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Figure 1. Hand gestures are vital for conveying non-verbal information. (a) Our work considers how a speaker’s upper body alone can

facilitate the inference of their hand gestures. (b) From a temporal stack of the speaker’s 3D body poses (top), we predict corresponding

hands (bottom). (c) Body2Hands outputs a sequence of 3D hand poses in the form of an articulated 3D hand model. Project page:

http://people.eecs.berkeley.edu/˜evonne_ng/projects/body2hands/

Abstract

We propose a novel learned deep prior of body motion

for 3D hand shape synthesis and estimation in the domain of

conversational gestures. Our model builds upon the insight

that body motion and hand gestures are strongly correlated

in non-verbal communication settings. We formulate the

learning of this prior as a prediction task of 3D hand shape

over time given body motion input alone. Trained with

3D pose estimations obtained from a large-scale dataset of

internet videos, our hand prediction model produces con-

vincing 3D hand gestures given only the 3D motion of the

speaker’s arms as input. We demonstrate the efficacy of our

method on hand gesture synthesis from body motion input,

and as a strong body prior for single-view image-based 3D

hand pose estimation. We demonstrate that our method out-

performs previous state-of-the-art approaches and can gen-

eralize beyond the monologue-based training data to multi-

person conversations.

1. Introduction

When we communicate, we convey nonverbal signals

with our body and hands [38]. In particular, subtle nu-

ances can be conveyed by performing specific conversa-

tional hand gestures, as the human hand is richly expres-

sive with many degrees of joint freedom. This primordial

form of communication is deeply ingrained in human na-

ture. From early infancy, human babies pay extra attention

to their own and others’ hands [46] and subsequently learn

to convey their needs via hand and finger gestures long be-

fore they speak. Endowing machines with the ability to per-

ceive and use conversational hand gestures is therefore an

essential step towards teaching them to effectively interact

with humans.

However, learning the intricacies of conversational hand

gestures requires vast amounts of data. While previous

approaches attempted rule-based [4] and data-driven [23]

methods, a learning based method from large swaths of data

would allow for both modeling the fine-grained details of

hand motion as well as generalization beyond the training

set. Unfortunately, there are many challenges in capturing

conversational hand gestures in realistic settings. These in-

clude the elaborate motions of fingers, the relatively small

size of the hand with respect to the body, and frequent self

occlusions. Such challenges make capturing the motion of

human hands difficult, even for industry-level multi-camera,

optical-marker-based motion capture systems [16, 29]. Em-

bodied 3D hand motion capture datasets in realistic conver-

sational scenarios are therefore extremely rare.

In this paper, we propose an approach for learning con-

versational hand gestures on a large-scale dataset of in-the-
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wild videos with noisy pseudo-ground truth. We build upon

the insight that body motion and hand gestures are strongly

coupled during speech [23]. By learning this correlation, we

can build a reliable prior for hand gestures conditioned only

on the observation of body motion. This approach allows

us to take advantage of readily available body motion data

from current motion capture systems as well as single-view

image-based 3D body pose estimation approaches [24, 51].

Specifically, we formulate a 3D hand-gesture prediction

problem from 3D arm motion input and demonstrate that

body-hand correlations can be learned from a large-scale

publicly-available monologue video dataset.

Leveraging the learned body-motion-to-hand correla-

tion, we present two applications: First, we propose a

learned approach for realistic conversational hand gesture

synthesis from body-only input (See Fig. 1 for an example).

Second, we use the learned correlation as a body-motion

prior for single-view 3D hand pose estimation. While body

priors for pose estimation have been classically consid-

ered in a non-learning, general setting [48], recent 3D hand

trackers [59, 51, 58] have overlooked them.

Our novelty is in proposing a learned deep body prior

for the domain-specific setting of conversational gestures.

Focusing on a single domain of motion, such as nonver-

bal communication, allows us to learn a stronger prior than

in the general setting. This prior is especially effective

in scenarios where the captured appearance of the hands

in video is degraded due to occlusions, motion blur, or

low resolution. We demonstrate that our proposed model,

trained without any clean mocap ground truth, generalizes

beyond the training set of in-the-wild monologue data to

other speakers as well as to multi-person settings.

