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Abstract

The research in automatic unsupervised visual cluster-

ing has received considerable attention over the last cou-

ple years. It aims at explaining distributions of unla-

beled visual images by clustering them via a parameterized

model of appearance. Graph Convolutional Neural Net-

works (GCN) have recently been one of the most popular

clustering methods. However, it has reached some limita-

tions. Firstly, it is quite sensitive to hard or noisy sam-

ples. Secondly, it is hard to investigate with various deep

network models due to its computational training time. Fi-

nally, it is hard to design an end-to-end training model be-

tween the deep feature extraction and GCN clustering mod-

eling. This work therefore presents the Clusformer, a sim-

ple but new perspective of Transformer based approach,

to automatic visual clustering via its unsupervised atten-

tion mechanism. The proposed method is able to robustly

deal with noisy or hard samples. It is also flexible and ef-

fective to collaborate with different deep network models

with various model sizes in an end-to-end framework. The

proposed method is evaluated on two popular large-scale

visual databases, i.e. Google Landmark and MS-Celeb-

1M face database, and outperforms prior unsupervised

clustering methods. Code will be available at https:

//github.com/VinAIResearch/Clusformer

1. Introduction

The research in automatic unsupervised visual cluster-

ing, e.g. human faces or landmark photos, has gained con-

siderable prominence lately thanks to the nature of huge

amount of available unlabeled data and the demand of con-

sistent visual recognition algorithms across various chal-

lenging conditions. Indeed, stand-alone visual recognition

algorithms, e.g. Face Recognition [36] or Visual Landmark

Recognition [38], are important in practical applications

where there is significant difference between probe and

gallery visual photos [23]. In Face Recognition, the algo-

Figure 1. The proposed Clusformer uses the self-attention mech-

anism to detect the hard, noisy samples in a cluster, while prior

methods use GCNs that are unable to address this problem com-

pletely.

rithms of face recognition in a supervised manner have now

become mature. Compared to the state-of-the-art (SOTA)

results of supervised Face Recognition algorithms [7, 15],

the number of studies in face clustering are still limited. The

solutions are still not as good as supervised methods.

Many complex factors could affect the appearance of a

visual photo, e.g. illumination, poses, occlusions, in real-

world scenarios. Providing tolerance to these factors is

the main challenge for accurate visual clustering methods.

Among these factors, lacking of robust features is often the

most important factor to deal with. Visual data is usually

easy to collect but costly to annotate. Therefore, Graph

Convolutional Networks (GCNs) have become one of the

most popular methods to tackle visual clustering in an un-

supervised manner. However, recent visual clustering meth-

ods, e.g face clustering [14, 27, 18, 40, 39], still have some

limitations, e.g. accurate clustering, algorithm complexity

or computational time.

1.1. Contributions of This Work

This work presents the new Clusformer, a simple but

novel perspective of Transformer based approach, to auto-

matically cluster visual samples in an unsupervised man-

ner. The method is able to robustly deal with noisy and hard

samples thanks to its effective self-attention mechanism. To
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the best of our knowledge, it is one of the first work to uti-

lize the self-attention mechanism in Transformer to tackle

visual clustering problems effectively. The contributions of

this work are therefore three-fold. Firstly, a new Trans-

former based clustering architecture is introduced in the

context of top-down clustering large-scale unsupervised vi-

sual databases. Secondly, new Visual Grammar and Cosine

Distance Encoding (CDE) modeling mechanisms are intro-

duced to efficiently incorporate into the Clusformer frame-

work to solve the visual clustering problems. Finally, the

proposed approach consistently achieves the state-of-the-

art (SOTA) results compared against the recent clustering

methods [40, 39] on two standard visual benchmarks, i.e.

Google Landmark and MS-Celeb-1M face database.

2. Related Work

This section briefly reviews recent methods for face and

visual landmark clustering. They can be divided into three

main categories, including unsupervised, semi-supervised

and supervised visual clustering methods.

