0.98

 0.00 -0.82 -0.85 -0.91 -0.99

 0.82 0.73 -0.21 -0.44 -0.73

 0.85 0.84 0.21 -0.19 -0.63

 0.91 0.85 0.44 0.19 -0.68

 0.99 0.98 0.73 0.63 0.68G
T

[2
4
]

[24][14]

[1
4
]

[2]

[2
]

GT
heur
50%Ours

static
Ours

h
eu

r
5
0
%

O
u
rs

st
at

ic
O

u
rs

Figure 10. Realism scores based on the user study for each pair of

methods (or GT). The tables are to be read row-by-row: The bot-

tom row shows that the GT receives positive scores against all the

other methods. The left is the evaluation with raw segmentation

masks, and the right is with the vector-floorplan images.

Acknowledgement: The research is supported by NSERC

Discovery Grants, NSERC Discovery Grants Accelerator

Supplements, and DND/NSERC Discovery Grant Supple-

ment. We thank architects and students for the user study.

13639

References

[1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and

Patrick Martineau. An exact graph edit distance algorithm

for solving pattern recognition problems. 2015. 3

[2] Oron Ashual and Lior Wolf. Specifying object attributes

and relations in interactive scene generation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 4561–4569, 2019. 2, 5, 6

[3] Fan Bao, Dong-Ming Yan, Niloy J Mitra, and Peter Wonka.

Generating and exploring good building layouts. ACM

Transactions on Graphics (TOG), 32(4):1–10, 2013. 2

[4] Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Al-

izadeh, Hari Balakrishnan, Sanjay Chawla, Sam Madden,

and David DeWitt. Roadtracer: Automatic extraction of road

networks from aerial images. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4720–4728, 2018. 2

[5] James Bergstra, Daniel Yamins, and David Cox. Making

a science of model search: Hyperparameter optimization in

hundreds of dimensions for vision architectures. In Inter-

national conference on machine learning, pages 115–123,

2013. 5

[6] Jiacheng Chen, Chen Liu, Jiaye Wu, and Yasutaka Fu-

rukawa. Floor-sp: Inverse cad for floorplans by sequential

room-wise shortest path. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2661–2670,

2019. 3, 5

[7] Qi Chen, Qi Wu, Rui Tang, Yuhan Wang, Shuai Wang, and

Mingkui Tan. Intelligent home 3d: Automatic 3d-house de-

sign from linguistic descriptions only. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12625–12634, 2020. 1

[8] Hang Chu, Daiqing Li, David Acuna, Amlan Kar, Maria

Shugrina, Xinkai Wei, Ming-Yu Liu, Antonio Torralba, and

Sanja Fidler. Neural turtle graphics for modeling city road

layouts. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 4522–4530, 2019. 2

[9] William Fedus, Ian Goodfellow, and Andrew M Dai.

Maskgan: Better text generation via filling in the . arXiv

preprint arXiv:1801.07736, 2018. 3, 4

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 1

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in neural information pro-

cessing systems, pages 5767–5777, 2017. 4, 5

[12] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden,

and Alexandru Iosup. Procedural content generation for

games: A survey. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM),

9(1):1–22, 2013. 2

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in Neural Information Processing Sys-

tems, pages 6626–6637, 2017. 3

[14] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image gener-

ation from scene graphs. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1219–1228, 2018. 2, 5, 6

[15] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Si-

gal, and Greg Mori. Layoutvae: Stochastic scene layout gen-

eration from a label set. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 9895–9904,

2019. 2

[16] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,

and Tingfa Xu. Layoutgan: Generating graphic layouts with

wireframe discriminators. arXiv preprint arXiv:1901.06767,

2019. 2

[17] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will

Hamilton, David K Duvenaud, Raquel Urtasun, and Richard

Zemel. Efficient graph generation with graph recurrent at-

tention networks. In Advances in Neural Information Pro-

cessing Systems, pages 4255–4265, 2019. 2

[18] Yi Liao, Xin Jiang, and Qun Liu. Probabilistically masked

language model capable of autoregressive generation in ar-

bitrary word order. In Annual Meeting of the Association for

Computational Linguistics, 2020. 2

[19] Wallace Lira, Johannes Merz, Daniel Ritchie, Daniel Cohen-

Or, and Hao Zhang. Ganhopper: Multi-hop gan for unsuper-

vised image-to-image translation. In ECCV, 2020. 3

[20] Chongyang Ma, Nicholas Vining, Sylvain Lefebvre, and Alla

Sheffer. Game level layout from design specification. In

Computer Graphics Forum, volume 33, pages 95–104. Wiley

Online Library, 2014. 2

[21] Jess Martin. Procedural house generation: A method for dy-

namically generating floor plans. In Proceedings of the Sym-

posium on Interactive 3D Graphics and Games, pages 1–2,

2006. 1

[22] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-

generated residential building layouts. In ACM Transactions

on Graphics (TOG), volume 29, page 181. ACM, 2010. 1, 2

[23] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,

and Luc Van Gool. Procedural modeling of buildings. In

ACM SIGGRAPH 2006 Papers, pages 614–623. 2006. 2

[24] Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg

Mori, and Yasutaka Furukawa. House-gan: Relational gener-

ative adversarial networks for graph-constrained house lay-

out generation. In ECCV, 2020. 1, 2, 3, 5, 6

[25] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2536–2544, 2016. 1, 2, 3

[26] Chi-Han Peng, Yong-Liang Yang, and Peter Wonka. Com-

puting layouts with deformable templates. ACM Transac-

tions on Graphics (TOG), 33(4):1–11, 2014. 2

[27] Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and flexi-

ble indoor scene synthesis via deep convolutional generative

13640

models. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 6182–6190,

2019. 2

[28] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-

gel X Chang, and Daniel Ritchie. Planit: Planning and in-

stantiating indoor scenes with relation graph and spatial prior

networks. ACM Transactions on Graphics (TOG), 38(4):132,

2019. 2

[29] Kai Wang, Manolis Savva, Angel X Chang, and Daniel

Ritchie. Deep convolutional priors for indoor scene syn-

thesis. ACM Transactions on Graphics (TOG), 37(4):1–14,

2018. 2

[30] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-

Hao Qi, and Ligang Liu. Data-driven interior plan genera-

tion for residential buildings. ACM Transactions on Graph-

ics (TOG), 38(6):1–12, 2019. 2

[31] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and

Jure Leskovec. Graphrnn: Generating realistic graphs with

deep auto-regressive models. In ICML, 2018. 2

[32] Fuyang Zhang, Nelson Nauata, and Yasutaka Furukawa.

Conv-mpn: Convolutional message passing neural network

for structured outdoor architecture reconstruction. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2798–2807, 2020. 3, 4

13641

