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Figure 1: By inferring current and predicting future ego-motion, we can “subtract” vehicle movement to create a normalized

view of the pedestrian as if it was captured by a static camera, allowing to observe and predict the intrinsic pedestrian trajectory.

Abstract

Predicting future pedestrian trajectory is a crucial com-

ponent of autonomous driving systems, as recognizing crit-

ical situations based only on current pedestrian position

may come too late for any meaningful corrective action (e.g.

breaking) to take place. In this paper, we propose a new

method to predict future position of pedestrians, with respect

to a predicted future position of the ego-vehicle, thus giv-

ing a assistive/autonomous driving system sufficient time to

respond. The method explicitly disentangles actual move-

ment of pedestrians in real world from the ego-motion of the

vehicle, using a future pose prediction network trained in

self-supervised fashion, which allows the method to observe

and predict the intrinsic pedestrian motion in a normalised

view, that captures the same real-world location across mul-

tiple frames.

The method is evaluated on two public datasets, where

it achieves state-of-the-art results in pedestrian trajectory

prediction from an on-board camera.

1. Introduction

Predicting the future behavior of objects in images and

videos is of considerable importance in applications, espe-

cially in areas such as robotics or automotive systems. For

example, predicting future trajectory of pedestrians is a cru-

cial component of autonomous and assistive driving systems,

as recognizing critical situations only based on the current

pedestrian position (e.g. a child at the margin of the road)

may come too late for any meaningful corrective action (e.g.

breaking) to be effective. For any such prediction algorithm

to be widely adopted, however, it is crucial that its sensing

hardware requirements are as low as possible. This is the

reason why methods based on a single camera mounted on

the vehicle — also known as first-person view monocular

methods — are raising a lot of attention [2, 5, 10, 11, 26, 28].

Pedestrian trajectory prediction has been extensively stud-

ied in a static or a bird-eye view camera setup [1, 12, 18, 23],

but these methods typically fail in dynamic scenes captured

by an on-board camera due to constantly changing camera

viewpoint, occlusions and other scene dynamics. Moreover,

these methods typically rely on discovering pedestrian mo-

tion patterns to infer future trajectory, which is not possible

in the context of on-board videos, where the movement of

the car, not the pedestrian movement, is the main observed

effect: even a pedestrian who stands still appears in different

image position in every frame, creating an apparent motion

in the 2D pixel space.

In this paper, we thus propose a method1 that explicitly

1The source code is available at https://gitlab.com/

lukeN86/pedFutureTracking
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disentangles the two sources of motion — the actual move-

ment of the pedestrian in real world (e.g. walking, running)

and the ego-motion of the vehicle, as it drives around. The

key observation is that the motion of a pedestrian only af-

fects a specific part of the image, whereas the motion of

the car (ego-motion) affects the appearance of the whole

scene. Using a self-supervised training paradigm, we train a

ego-motion prediction network, which infers the ego-motion

of the vehicle where the camera is mounted. This network is

trained in a similar manner to current self-supervised monoc-

ular depth estimator systems [10,11,30], but with two differ-

ences: we are as much interested in recovering egomotion as

in recovering depth; and we predict the egomotion deep into

the future. In this manner, we can “subtract” the predicted

motion of the vehicle and observe and predict the intrinsic

pedestrian motion in a normalised view, which captures the

same real-world location across multiple frames.

The view normalization then allows us to use a very sim-

ple model to predict the intrinsic motion of pedestrians and

yet achieve state-of-the-art results on two public datasets,

suggesting that indeed properly disentangling ego-motion is

a crucial component in these systems. Compared to previous

designs that used complex predictors such as LSTMs, our

predictor is much simpler. Furthermore, our method does

not require additional annotations compare to these base-

lines as it learns to interpret the vehicle’s egomotion in an

unsupervised fashion.

As for the practical impact, the resulting method requires

solely on a monocular camera, which expands its possible

applications, because it can be used either as a standalone

method in a current-generation vehicles which do not have

any advanced LiDAR sensors, or it can be used as a redun-

dancy system in the new generation of autonomous cars.

Because of the pedestrian view normalization, the method

could also be incorporated into more sophisticated trajectory

prediction methods that work with stationary camera.