2. Related Work

Conversational Gestures. Early work on generating plau-

sible gestures for conversational agents [5, 4, 28, 30, 26]

derive arm and hand motion via manually defined rules

drawn from a set of annotated motion segments. Re-

cent approaches learn person-specific gestures from speech

[49, 32, 31, 12, 8, 2], text [6], or both [37, 54] without re-

quiring hand-specified rules. However, these approaches

use lab-recorded audio, text, and motion capture sequences

from constrained environments [32, 31, 8], which limit the

variety of captured gestures, or rely on simplifying assump-

tions for motion generation [7, 31, 37], which cannot be

generalized to in-the-wild video analysis, like ours.

More recently, [12] uses a GAN to learn a person-

specific mapping from speech to 2D upper-body keypoints

from in-the-wild videos. In contrast, our method focuses on

the link between a speaker’s body and their hands. Fur-

thermore, we use a 3D representation, which allows us

to standardize across skeletons and hence, leverage a vast

dataset of in-the-wild videos containing various speakers

and settings. This enables learning gestural patterns in both

person-specific and population-level domains.

3D Hand Synthesis. Prior physics-based 3D hand syn-

thesis approaches [33, 41, 56] generate motion patterns

based on kinematic and task-specific constraints. These

methods are effective when task-specific and external con-

tact constraints are well-defined, but cannot be immedi-

ately applied in-the-wild. Recent data-driven approaches

[35, 23, 39, 47] define objective functions using a combi-

nation of cost terms, such as smoothness of motion [23] or

transition likelihood between segments [35], to compose a

trajectory of gesture sequences from a predefined collection

of segmented gesture phases. Whereas the expressiveness

of these methods is limited by the sequences contained in

the collection, our approach directly regresses articulated

3D hand poses, allowing it to generalize to novel gestures

and avoid the need for a predefined library.

Probabilistic generative models [32, 39, 29] have also

been popular in hand synthesis. Using a temporal neu-

ral network trained on an inverse kinematic loss function,

[29] predicts hand poses from acoustic features, upper-body

joint angles and velocities captured via mocap. While [29],

requires accurate upper-body mocap data, our approach

trains only on in-the-wild data, which affords a richer va-

riety of conversational situations compared to those of lab-

constrained datasets. We further differentiate our approach

from all prior hand synthesis approaches in that we are the

first to learn a prior that can be used not only for synthesis

but also to improve image-based hand pose estimation.

Single Image 3D Human Pose Estimation. Classically,

3D human pose estimation relied on information such as

stereo vision [11]. More recent work commonly uses 3D

deformable models [22, 42, 40, 52] for markerless 3D full-

body pose estimation, in which the optimized [22, 51, 40,

52] or regressed [43, 9, 50, 19] reconstruction outputs are

restricted to the parametric shape defined by the model.

Building off 3D deformable models, many works have ad-

ditionally exploited human pose priors [24, 53] via data-

driven approaches or explored placing constraints on joint

angles or bone length [57, 10] to recover accurate body

mesh representations from a single in-the wild image, but

they often disregard hands [24, 27]. Our approach leverages

the success of these methods to infer the missing hands.

Current methods in 3D hand pose estimation often focus

solely on priors from the hand itself by using shape priors

in deep convolutional networks to constrain the hand ge-

ometry [3] and 3D articulation of joints [59], or by using a

structured inverse kinematics representation [58] to regress

joint locations or mesh parameters from a single RGB im-

age [55, 17]. In contrast, our method leverages contextual

information by explicitly capitalizing on the readily avail-

able body dynamics of the speaker. In addition to implicitly
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Figure 2. Encoder-Decoder network architecture for hand gesture prediction from body pose input. Our network takes a 3D body pose

sequence as input. Optionally, our network can take an additional hand image feature (if available) as input to perform 3D hand pose

estimation of the seen hands. The body pose encoder learns inter-joint relationships, while the UNet summarizes the sequence into a body

dynamics representation. Finally, the hand decoder learns a mapping from body dynamics to hands. The output is a predicted corresponding

gestural hand pose sequence. L1 regression to the ground truth hand poses provides a training signal, while an adversarial discriminator

ensures the predicted motion is realistic.

using hand shape as a prior, we emphasize the significance

of using learned human body dynamics as a prior. More im-

portantly, while these methods rely on clean hand images

as input, our method can hallucinate appropriate hand poses

despite heavily obstructed views– or even, no view– of the

hands by reasoning about movements from other visible up-

per body parts.