2.1. Unsupervised Visual Clustering

These methods usually compute empirical density and

designate clusters as dense regions in a data space such as

K-Means [21] and spectral clustering [32]. Otto et al. [27]

introduced an approximate rank order metric for clustering

millions of faces by identity. Ankerst et al. [1] developed a

similar concepts and addresses the ordering of data points.

Chen et al. [4] proposed an unsupervised hashing method

named Anchor-based Probability Hashing to preserve the

similarities by exploiting the distribution of data points.

2.2. Semi­Supervised Face Clustering

These methods aim to leverage large-scale unlabeled

data, given a handful of labeled data. Roli at al. [30] pro-

posed a self-training strategy that employs Principal Com-

ponent Analysis (PCA) to leverage labels and unlabelled

data with an initial classifier. Zhao et al. [43] employed

Linear Discriminant Analysis (LDA) as the classifier to in-

fer labels. Zhan et al. [42] introduced a Consensus-Driven

Propagation (CDP) to exploit massive unlabeled data for

improving large-scale face clustering.

2.3. Supervised Face Clustering

These methods rely on supervised information to im-

prove performance gains. Lin et al. [19] proposed to ex-

ploit local structures of deep features by introducing min-

imal covering spheres of neighbourhoods to improve sim-

ilarity measure. GCNs [18] extend Convolutional Neural

Networks (CNNs) to process graph structured data. Wang

et al. [37] further improved the linkage prediction by lever-

aging GCNs to capture graph context. Hyeonwoo et al. [25]

introduced an attentive local feature descriptor suitable for

large-scale image retrieval. Teichmann [34] proposed a re-

gional aggregated selective match kernel to effectively com-

bine information from detected regions into an improved

holistic image representation for visual landmark cluster-

ing. Cao et al. [2] presented an unifying deep local and

global features for image retrieval. Jerome et al. [29] pro-

posed method to directly optimize the global mAP by lever-

aging recent advances in listwise loss formulations.

The proposed method adopts the idea of supervised

clustering, it differs from two key aspects: (1) we introduce

the Clusformer, a simple but new perspective of Trans-

former based approach, to automatic unsupervised visual

clustering via its efficient unsupervised attention mecha-

nism. (2) our method is able to robustly deal with noisy

or hard samples. It’s also flexible and effective to col-

laborate with different deep network models with various

model sizes and be able to train and optimize with these

deep network within an end to end network.

3. Background

This section reviews Graph Convolutional Neural Net-

works and their limitations. Then we briefly review the

Transformer method and its self-attention mechanisms.

3.1. Graph Convolutional Neural Networks (GCNs)

GCNs are originally invented in the field of spectral

graph theory [18] and graph signal processing [26]. They

are also related to the spectral graph theory [18]. GCNs use

the same ideas in spectral graph theory to design the param-

eterized filters to fit in CNNs. GCNs have showed as one

of the most effectiveness methods in dealing with complex

cluster patterns. However, they are usually highly compu-

tational and require high level of memory consumption. In

addition, they are quite sensitive to hard or noisy samples.

In [39], the confidence of a vertex vi is measured in the

affinity graph as shown in Eq. (1).

ci =
1

|Ni|

∑

vj∈Ni

(1yj=yi
− 1yj 6=yi

) · ai,j , (1)

where 1 denotes the identity function that defines vi and vj
are same class or not. ci is the confidence score that the

neighbors Ni are close or from the same class as vi. The

affinity ai,j between two vertices vi and vj is computed by

ai,j = 1 − si,j where si,j is the cosine similarity score.

When there are more noisy samples around vi, the value of

ai,j is much higher and ci is penalized by−ai,j that leads to

a lower value. Similarly, when there are many hard samples

in the same class with vi, but they are far away from vi, the

value of ai,j is much smaller, then the confidence score si
would be slightly increased. In these two scenarios that we

mentioned, GCNs are unable to solve them completely.
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Figure 2. Clusformer Architecture Overview

In addition, the combination between a deep network

model and a GCNs model is still hand-crafted and executed

in an alternative manner. Their efficiency also suffers from

the requirement of numerous highly computational train-

ing time. Indeed, recent GCN-based clustering methods

[40, 39] have been introduced in an alternative manner.