To summarise, we make three key contributions in this

paper: (i) we introduce a new self-supervised framework for

ego-vehicle movement prediction, (ii) we use the latter to dis-

entangle the motion of the vehicle from the intrinsic motion

of pedestrians, allowing to predict pedestrian trajectories

from a normalised sequence of patches observing the same

part of the scene regardless of the variable viewpoint and (iii)

we show that, when the pedestrian viewpoint is normalised

in this manner, a simple linear model for trajectory predic-

tion outperforms the traditional LSTM sequence output used

in literature.

2. Related Work

Monocular Depth Self-supervised training has been

widely exploited in the depth estimation literature [10,11,30].

The idea of using view synthetics with a depth and a 6-DoF

pose network to supervise the training was first introduced

by Zhou et al. [30], and was further improved in [3–5,10,19].

Most notably, Godard et al. [11] improved the depth estima-

tion accuracy by modelling occlusions, stationary objects

and by calculating the loss across multiple scales.

Our method in contrast is not focused on depth estimation,

and rather than calculating pose change between two subse-

quent and already observed frames as in [11], our method

predicts poses for unseen future frames, using a novel single

encoder-multiple decoder heads architecture.

Trajectory Prediction from Static Camera Many mod-

els consider pedestrian trajectory prediction as a 2D prob-

lem, where pedestrians are observed from a static camera

facing downwards (birds-eye view). These models focus on

human to human interactions, (static) obstacles modelling

and are able to jointly reason about the whole observed

scene. One of the most prominent models in this category

is Social LSTM [1], which introduces a new pooling layer

which jointly combines all trajectories and interaction to

form a single prediction for the scene. Other methods use

GANs [12, 18, 23] to better model social interactions and

further improve prediction accuracy.

The main drawback of these methods is the requirement

for a static camera viewpoint, which typically captures a

single static scene where pedestrians move. This assumption

obviously does not hold for on-board cameras, where the

scene is changing constantly and where the main source

of change in pedestrian bounding box position is the ego-

vehicle, not the pedestrian itself.

Trajectory Prediction from On-board Camera Fang

and López [7] used a human pose detection CNN to pre-

dict a binary flag encoding whether a pedestrian intents to

cross to cross the road or not.

Bhattacharyya et al. [2] used a RNN for odometry predic-

tion (speed + steering angle), followed by a separate RNN

for pedestrian trajectory prediction. Same as our method,

it uses last available visual information to predict future

movement of the vehicle, but it does not exploit any of the

known geometric relationships of a moving camera, their

model only predicts two scalars whereas we predict a com-

plete 6-DoF pose, and thanks to the explicit geometrical

semantics of our predictor we are able to also meaningfully

extract and use image features of the pedestrian itself. Last

but not least, their method requires annotations for future

movement prediction, whereas our egomotion prediction is

trained self-supervised.

Rasouli et al. [20] expand this further by adding a third

RNN for pedestrian intention, which takes a pedestrian im-

age patch and predicts pedestrian’s intention. This allows

them to exploit visual feature of individual pedestrians, but

each pedestrian needs to be first hand-labelled as going/not

going to cross. The model is also unable to capture actual

pedestrian movement in the scene, because each patch is
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Figure 2: Ego-vehicle motion prediction. Having observed images frames up to time t, the network predicts future vehicle

pose transformations Tt→t+1, Tt→t+2, . . . , Tt→t+P with respect to the current frame t.

centered around current pedestrian bounding box in every

frame.

Yao et al. [27] use a multi-stream RNN to combine pedes-

trian location, vehicle motion and optical flow estimate. The

ego-motion is however only represented as 2D rotation and

translation in the pixel space, which we show is subopti-

mal (see section 4.4), and their model does not incorporate

visual features of the observed agents (pedestrians). This

work was further extended in [26], where conditional vari-

ational autoencoder is added to predict multi-modal future

trajectories.

3. Method

We first describe our method to learn future egomotion

from observation of the past using self-supervised learning

(section 3.1). We then apply that to normalizing pedestrian

detections and thus facilitate predicting their future trajecto-

ries (section 3.2).