3. Learning Gestural Body-hand Dynamics

Our main insight builds upon the idea that a speaker’s

hand gestures are highly correlated with their body mo-

tion [23]. This enables us to leverage body motion as a

strong prior for synthesizing and reconstructing hand mo-

tion. To learn this prior in a data-driven way, we formulate

a predictive task: given the body poses of a speaker, the goal

is to predict their corresponding hand poses.

Problem Definition. The objective of our model, G, is to

predict a sequence of 3D hand poses H from a correspond-

ing sequence of 3D body poses B:

H = G(B), (1)

where B = {bt}
T
t=i and H = {ht}

T
t=i. The 3D body

pose at time t, bt ∈ R
18, is defined by the 6 3D joints

of a speaker’s arms (elbows, and shoulders), where each

joint is represented by a 3D axis-angle representation in a

fixed kinematic structure. Similarly, the 3D hand pose at

time t, ht ∈ R
126, is defined by 21 3D joint angles for

each hand (20 finger joints and 1 global wrist orientation,

as shown in Fig. 1(c)) via an axis-angle representation in a

fixed kinematic structure (126 = 2 × 21 × 3). Note that

our model only considers 3D motion cues of the body and

hands. In practice, such data is obtained by reconstruct-

ing the 3D body and hand poses from a parametric human

model [34, 42, 40, 22], and removing the shape variation

and camera parameters. In contrast to 2D representations

of gesture motion [12], our normalized 3D representation is

invariant to changes in body appearance and camera pose,

allowing our model to generalize to unseen humans and

scenes.

An Encoder-Decoder Model for G. We use a fully convo-

lutional 1D encoder-decoder network for our hand gesture

prediction model G. The network consists of a body en-

coder, a UNet dynamics encoder, and a hand decoder, as

overviewed in Fig. 2. The body encoder implicitly learns

inter-joint relationships from an input sequence of T 3D

body joint rotations B ∈ R
T×18 and outputs a body em-

bedding φ
B
∈ R

T×P , where P is the body embedding size.

To learn a dynamics embedding summarizing the speaker’s

body poses for the whole sequence, we feed the body em-

bedding through a UNet architecture [44] with a bottle-

neck that allows the network to pool information from past

and future contexts, and skip connections that allow high-

frequency temporal information to flow through, capturing

fast motions. The UNet’s temporal bottleneck of size T ′

encodes the body dynamics. The output of the UNet (in

R
T×D, where D is the dynamics embedding size), is then

fed as input to the hand decoder, which learns to regress to

the ground truth hand poses Ĥ ∈ R
T×126 via an L1 loss:

LL1(G) = ‖Ĥ− G(B)‖1. (2)

Learning Realistic Motion Dynamics. To avoid blending

together different modes of motion, we introduce an adver-

sarial discriminator [13], D, conditioned on the temporal

deltas of the predicted hand pose sequence. The discrim-

inator ensures we produce life-like hand motion as output

and facilitates learning realistic gesture dynamics. We use

∆ to denote a function that takes as input a sequence of hand

poses and outputs the difference between consecutive poses
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(e.g. [h2 − h1, ...hT − hT−1]). The discriminator D max-

imizes the following objective while the generator G mini-

mizes it:

LGAN (G,D) = EH[logD(∆(H)]+EB[log(1−∆(G(B))].
(3)

Thus, the discriminator learns to classify real or fake mo-

tion dynamics, inherently nudging the generator to produce

more realistic speaker hand movements. Our full objective

is thus:

min
G

max
D

LGAN (G,D) + λLL1
(G). (4)

Figure 2 overviews the model; see Supp. for architecture

details.

Our hand gesture prediction model implicitly learns the

interplay between a speaker’s body and their hands, which

can be used as a strong prior to synthesize realistic commu-

nicative hand gestures.

3D Hand Pose Estimation with Body Pose Priors. We can

extend our model, incorporating it as a novel prior for hand

pose estimation by using an additional hand image when

such input is available:

H = K(Ih,B), (5)

where Ih is a series of hand images cropped around the left

and right hand regions of the input video. Dropping the

last fully connected layer of a ResNet-50 model [18] pre-

trained on ImageNet, we treat the rest of the ResNet-50 as

a fixed feature extractor for Ih. The resulting appearance-

based feature is passed through a linear layer, which out-

puts the image embedding φ
I
∈ R

T×Q, where Q is the

image embedding size. The image embedding is then con-

catenated with the body embedding φ
B

and fed through the

remaining unchanged UNet and hand decoder pipeline (See

Fig. 2).