3.2. Transformer

Attention, a mechanism that allows a Neural Network to

focus on some particular regions of an input when making

a prediction, has become a key component in most recent

successful deep architectures. When combined with CNNs,

attention mechanisms have achieved very high accuracy

in numerous Natural Language Processing (NLP) applica-

tions. Recently, the Transformer [35], an encoder-decoder

architecture based merely on attention mechanisms, has

achieved the SOTA results on sequence-to-sequence tasks.

With the multi-head attention, Transformer can focus on

different positions in an input sequence and results in a

powerful deep network that outperforms prior approaches.

Following the success of Transformer, many Transformer-

based architectures have been presented recently to obtain

SOTA results in various NLP problems, e.g. GPT [28],

BERT [9], Transformer-XL [6] , XLNet [41] and among

others [20, 24, 13, 5]. In this work, we aim to present a sim-

ple but new perspective of Transformer in visual clustering

thanks to their effective self-attention mechanism.

4. The Proposed Clusformer Approach

This section firstly overviews the proposed framework

in Subsection 4.1. Then we detail how to initialize visual

clusters from large-scale datasets in Subsection 4.2. Finally,

the proposed Clusformer is presented in Subsection 4.3.

4.1. Framework Overview

There are two training visual datasets in this work, i.e.

a visual dataset with full annotation DL = (XL, yL), and

a large-scale visual dataset without any annotation DU =
(XU ,∅), where ∅ denotes the label is not available. In

practice, DU is much greater than DL in terms of both the

number of training samples and the number of subject iden-

tities. Obviously, it requires a huge amount of efforts to

manually annotate labels for DU and as such that is imprac-

tical in the real world.

A CNNs modelM is presented for visual classification.

One of the efficient approaches to improve the accuracy of

the classifier M is to maximize the usage of both the la-

beled dataset DL and the unlabeled dataset DU . Thus, the

deep model M is firstly trained using the labeled training

set DL in a regular supervised manner. Then, this classi-

fier M is used to bootstrap training samples in the large-

scale unlabeled dataset DU . A high performance clustering

method is used to automatically label the dataset DU . This

clean large-scale dataset will be then used to retrain the vi-

sual classifier modelM. Introducing a high accuracy of an

automated clustering method to improve the classifierM is

the goal of this work. We introduce a new simple but effi-

cient Clusformer method to cluster the large-scale unlabeled

dataset DU . Figure 2 overviews the proposed framework.

It is important to notice that these initial clusters Ci

may contain mislabeled samples. Clusformer as shown in

Subsection 4.3 are introduced to improve the accuracy in

these initial clusters Ci by detecting hard and noisy sam-

ples thanks to the self-attention mechanism. In addition, the

deep model M can be replaced by any recent deep CNNs

that allows high-performance. It is the same for the initial

clustering method. These two models are considerable and

well selected but not the main focus in this work.

4.2. Visual Cluster Initialization

Given a visual classifier M, an input image xi ∈
Xh×w×3 is fed to the model M to extract visual features

fi = M(xi), where h,w denote the height and width of

the input image. From now on, for further convenience,

the term of features is used to represent the visual images

and vice versa. For each sample in the dataset, the cosine

similarity based k-nearest neighbors K is used to cluster in-

put samples based on their similarity scores. They will be

formed as a cluster Ci that has fi as the center.