3.1. Self­Supervised Vehicle Motion Prediction

Our ego-vehicle prediction network is inspired by the self-

supervised depth estimation literature [8, 10, 11]. Given two

sequential frames It−1 and It ∈ R
3×H×W , a deep network

is trained to produce a dense depth map Dt ∈ R
H×W
+ and

a pose transformation estimate Tt−1→t ∈ SE(3), by min-

imising appearance loss between the original second frame

It and the synthesised version of the second frame, which

is warped from the first frame It−1, using the inferred Dt

and Tt−1→t values. This form of training does not require

any ground truth information (apart from camera intrinsics

K ∈ R
3×3, which we assume to be known), as the train-

ing signal originates in self-supervision from the observed

sequence of two subsequent frames.

In our method, we expand this paradigm to make a net-

work predict future ego-vehicle poses (see fig. 2). Having

observed several frames up to time t, the pose network is

tasked to predict a transformation Tt→t+f , which transforms

the current vehicle position at the time t to the expected

position in the future frame t+ f (in our case, the network

predicts future poses up to f = 45 frames into the future).

More formally, a pose encoder network

Φ : R(L+1)×3×H×W → R
D

takes a sequence of past images It−L, . . . , It−1, It and gener-

ates shared features for pose decoder networks Ψf : RD →
SO(3), each predicting a transformation Tt→t+f for a spe-

cific future frame f (in this way, the pose encoder Φ allows

to share most of the learned parameters between individual

predictions). The networks are trained by minimizing the

photometric loss Lp between observed frame It+f and the

synthesised image Ît+f :

Ît+f = W(It;Dt, Tt→t+f ,K), (1)

Tt→t+f = Ψf (Φ(It−L, . . . , It−1, It)), (2)

Dt = Ξ(It), (3)

Lp(It+f , Ît+f ) =
1

HW

H
∑

i=1

W
∑

j=1

P(Iijt+f , Î
ij
t+f ), (4)

where Ξ is the monocular depth prediction network [11], W
is the image warping operation [14] and P is the photometric

loss as the per-pixel sum of L1 and SSIM difference [25,29].

The model above is thus similar to current self-supervised

monocular depth estimation networks, but there are two

key differences. The first one is that, in monocular depth

prediction the predicted egomotion is just a by-product and

is discarded, whereas for us this is just as important as depth.

The second and more fundamental one is that the information
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Figure 3: Pedestrian view normalization and trajectory prediction. The trajectory prediction operates in 2D space, where the

observed pedestrian patches are aligned and normalized to capture the same location in real world, irrespective of pedestrian

position in previous frames. This allows our method to capture and predict actual pedestrian movement, as if the scene was

captured by a static camera (where in fact the camera is mounted on a moving car).

flow in the model is different. In particular, in eq. (2) the

pose encoder takes as input frames in the range t− L, . . . , t,

but outputs the camera poses for times t + 1, . . . , t + f ,

thereby predicting the future. In self-supervised monocular

depth prediction, the network instead outputs the poses for

the same frames passed to the pose predictor, as there is no

need to predict the future at all. The factorization of eq. (2)

in intermediate features and time-specific decoder heads is

also new and is required in order to predict the poses for

many different frames in an efficient manner.

Implenetation details. As pose encoder Φ, we use

ResNet3D [24] with 18 layers, pretrained on the Kinetics-

400 dataset [15]. For each pose prediction head Ψf , we then

use a separate decoder, which is a simple stack of four 3× 3
convolutions and ReLUs followed by an average pooling

layer for the final prediction.

3.2. Normalization and Trajectory Prediction

The second component of our method is the trajectory

predictor for individual agents, in our case pedestrians. The

trajectory predictors operates in a 2D space, where the ob-

served images as well as observed bounding boxes have been

normalised using the predicted egomotion (viewpoint trans-

formation) in the manner discussed above. The prediction of

future pedestrian trajectories is also made within the same

normalised space.

Intuitively, the viewpoint normalization ensures that the

bounding box of a pedestrian, as detected in the past pr pre-

dicted in the future, does not move as long as the pedestrian

is standing still in the real world. For this, the system must

compensate for the fact that the car is moving and turning,

so that in the original image data the pedestrian bounding

box appears to move significantly, including getting bigger

as the ego-vehicle drives towards the pedestrian. Equally, if

the pedestrian is indeed moving in the world space, the view-

point normalization ensures that such sequence is observed

as if it was captured from a stationary camera, so that the

motion becomes apparent (see fig. 3).