While existing single-view 3D hand pose estimation ap-

proaches [59, 58, 55, 17] rely only on hand images as in-

put, our method also leverages the inter-correlation between

body pose and hand gestures. Thus, our prior based on body

motion provides an additional cue for hand gesture estima-

tion to overcome challenges caused by fundamental depth

ambiguity, frequent self-occlusion, and severe motion blur.

Furthermore, we consider the temporal aspect of the input,

allowing our method to produce smoother, more realistic

hand sequences.

4. Experiments

We evaluate our learned body prior from two angles.

First, we evaluate the quality of our 3D hand synthesis

method by performing a perceptual user study on results

from in-the-wild videos. Second, we quantitatively com-

pare our body prior model in single-view 3D hand pose es-

timation from video against state-of-the art hand pose esti-

mation methods [51, 58] on a ground-truth dataset captured

in the Panoptic Studio [20]. In all experiments, our method

is trained and tested in a person-agnostic setting: we train

and test on many different speakers. To test the generaliz-

ability of our method, we ensure that speakers appearing in

the test clips do not appear in the training set. We use 3D

body pose estimates from MTC [51] as input to our model

during testing.

4.1. Datasets

To study common body and hand gesture dynamics,

we produce 3D body and hand annotations to accompany

the large scale, in-the-wild monologue dataset presented

in [12]. For evaluation, we utilize a smaller multi-person

conversation dataset with clean 3D body and hand ground

truth captured in a multi-view setting via the Panoptic Stu-

dio [20].

In-the-wild 3D Body and Hand Gesture Dataset. Learn-

ing a body pose prior for hand gesture prediction requires

a large-scale dataset capturing natural 3D body and finger

movements that occur simultaneously with speech. How-

ever, such motion capture datasets are extremely rare due to

challenges in capturing hands. We thus leverage a state-of-

the-art monocular 3D pose estimation algorithm, MTC [51],

to reconstruct 3D body and hands from a large scale col-

lection of public monologue videos [12]. MTC estimates

3D body and hands in the form of a 3D parametric hu-

man model (Adam [22]), parameterized by shape param-

eters and 62 3D joint rotation pose parameters (22 joints

for body and 20 joint for each hand). From MTC’s output,

we use the pose parameters corresponding to the arms and

fingers as pseudo ground-truth to train our models (Eq. 1

and Eq. 5). Although the reconstruction outputs from MTC

contain failure cases with noticeable motion jitter and arti-

facts, we found them adequate for training our model when

used on video with sufficient resolution. To cover a broad

range of gesture styles, we annotate 81 hours of in-the-wild

videos for 8 gesturing speakers covering a wide range of

topics from a variety of different settings (e.g. television

shows, lectures, religious sermons).

Panoptic Studio Dataset. Given the lack of clean ground

truth for the in-the-wild capture, we utilize an additional

Panoptic Studio dataset presented in [21] for evaluation pur-

poses. This dataset consists of 120 sequences (about 2

hours) of individuals naturally conversing in a negotiation

game scenario. To handle severe occlusions among other

individuals in the scene, the dataset uses a multi-view ap-

proach (with 31 HD cameras) to reconstruct 3D body and

hand keypoint locations. We apply an additional parametric
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Figure 3. Our predicted 3D hand poses against a SOTA image-based method, MTC [51]. We show each prediction from a novel view

below their respective hand. Row 1: View of speaker and magnified hands (not used by our method). Row 2: results from our method,

using body-only as input. Row 3: MTC [51] image-based results. We show results from a novel video of a person in the training set (left)

and a novel video of an unseen person (right) to demonstrate that our model generalizes across individuals. Note: all evaluations discussed

in the paper are only on unseen people. For motion blurred or self occluded hands, ours produces more accurate results.

3D human model reconstruction algorithm [22] to convert

the keypoints to a 3D angle representation, matching the 3D

human model form (Adam) of our in-the-wild dataset. All

data and annotations will be publicly released at http:

//people.eecs.berkeley.edu/˜evonne_ng/

projects/body2hands/.

4.2. Implementation Details

We generate training data by creating sliding windows

of size 64 with an overlap of 32 frames for each sequence

of the in-the-wild training set. This yields 139K total se-

quences, for which we use a 70/30 training/validation split.