Ci = K(fi,F, k) (2)

where F =M(X) is a set of features extracted from X. k
denotes the number of nearest neighbors. Alternatively, we

construct a cluster dataset denoted as C = {Ci}
N
i=1

. This

dataset will be mainly used in the next sections.
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Algorithm 1 Visual Grammar: Constructing a visual se-

quence

1: Input: Input image xi, Visual classifierM, data set X,

length of visual sequence k, and step size ∆r

2: Output: Visual Sequence Si

3: Si = ∅; fi =M(xi)
4: radius = 0
5: while |Si| ≤ k do

6: S = {xj ∈ X|radius ≤ sij ≤ radius+∆r} where

si,j = dist(fi,M(xj))
7: if S = ∅ then

8: break

9: end if

10: ind ← (argsort(S))v := |{u ∈ {1, ..., |S|}|xu ∈ S,
si,u ≤ si,v}|

11: for all u in ind do

12: Si = Si + [M(xu)], xu ∈ S
13: end for

14: radius = radius+∆r

15: end while

16: return Si

4.3. Self­Attention Clustering Approach

4.3.1 Visual Grammars - From Clusters to Sequences

In GCNs [40, 39], the cluster dataset C is used to build the

affinity graphs. Each cluster Ci is represented represents as

a graph where each image is a vertex and the edge between

vertexes is expressed by their similarity scores. However,

these data structures are unable to be fed into the Trans-

former directly because the input has to be represented as

a sequence. Intuitively, in NLP, the order of words is ar-

ranged by a pre-defined rule called grammars. Each word

in different positions might have a different meaning. Thus,

it raises a question: How to define a function that constructs

a visual sequence from a given cluster? What is the appro-

priate order of visual samples?.

We present a simple but effective visual grammar G to

formulate a visual sequence Si from an unordered cluster.

Si = G(Ci) (3)

The cluster Ci has a center fi, where fj is denoted as the jth

neighbor of fi in this cluster 1 ≤ j ≤ k. si,j is the cosine

similarity score between fi and fj . The similarity scores of

all the neighbors are measured to the center forming a vec-

tor, i.e. {si,j}
k
j=1

. Next, the order of element in this vector

is sorted in descending order and re-arranges visual samples

in Ci following this form. The visual initialization and con-

struction of visual grammar G are detailed in Algorithm 1

and illustrated in Figure 3.

Figure 3. The visual grammar is designed to convert un-ordered

cluster to ordered sequence. The element which has higher cosine

similarity score will be more close to the center while the element

with lower score will be far from the center in the sequence.

4.3.2 Visual Cluster Encoder

Self-attention. In section 4.3.1, a visual sequence Si is ob-

tained from a cluster Ci. Each visual sample fi ∈ Si has

a feature of 1 × d, Si ∈ R
k×d. Si will be projected into

three super spaces called: key, query and value. We define

three learnable matrixes: WQ ∈ R
d×d′

,WK ∈ R
d×d′

and

WV ∈ R
d×d′

. The query, key and value features will be

computed as follows,

Q = SiW
Q,Q ∈ R

k×d′

K = SiW
K ,K ∈ R

k×d′

V = SiW
V ,V ∈ R

k×d′

(4)

In order to compute the relevancy between the ith visual

sample and the jth visual sample in this sequence, the at-

tention score is computed as in Eqn. (5).

ri,j =
e

1√
d′

QiK
T
j

∑k
j=1

e
1√
d′

QiK
T
j

(5)

Q and K are used to construct the relationships between

one visual sample to others in the sequence. The value V

will be used to summarize all of them. The final output Z is

the aggregation of V by the weighted attention score.

Z = Att(Q,K,V) = {Zi}
k
i=1

(6)

where Zi =
∑k

j=1
ri,j · Vj .

Multi-head attention. In the self-attention algorithm, each

feature is projected into a different space by the learnable

matrix weights. In multi-head attention, it is projected into

several sub-spaces. It leads to the model capable of pay-

ing attention to different positions in the sequence. Let m
be the number of sub-spaces. Each sub-space, the feature

dimension of each space is d′ = d
m . The output is linear

transformation of concatenation of all attention outputs.

ZM = concat(Zs,1, . . . ,Zs,m) ·WM (7)

where: Zs,i = Att(Qs,i,Ks,i,Vs,i), 1 ≤ i ≤ m and WM

is an additional weight matrix. This output is passed to the
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Point-wise Feed Forward Network (FFN ) to formulate an

encoder block.