Moving boxes. Let Babe a 2D bounding box tightly en-

closing a pedestrian in a view a. Furthermore, let Ta→b ∈
SO(3) be the camera view transformation from view a to

view b. Under the assumption that the object enclosed in

Ba is static in the 3D world, we can find an approximate

location Bb
a for the bounding box in view b as follows.

To this end, we express Ba as the matrix of its four cor-

ners:

Ba =

[

imin imax imax imin

jmin jmin jmax jmax

]

∈ R
2×4.

If we denote by suppBa the set of indices contained in

the box, we can assign to it a depth value by averaging the

corresponding depth predictions:

d(Ba) =
1

| suppBa|

∑

ij∈suppBa

[Da]ij

Furthermore, let Ḃa be the matrix obtained by adding a row

of ones to Ba, thus expressing the vertices in homogeneous

coordinates. We define the transformed box as:

Bb
a = Ta→b(Ba) such that (5)

Ḃb
a ∝ KTa→bd(Ba)K

−1Ḃa (6)

10207



Intuitively, this process amounts to pretending that the ob-

ject (pedestrian) is planar, fronto-parallel, and situated at a

distance d(Ba) from the observer in view a. The viewpoint

change then reduces to applying a certain homography to this

box. Importantly, eq. (5) is a differentiable operator. Note

that the resulting ‘box’ Bb
a is not necessarily axes-aligned

any more; however, in our application this is approximately

the case. When needed, we define the operator enclBb
a to

denote the tightest axis-aligned bounding box containing the

shape thus obtained.

Predicting the future. We are now ready to explain how

our future trajectory predictor network Γ works. At its core,

the model assumes that the motion of the box can be de-

scribed, in the normalised space, by a linear model. We thus

write the future box B̂t+p as:

B̂t+p = Tt→t+p

(

Bt + pV +
p2

2
A

)

, p = 1, . . . , P

(7)

Here V,A ∈ R
4 are the parameters of a basic accelerated

motion model for the box vertices in the normalised space.

The goal of the network Γ is thus to output these two vectors.

In order to do so, the network Γ observers normalised

image crops together with corresponding normalised bound-

ing boxes. Specifically, consider time t − ℓ in the past.

First, we take the position of the pedestrian at time t − ℓ,

as captured by box Bt−ℓ, and projecting to the “present”

view at time t by computing Bt
t−ℓ. Second, we take the

present location of the pedestrian Bt and crop and rescale

the past image It−ℓ at the corresponding location by comput-

ing crop(It−ℓ, enclB
t−ℓ
t ). These two operations result in a

pair

Wℓ = (Bt
t−ℓ, crop(It−ℓ, enclB

t−ℓ
t ))

which simulates observing the pedestrian and corresponding

bounding box at time t − ℓ from the current viewpoint at

time t (i.e. as if the camera did not move).

The network Γ takes as input an entire sequence of such

observations:

(V,A) = Γ
(

Wt−L, . . .Wt−1,Wt,
)

(8)

Implementation details. The network Γ is a simple

ResNet-18 network [13] where image patches are individu-

ally processed to generate 512 features per image, which are

then concatenated to form a 512 × (L + 1) matrix, where

L is the length of observation (number of past observed im-

ages). The matrix is, together with observed bounding box

coordinates, flattened to a single (512+ 4)× (L+1) vector

and fed through two fully-connected layers to create the final

prediction (V,A) ∈ R
4×2.

The network is trained in a fully-supervised fashion, using

standard L2 loss between predicted B̂t+i and ground truth

0s +1.5s +1.5s

observed (It) predicted (Ît+45) actual (It+45)

Figure 4: Ego-vehicle motion prediction samples from the

PIE dataset. The network is able to predict turning (rotation)

as well as forward motion (translation) up to 1.5seconds

into the future, using purely visual input from a monocular

camera

Bt+i bounding box positions

Lb(B, B̂) =

P
∑

i=1

∥

∥

∥
Bt+i − B̂t+i

∥

∥

∥

2

(9)

where the predicted positions are obtained as described be-

fore. We note that the ResNet-18 subnetwork is as it is

standard practice pretrained on the ImageNet dataset [6] and

its weights are shared across the sequence.

4. Experiments

In this section, our method is evaluated. We first describe

the implementation and training details, followed by evalua-

tion on two public datasets and ablation experiments.