For the encoder-decoder model, we use embedding dimen-

sions P = D = Q = 256. We train the model using Adam

with a batch size of 128 and a learning rate of 10−4. We

train with an adversarial loss every third epoch, and with-

out, for all other epochs. Training time is 2 hours on a sin-

gle GeForce RTX 2080 GPU for 200 epochs. See Supp. for

additional details.

4.3. 3D Hand Synthesis

We assess whether our approach generates realistic

and perceptually convincing hand pose sequences for the

speaker. With only 3D body pose annotations as input, our

model (defined in Eq. 1) hallucinates a corresponding hand

gesture sequence. This model can be particularly useful

for synthesizing realistic hand gestures for body-only data,

where hand motion capture is unavailable. For example,

body-only mocap data (e.g., CMU Mocap [1] and KIT [36])

or existing 3D body pose estimation methods [24, 27] that

output torso and limb poses only. See Supp. video for exam-

ples where our method synthesizes hands given body-only

mocap or off-the-shelf 3D body pose estimates as input.

Perceptual Evaluation. We design a perceptual evaluation

to corroborate our quantitative results. The perceptual eval-

uation compares our synthesis results (without using any

hand observation), Ours w/ B, against MTC [51]. Com-

paring against state-of-the-art in 3D hand pose estimation

allows us to qualitatively evaluate how close results from

using the body prior only (ours) can get to results from us-

ing the true hand image. Furthermore, the perceptual study

ensures our quantitative metrics are well founded.

For the evaluation, we collect a new corpus of 12 in-

the-wild YouTube videos from 9 speakers not seen in the

training set. We visualize the hands by reembodying the

predicted hands on the corresponding MTC-extracted body

pose. The reembodied hands are then overlayed on the cor-

responding video frame with a black box over the true hands

of the speaker. To provide evaluators with additional per-

ceptual context, we also include audio. See Fig. 3 and supp.

video for example visualizations.

Evaluators watched a series of video pairs (shown synced

side by side), in which the hands of one video are synthe-

sized by our method, and the other, are estimated by MTC.

The left/right location of ours vs. MTC was randomized for

each video. Evaluators were then asked to “vote” for which

hand sequence looks more realistic on the given speaker.

They were given unlimited time to answer and could re-

play the video. We randomly sampled 19 pairs of 12-second

clips, each of resolution 1280×720, from the YouTube cor-

pus. Our results were scored by 45 evaluators.

Synthesis Results. Our method, based purely on a

body motion prior, is qualitatively competitive against cur-

rent image-based state-of-the-art in 3D hand pose estima-

tion [51]. In total, 54.54% of votes indicated that the syn-
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Ours w/ B + I Ours w/ B MTC [51] FrankMocap [43] Minimal [58] NN Median

unclear 2.53 ± 0.8 2.85 ± 0.5 5.21 ± 0.9 4.89 ± 0.4 9.30 ± 0.9 4.32 ± 0.7 4.78 ± 0.6

clear 3.33 ± 0.6 3.45 ± 0.6 2.91 ± 1.4 3.02 ± 0.6 5.46 ± 1.6 4.51 ± 0.4 4.61 ± 1.0

all frames 2.81 ± 0.8 3.05 ± 0.6 3.66 ± 1.3 3.59 ± 0.6 7.30 ± 1.7 4.42 ± 0.7 4.70 ± 0.7

Table 1. Avg. joint errors with std. (in mm; approximated by 30 cm avg. shoulder length; lower is better) on the Panoptic Studio capture,

broken down for frames with clear/unclear view of hands. While MTC and FrankMocap expectedly outperform on clear views of the

hands, the margin separating ours vs. MTC and ours vs. FrankMocap is small. Our method using body priors (with or without image

input) outperforms all baselines by a larger margin when hands are unclear (low-res, obstructed). Avg. error over all frames also shown.

Figure 4. Analysis of typical errors. Error over time plotted on the left (lower is better). Frames shown for notable scenarios on the right.

MTC fails from (a) naturally arising occlusions or from (c) motion blur/low resolution on hands. With clear views of the hands (b) and

(d), MTC performs slightly better, though the margin separating ours from MTC is smaller than in cases where MTC fails. Overall, ours

outperforms other baselines whether we take as input an image observation or not.

thesized hands from Ours w/ B are perceptually competi-

tive against real hand gestures approximated by MTC. This

illustrates the surprising result that even without seeing the

hands, our method can synthesize hands from body-input

alone that people find as realistic as those synthesized by a

method that uses the true hand image to estimate the actual

shape of the hand.