4.3.3 Clusformer Decoder

Similar to the encoder block, the decoder block consists of

self-attention modules and decoder-encoder attention mod-

ules in addition. Apart from the original decoder, it pro-

duces an output as a sequence in parallel while [35] gen-

erates output prediction one element at a time. Indeed, we

define a learnable visual query matrix with a shape of k×d.

It is fed into the input of each attention layer directly.

4.3.4 Cosine Distance Encoding

The Clusformer encoder expects an input in the form of a

sequence. Thus, visual sequence Si from a cluster in section

4.3.2 will be constructed. This sequence has the dimension

of k × d, where k is the length of the sequence and d is the

visual feature dimension. To compare against GCNs based

methods, a cluster is represented as a graph with two parts,

i.e. vertices and edges. A vertex is a single image with the

1× d feature in a disordered manner. An edge is the cosine

similarity of one vertex to the rest of vertexes inside this

sub-cluster. Both these components are showed as a matrix

and fed into the GCN. Thus, both visual features and the

cosine similarity distance are helpful for visual clustering.

Our visual sequence only carries the visual informa-

tion while missing the pair-wise cosine similarity informa-

tion. To address this problem, we propose a new encoding

method named Cosine Distance Encoding (CDE). Our CDE

has the following differences in comparing with the Posi-

tional Encoding (PE), widely used in NLP [35] or Computer

vision [3]. Firstly, the order and position of words are es-

sential parts of any language. They are considered as the

sentence grammar. The same word in different positions

will lead to different meanings. Previously, Recurrent Neu-

ral Networks or Long-Short Term Memory feed the word

into the network in sequence. However, thanks to Trans-

former, all the words are passed through in parallel. Thus, it

raises a problem that Transformer does not have any sense

of each word and its position. The words in a sentence thus

needs to be cooperated. For this reason, the encoding, i.e

Positional Encoding, is presented.

However, in visual clustering, the visual sequence al-

ready follows a grammar: the element that is closer to the

center will be put ahead in the sequence. Thus, our encod-

ing does not mean to describe grammar in our sequence.

In addition, in NLP, encoding information will be added

into the word features by addition-wise operation. In our

problem, the visual feature is normalized by L2 normaliza-

tion. Hence, adding some values to the vector would lead

to shifting or expanding the cluster. Thus, we do not per-

form additional-wise. Instead, we use concatenation func-

Figure 4. Illustration of MS-Celeb-1M dataset. Each row repre-

sents as an identity. The images with the green border belong to

same identity while images with the red border are the hard sam-

ples. The first image of each row is the center image of a cluster.

tion. Let t is the position of an element in the sequence.

et ∈ R
1×k is the corresponding CDE.

et = {st,i}
k
i=1

(8)

The feature of tth element the sequence turns to:

ft = concat(ft, et) (9)

Finally, the input sequence fed into the Clusformer has

shape of k × (d+ k).

4.3.5 Objective and Loss Function

Objective. In Subsection 4.3.4, we discuss how to construct

a visual sequence to feed to the Clusformer. In this section,

we present its objective and the output sequence. The visual

sequence Si is constructed from the sub-cluster Ci formu-

lated via a clustering algorithm. The neighbors of fi are

expected to have the same label as the center. However,

in the wild conditions, it exists hard samples from various

clusters or identities. Thus, Ci does not contain visual sam-

ples from one identity totally. The Clusformer is presented

to detect these hard samples. The output sequence is a bi-

nary sequence yi having the same length as Si. Let yti be the

value of tth element of yi. When yti = 1, the tth element in

the sequence has same label as the center fi and vice versa.

Loss function. Let ŷi be the predicted output. Binary Cross

Entropy loss is used to train the Clusformer.

Li(ŷi, yi) = −
k

∑

t=1

[ yti×log(σ(ŷ
t
i))+(1−yti)×log(1−σ(ŷ

t
i)) ]

(10)

where σ is the sigmoid function.

5. Experiments

5.1. Face Clustering and Recognition

Dataset and Protocol. MS-Celeb-1M [11] is a large-

scale face recognition dataset crawling from the internet.