4.1. Training

The ego-vehicle pose network (denoted Φ and Ψf in

Section 3.1) was trained on the training subset of the respec-

tive dataset for 20 epochs, using Adam [17] optimiser with

the learning rate of 10−4. All frames are first resized to

640× 352 pixels.

As it is standard in the literature [20, 26], the pose

network observes previous 0.5 seconds and predicts po-

sition 1.5 seconds into the future. Given the frame
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Method MSE MSEC MSECF

0.5s 1.0s 1.5s 1.5s 1.5s

Linear [20] 123 477 1365 950 3983

LSTM [20] 172 330 911 837 3352

B-LSTM [2] 101 296 855 811 3259

PIETraj [20] 58 200 636 596 2477

FOL-X [27] 47 183 584 546 2303

MSPM [16] 57 182 565 526 2191

BiTraP-D [26] 41 161 511 481 1949

ours 42 153 453 418 1683

Table 1: Trajectory (bounding box) prediction error on the

PIE dataset. MSE is the squared error of bounding boxes

corners, MSEC and MSECF is the error of bounding box

center averaged over the whole sequence, respectively in the

last frame.

rate of both datasets is 30fps, this would imply observ-

ing 15 previous frames and predicting position for future

45 frames. This would be computationally quite expen-

sive, so the pose encoder network Φ only has 4 frames

It−14, It−10, It−5, It as its input. Equally, predicting future

45 frames would in theory require 45 pose decoder heads

Ψf , but again for computational reasons we only use 6 heads

- 4 heads Ψ10,Ψ20,Ψ30,Ψ45 to predict future pose transfor-

mations Tt→t+10, Tt→t+20, Tt→t+30, Tt→t+45 and 2 heads

Ψ−14,Ψ−7 to infer observed vehicle movement in the past

frames Tt−14→t, Tt−7→t. During inference, the missing

transformations are then approximated using simple linear in-

terpolation from the two neighbouring transformations. The

transformations in the opposite direction are then obtained

using matrix (pseudo-)inverse, i.e. Tt+i→t =
(

Tt→t+i

)−1
.

The pedestrian trajectory prediction network Γ (see Sec-

tion 3.2) then observes a full sequence of 15 bounding box

positions, alongside with again 4 image patches normalised

to 128× 128 pixels from the same image indices as above,

and it outputs a sequence of 45 predicted bounding box po-

sitions. The network was trained again on the respective

training subset for 60 epochs, using Adam optimiser with

the learning rate of 10−3.

The monocular depth prediction Ξ is the off-the-shelf

Monodepth2 mono 640x192model [11] downloaded from

the authors website2 (the authors used KITTI dataset [9] to

train their model).

4.2. PIE dataset

The Pedestrian Intention Estimation (PIE) dataset [20]

is a large-scale first-person view driving dataset consisting

of 911k frames split 50/40/10 between train/test/validation

subsets, where in total 293k frames are annotated with 1.8k

pedestrians. Since our ego-vehicle pose prediction network

2https://github.com/nianticlabs/monodepth2

Method MSE MSEC MSECF

0.5s 1.0s 1.5s 1.5s 1.5s

Linear [20] 233 857 2303 1565 6111

LSTM [20] 289 569 1558 1473 5766

B-LSTM [2] 159 539 1535 1447 5615

PIETraj [20] 110 399 1248 1183 4780

FOL-X [27] 147 484 1374 1290 4924

BiTraP-D [26] 93 378 1206 1105 4565

ours 97 373 1158 1042 4471

Table 2: Trajectory (bounding box) prediction error on the

JAAD dataset.

does not require any annotations, we use the full training

subset for training the pose network. For the pedestrian

trajectory prediction network, we then only used the anno-

tated frames. The method was then evaluated on the PIE test

subset, which contains 719 pedestrians in 330k frames.

The method is evaluated (see table 1) using the standard

metrics [2,20] of Mean Square Error of bounding box corners

(MSE) 0.5 second, 1 second and 1.5 second in the future,

mean square error of bounding box center over the whole

sequence (MSEC ) and the mean square of the bounding box

center in the last frame (MSECF ).

Our method outperforms existing methods by a signifi-

cant margin, which increases as frames more in the future are

considered. We hypothesise that this is because our method

is able to better capture and anticipate future ego-vehicle

motion, as i) our model is explicitly optimised to capture

vehicle motion ii) the model can benefit from significantly

more training data, as it can also exploit unannotated frames.