In Figure 3, Ours w/ B outperforms MTC in predict-

ing hands that are self-occluded or blurry, better capturing

a clasped hand or a hand swinging up to point. The lowest

votes our method receives on a video is 36%, and highest,

77%. We note that in videos where MTC outperforms, the

speaker’s hand pose is often semantically linked to audi-

tory keywords (e.g. holding up the index finger and saying

“one”), which may be missed by observing only the body

pose of the speaker. See Supp. for details and additional

perceptual evaluations.

Our method successfully synthesizes perceptually con-

vincing hand poses—without any pixel information—by

observing the body pose of the speaker. This supports our

key technical insight that hands are closely linked to body

dynamics via a learnable relation. We can therefore explic-

itly leverage body pose as an effective prior to improve hand

pose estimation.

4.4. Singleimage 3D Hand Pose Estimation

We quantitatively assess the advantage of our body pose

prior for 3D hand pose estimation. We use the Panoptic

Studio capture with ground-truth data to compare against

alternative approaches, including state-of-the-art in monoc-

ular hand motion capture, MTC [51], Minimal Hand [58],

and FrankMocap [43]. In this experiment, we use the

same monocular video for all methods by selecting the cam-

era view with the clearest, non-occluded frontal view of

the speaker for each game. Yet, the social game scenario

(three individuals in each game) is challenging for monocu-

lar hand motion capture approaches since (1) individuals are

far from the cameras, making the image resolution of hands

low, and (2) occlusions naturally and frequently emerge

during conversations. We demonstrate that our body prior

model is effective in this challenging scenario. We compare

the following methods:

• Ours with body (Ours w/ B): Our synthesis method

from the perceptual evaluation (Eq. 1). Takes only

body pose as input.

• Ours with body and image (Ours w/ B + I): Our hand

pose estimation model presented in Eq. 5. Takes both

body pose and image as input. Please note, the image

feature we use here is weaker than those used by previ-

ous state-of-the-art methods, which are trained specifi-

cally on 2D [45] or 3D [51, 60, 15] hand ground truth.

In contrast, we opted for a naive ResNet image feature

as an additional input.

• Monocular Total Capture (MTC) [51]: State-of-the-

art full body + hand 3D pose estimation, based on an

optimization framework.
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Figure 5. For each hand pose example query, we find 10 closest predicted hand poses from in-the-wild videos and visualize their cor-

responding body poses (darker means closer match). We reembody the query hands on its corresponding body shown in darkest shade.

Body2Hands captures distinct correlations between the body and hands for common communicative gestures.

Figure 6. Adding the image embedding improves the accuracy for examples where using the body prior alone fails due to low/no distin-

guishable body motion. We show two views for each prediction below their respective hands. Row 1: View of speaker and magnified

hands. Row 2: Our results from using body prior alone. Row 3: Adding an image feature with the prior addresses this issue, snapping to

the true hands. Row 4: MTC [51] image-based results. Shown are “unclear” frames as referred to in Tab 1. See video for all frames.

• FrankMocap (FrankMocap) [43]: State-of-the-art full

body + hand 3D pose estimation, based on networks

that regress 3D pose parameters.

• Minimal Hand (Minimal) [58]: Current state-of-the-

art monocular 3D hand pose estimation. For each

video frame, we extract cropped bounding box images

of both the left and right hands using OpenPose. We

feed both images individually through the pretrained

model provided by the authors to extract 3D keypoint

estimations of each hand.

• Nearest Neighbors (NN): A segment-search method

commonly used for synthesis in graphics. We first

break the input sequence into smaller sub-segments.

For each body pose sub-segment, we find its nearest

neighbor from the training set and transfer its corre-

sponding hand pose sub-segment.

• Always predict a median pose (Median): A simple

yet strong baseline exploiting the prior that a speaker’s

hands are at rest most of the time [25]. We obtain me-

dian hand pose from the test set.