The cleaned version consists of 5.8M images from 85K

identities. All the images are pre-processed by aligning and
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cropping to the size of 112 × 112. We randomly split the

MS-Celeb-1M into the 10 parts. Each part contains 584K

images of 8,500 identities approximately. There is no iden-

tity overlapped among them. We randomly select one part

denoted DL = (XL, yL) for fully supervised training. The

rest are used as unlabelled set, i.e. DU = (XU ,∅).
In the first step, a deep visual modelM is trained with

XU . Then, a visual sequence dataset is created for the both

datasets using Eqn. (2) followed by the visual grammar of

Eqn. (3).

SL = {Si}
NL

i=1
= {G(K(fi,FL, k))}

NL

i=1

SU = {Sj}
NU

j=0
= {G(K(fj ,FU , k))}

NU

j=1

(11)

We train Clusformer with SL and employ SU as the test set.

Let yp be the pseudo label of DU obtained by Clusformer.

We combine both DL and DU into one dataset DP = DL∩
DU and conduct a new deep model for retraining.

Metrics. For the face clustering, to measure the sim-

ilarity between two clusters with a set of points, we use

Fowlkes Mallows Score (FMS). This score is computed by

taking geometry mean of precision and recall. Thus, FMS

FB is also called Pairwise-Fscore as follows,

FB =
TP

√

(TP + FP )× (TP + FN)
(12)

where TP is number of point pairs in the same cluster in

both ground truth and prediction. FP is number of point

pairs in the same cluster in ground truth but not in predic-

tion. FN is number of point pairs in the same cluster in pre-

diction but not in ground truth. Besides Pairwise F-score,

BCubed-Fscore denoted as FB is also used for evaluation.

For face recognition, we follow MegaFace [17] protocol,

one of the largest benchmark for face recognition. It con-

tains a set of probe from FaceScrub with 3,530 images and

1M gallery images. We select top-1 identification hit rate as

the evaluation metric.

5.2. Visual Landmark Recognition

Dataset and Protocol. Google Landmarks Dataset Ver-

sion 2 (GLDv2) [38] is a largest dataset about visual land-

mark recognition and identification. The cleaned version

includes 1.4M images of 85K landmarks and 800 hours of

human annotation. The landmarks are collected from all the

corners in the world with diversity categories. The dataset

is extremely long-tail distribution, the number of image per

class varies from 0 to 10,000. In comparison with face

recognition, the GLDv2 is similar but much more challeng-

ing. We randomly split the dataset into 3 parts. Each part

contains 28K landmarks. There is no overlap between them.

We pick one part for training the deep visual model and

Clusformer. The rest are used for the testing. The training

and inference produces are as in Section 5.1.

Figure 5. Different kinds of landmark on the visual landmark

dataset. The images in each row with green border belong to same

landmark while images with red border are the noisy/hard sam-

ples. The first image of each row is the center image of a cluster.

5.3. Implementation Details

Our framework is implemented in Pytorch and running

on the desktop equipped with AMD EPYC 7742 64-Core

Processor chipset. To speed up the training step, we uti-

lize distributed training where each GPU is considered as

a single process. We employ Resnet50 [12] as the visual

model. We drop the last pooling and fully connected layers.

Instead, a linear layer is adopted following the last convolu-

tion layers of model to form an embedding size of 256. To

train large-scale and long-tailed datasets, [8] is employed

for the loss function. The image size is set to 112 × 112
pixels for face dataset and 224 × 224 pixels for landmark

dataset. We train the model with 24 epochs from scratch.

The loss is optimized with the SGD optimizer. The weight

decay and the momentum are 0.001 and 0.9, respectively.

The batch size is 512. The initialized learning is set to 0.1

and reduced 10 times at epoch 12, 16 and 18.

Clusformer Training. We select the number of the clos-

est neighbors k = 64 to build cluster datasets for both face

and visual landmark datasets. Thus, the visual sequence is

the length of 64. Dealing with a large-scale dataset, we use

KNN based GPU algorithm [16] to speed up. The time con-

sumption to find all the neighbors of 4.8M images is about 2

minutes approximately. Our Clusformer is designed to have

6 encoder and decoder blocks. The number of multi-head

attention is 8. The model is trained in 50 epochs. AdamW

optimizer [22] is used to optimize the loss. The learning

rate is set to 0.0001 at the beginning and reduced linearly

during the training.