The only exception is the prediction 0.5 second in the future,

where BiTrap-D [26] performs slightly better - this is likely

because the ego-motion within 0.5 second is not very signif-

icant, so the sophisticated pedestrian trajectory prediction

model of BiTrap-D actually prevails our simple linear model.

The ego-vehicle pose network can not only predict for-

ward motion, which is the most common case, but also

turning to some degree (see Figure 4). We note that the net-

work does not use any additional sensors, and therefore all

predictions are based only on the observed image sequence

and its dynamics.

4.3. JAAD dataset

The Joint Attention for Autonomous Driving (JAAD)

dataset [21, 22] is a driving dataset consisting of smaller dis-

continous video chunks consisting of 200-400 frames each,

totalling into 82k frames containing 2.8k annotated pedes-

trians. We again used all frames from the training subset to

train the pose prediction network, and pedestrian annotations

to train the pedestrian trajectory prediction network.

Our method again outperforms existing methods (see

table 2), yet the margin is smaller – this is chiefly because the
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0s +0.5s +1.0s +1.5s

Figure 5: Pedestrian trajectory prediction qualitative samples on the PIE dataset. Ground truth position in red, predictions in

green. Best viewed in colour.

JAAD dataset contains shorter but more varying sequences,

so the pose prediction network would likely need more train-

ing data to better capture the variety. Additionally, 3 different

cameras were used to capture the data, but only one camera

has available calibration information, so we had to assume

the intristics is the same for all cameras.

4.4. Ablation Experiments

Pedestrian Image. We first ablate the impact of using

the normalised pedestrian image features in the pedestrian

trajectory module (see table 3). We observe that even with

just the bounding box sequence as input, the method out-

performs some of the recent previous methods [20], even

when using identical output encoding (LSTM). When the

pedestrian image is added as additional 512 features to the

LSTM, the error drops significantly, outperforming all previ-

ous methods. When the LSTM is then switched to our linear

model, the accuracy is improved even further.

Additional inputs. We also experiment with additional in-

puts of information - vehicle speed from odometry until time

t, speed for the predicted future segment, and a manually

annotated intent flag capturing whether pedestrian is about to

cross the road or not. For simplicity, we use inputs directly

from the ground truth, however as it was shown in [2, 20],

future speed and pedestrian intent can be also predicted with

reasonably high accuracy. We show that using all three ad-

ditional inputs does not compensate the loss of pedestrian

image input, which suggests that pedestrian image indeed

contains crucial information for future trajectory prediction

and that the ego-motion prediction model is able to compen-

sate vehicle movement so the speed information becomes

less relevant. When additional inputs and pedestrian image

are combined, the error drops even further, when compared

to our method - but this may be partially due to the fact

10210



0s +1.5s

Figure 6: Failure modes on the PIE dataset. The predictor is

confused by the surrounding context, expecting the pedes-

trian to enter the vehicle (top), bumps on the road unexpect-

edly causing the camera to tilt (middle), repeated structures

causing incorrect forward motion estimate (bottom).
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MSE

input output 1.5s

X x x x x 3D LSTM 577

X X x x x 3D LSTM 465

X x X X X 3D LSTM 471

X X x x x 2D LSTM 557

X X x x x 3D linear 453

X X X X X 3D linear 439

Table 3: Ablation experiments of different input channels,

ego-motion model and output format. Trajectory (bounding

box) prediction error on the PIE dataset. (The configuration

used in experiments denoted in bold)

we use ground truth speed and intention data rather than

predictions in this ablation.

LSTM vs Linear model. Next, we compare our trajectory

prediction model from eq. (7) with the standard LSTM

model [20], which directly outputs a matrix of 45× 4 bound-

ing box coordinates, one row per time stamp. Our model

yields better accuracy than the LSTM, likely because it has

less degrees of freedom and it is therefore more robust. On

the other hand, motion patterns of pedestrians captured in the

data are not very complex, as people are typically walking in

one direction, so a more complex model might be needed if

more complex motion or interactions were to be modelled.

2D projection. Last but not least, we compare the impact

of using 3D ego-motion prediction, compared to using a

simple 2D transformation in pixel space, where the pose

network predicts only a 2D translation and scale change.