Evaluation Metric. We compute the average Euclidean

distance between the predicted and ground truth 3D hand

joint locations. Since the scale of 3D joints from each 3D
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Ours w/ B + I Ours w/ B Ours w/ I Ours w/ GT B + I Ours w/ GT B Ours w/ B + I no GAN Ours w/ B no GAN

all frames 2.81 ± 0.8 3.05 ± 0.6 9.40 ± 0.6 2.45 ± 0.07 2.49 ± 0.05 2.84 ± 0.5 3.19 ± 0.4

Table 2. Effect of the body pose prior and discriminator on our method. Avg. joint errors with std. (in mm; approx. by 30 cm avg. shoulder

length; lower is better). Evaluated on Panoptic Studio capture. Performance worsens without the body prior (Ours w/ I), and improves

with more accurate ground truth body pose inputs. Discriminator results in only small quantitative differences.

parametric model differs (Adam [22] for ours and MTC,

MANO [42] for Minimal Hand, and SMPL-X for FrankMo-

cap), we apply rigid alignment by Procrustes analysis [14]

to normalize for scale and global orientation before com-

puting errors (commonly done in the 3D pose estimation

field [51, 24]). We report average error over the entire se-

quence, and scale the error unit to millimeters based on a

reference shoulder distance of 30 cm.

Estimation Results. Table 1 shows our method outper-

forms all other competing methods under challenging sce-

narios. Errors are shown averaged over all 42 hand joints.

Our body-only approach Ours w/ B makes significant

gains over MTC, FrankMocap, and Minimal on frames

with difficult views of the hands (≈ 60% of frames). While

MTC and FrankMocap expectedly outperform on clean

views of the hands, the margin separating either from both

our body prior methods is much lower. This result supports

our key technical novelty in using body as a strong prior

for hand pose estimation. Despite 31 camera views in the

Panoptic Dome, finding a view where hands are constantly

and clearly in-view is difficult (shown in Figure 4). By

observing the body dynamics, our method naturally over-

comes occlusion and motion blur, outperforming image-

based methods. Thus, information provided by the more

visible body pose is essential for deriving accurate hand

pose estimates. Further, the results demonstrate our model,

trained on monologue videos, generalizes to broader con-

versational domains.

While Ours w/ B alone outperforms all other baselines,

by adding a weak appearance-based cue, Ours w/ B + I

improves performance, though the margin is smaller than

those separating Ours w/ B from all other baselines. This

demonstrates the effectiveness of using body priors to in-

form image-based methods towards more accurate hand

pose estimates.

Figure 5 shows examples of links our method discov-

ers between the hand and body pose of various speakers.

For each chosen hand pose, we find the 10 closest predicted

hand poses from the test set and visualize the body pose at

that instance. More distinctive hand patterns with seman-

tic significance (e.g. pointing or pinching to show ”a little

bit”) have the most consolidated body poses, demonstrating

a stronger link between the hands as a function of the body.

While non-semantic hand poses may be associated with a

greater variety of body poses, the overall composition of

the body poses is still noticeably distinct. For example, the

bodies accompanying the straight hands are always upright,

while those of the clasped hands have a bit of a lean.

In Figure 6 we show examples where Ours w/ B predicts

incorrect, albeit reasonable, hand poses, while Ours w/ B+
I uses the additional appearance cue to accurately snap to

the correct hand pose.

Table 2 quantifies the impact of the body prior in our net-

work. As demonstrated in an ablation, using only a weak

appearance cue Ours w/ I in our network is not sufficient

to capture the speaker’s hand pose, leading to poorer results.

We also substitute in the 3D ground truth body pose of the

speaker (i.e. the true pose given by the Panoptic Studio) for

the extracted MTC body pose to test how the source of the

body estimates affect our results in Ours w/ GT B + I and

Ours w/ GT B. We see that more accurate body poses can

further improve results, while improvement gains from the

additional image feature is less impactful with more accu-

rate body pose inputs. Further, Table 2 shows that ablating

the GAN by removing the discriminator in our method leads

to only small quantitative differences. See Supp. for video,

person-specific models, architecture details, and a study an-

alyzing the contributions of using our body-hand prior vs. a

temporal prior from using hand pose sequences.

5. Discussion

We present Body2Hands: a data-driven approach to-

wards learning the interplay between a speaker’s hand and

their body dynamics. We leverage this link to exploit the

more visible body pose as a strong prior for hand synthe-

sis and estimation. Trained only on in-the-wild data, our

method’s results on two datasets across various individuals

and conversational settings demonstrate the promise of our

idea. As a limitation, our method is restricted to the domain

of conversational hand gestures and fails when the speaker

is holding a pen or prop. Future work includes integrating

our prior with more sophisticated image-based approaches,

making our body-pose-only synthesis framework nondeter-

minsitic, incorporating other observable priors such as au-

dio, and extending beyond conversational gestures.
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