In this experiment, the depth network is not needed, as all

transformations are directly in the pixel space, but as it can

be seen in table 3, there is quite significant drop in accuracy.

5. Conclusion

In this paper, we proposed a method that explicitly dis-

entangles actual movement of the pedestrians in real world

from the ego-motion of the vehicle as it drives around. Us-

ing a self-supervised training paradigm, we trained an ego-

motion prediction network, which infers the ego-motion of

the vehicle and allows the method to observe and predict

the intrinsic pedestrian motion in a normalised view, which

captures the same real-world location across multiple frames.

The method was evaluated on two public datasets, where

it achieved state-of-the-art results in pedestrian trajectory pre-

diction from an on-board camera, whilst being conceptually

and computationally simpler than the previous methods.
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to cross? answering by 2d pose estimation. In 2018 IEEE

Intelligent Vehicles Symposium (IV), pages 1271–1276. IEEE,

2018. 2

[8] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid.

Unsupervised cnn for single view depth estimation: Geometry

to the rescue. In ECCV, pages 740–756. Springer, 2016. 3

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for Autonomous Driving? The KITTI Vision Bench-

mark Suite. In CVPR, 2012. 6

[10] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-

tow. Unsupervised monocular depth estimation with left-right

consistency. In CVPR, 2017. 1, 2, 3

[11] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J. Brostow. Digging into self-supervised monocular

depth prediction. October 2019. 1, 2, 3, 6

[12] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and

Alexandre Alahi. Social gan: Socially acceptable trajectories

with generative adversarial networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2255–2264, 2018. 1, 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 5

[14] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

koray kavukcuoglu. Spatial transformer networks. In C.

Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.

Garnett, editors, Advances in Neural Information Processing

Systems 28, pages 2017–2025. Curran Associates, Inc., 2015.

3

[15] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017. 4

[16] Kyungdo Kim, Yoon Kyung Lee, Hyemin Ahn, Sowon Hahn,

and Songhwai Oh. Pedestrian intention prediction for au-

tonomous driving using a multiple stakeholder perspective

model. 6

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[18] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n,

Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-

BiGAT: Multimodal trajectory forecasting using bicycle-

GAN and graph attention networks. In Advances in Neural

Information Processing Systems, pages 137–146, 2019. 1, 2

[19] Robert McCraith, Lukas Neumann, Andrew Zisserman, and

Andrea Vedaldi. Monocular depth estimation with self-

supervised instance adaptation, 2020. 2

[20] Amir Rasouli, Iuliia Kotseruba, Toni Kunic, and John K Tsot-

sos. PIE: A large-scale dataset and models for pedestrian

intention estimation and trajectory prediction. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 6262–6271, 2019. 2, 5, 6, 7, 8

[21] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Are

they going to cross? a benchmark dataset and baseline for

pedestrian crosswalk behavior. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 206–213, 2017. 6

[22] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. It’s not

all about size: On the role of data properties in pedestrian

detection. In ECCVW, 2018. 6

[23] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki

Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie: An

attentive gan for predicting paths compliant to social and

physical constraints. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1349–

1358, 2019. 1, 2

[24] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In Proceedings of the

IEEE conference on Computer Vision and Pattern Recogni-

tion, pages 6450–6459, 2018. 4

[25] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and

Eero P Simoncelli. Image quality assessment: from error

visibility to structural similarity. TIP, 2004. 3

[26] Yu Yao, Ella Atkins, Matthew Johnson-Roberson, Ram Va-

sudevan, and Xiaoxiao Du. BiTraP: Bi-directional pedestrian

trajectory prediction with multi-modal goal estimation. arXiv

preprint arXiv:2007.14558, 2020. 1, 3, 5, 6

[27] Yu Yao, Mingze Xu, Chiho Choi, David J Crandall, Ella M

Atkins, and Behzad Dariush. Egocentric vision-based future

vehicle localization for intelligent driving assistance systems.

In 2019 International Conference on Robotics and Automa-

tion (ICRA), pages 9711–9717. IEEE, 2019. 3, 6

[28] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learning

of dense depth, optical flow and camera pose. In CVPR, pages

1983–1992, 2018. 1

[29] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss

functions for image restoration with neural networks. IEEE

Transactions on computational imaging, 3(1):47–57, 2016. 3

[30] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, pages 1851–1858, 2017. 2

10212