5.4. Experiment Results

Face Clustering. Table 1 shows the clustering perfor-

mance on MS-Celeb-1M dataset. We aim to evaluate the al-

gorithm in different number of unlabelled data. Thus, there

are 5 scenarios with different numbers of samples of the test

set: 584K, 1.7M, 2.89M, 4.05M and 5.21M respectively.

We compare with several methods including deep learn-

ing based [40, 39, 42], and typical [21, 31, 33, 10, 27] ap-

proaches. The running time in Table 1 is reported by doing

inference on the first part 584K images. It is not surprised

that the deep learning based methods outperform the typical
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Figure 6. Identification Performance in Megaface Protocol

one. It seems that KNN gives the best performance among

typical methods. However, during testing, we assume that

we already know exactly number of cluster in the test set.

Thus, the performance of KNN is considered as the best

performance that this algorithm is able to reach to. In prac-

tice, we do not know exactly number of clusters. Therefore,

the performance would be a lower number. In comparison

with deep learning approaches, we compare to the GCN

based methods: CDP [42], L-GCN [37], LTC [40], GCN-

V [39] and GCN-V + GCN-E [39]. Among these methods,

CDP is the fastest method with 2.3 minutes running time.

However the performance is not significant better than K-

means. Even with a small amount of unlabelled data, CDP

is lower than K-means by 3%-4% on both FP and FB met-

rics. When the test set increases, the performance margin

is much more smaller. These results show that CDP is not

stable. There is a remarkable jump of performance from

GCN-V method compared to CDP. Both FP and FB scores

are improved impressively. However, there is still a disad-

vantage remaining. The inference time is increased twice to

4.5 minutes for yeiling results of 584K samples. Besides,

they also proposed a second network named GCN-E that

takes output of GCN-V as the input and being trained to re-

fine the final results. The final results increase a little bit,

however the inference time is about 2.5 times longer.

In Table 1, it is clear to see that, Clusformer is better than

the best of GCN based methods in term of accuracy and

running time. Overall, our method performs better in all the

scenarios. When there are more unlabeled samples, it still

perform the best. It proves the stability of Clusformer. In

addition, Clusformer is also faster than CDP in the inference

step. In conclusion, Clusformer is fast and accurate.

Face Recognition. The performance of model retrained

with combination of DP = DL ∩DU is reported in Figure

6. The ratio of unlabeled and labeled dataset is denoted as:

rU/L = NU

NL
We experiment different values of rU/L to see

how good deep visual model can be improved when NU

increases. In Figure 6, the upper bound is the curve that

the model can reach to. It means that, in the assumption of

Clusformer returns the perfect results, all the samples are

assigned a pseudo-label correctly. The upper bound is the

Figure 7. Self-attention visualization

highest threshold the models are able to achieve. General

speaking, Clusformer outperforms GCN based methods.

Visual Landmark Clustering This section analyzes and

compares performance of Clusformer on visual landmark

clustering. We experiment the GCN based methods: GCN-

V, GCN-VE and L-GCN for comparisons. To be fair, we do

hyper parameters tuning for these methods so that they get

the best results on this dataset. It is interesting that GCN-

VE is lower than GCN-V and L-GCN that is completely

contrary to the face recognition dataset. In contrast, Clus-

former still shows its robustness by achieving 19.32% and

40.63% of FP and FB correspondingly. Compared to L-

GCN (14.08% FP and 36.35% FB), Clusformer achieves

the best performance in this problem as shown in Table 2.

5.5. Ablation Study

5.5.1 Self-Attention is All You Need

In this section, we analyze how self-attention helps the clus-

tering. As showed in the section 4.3.2, self-attention is de-

signed to construct relevant between two elements in the

sequence itself. Eqn. (5) shows the way to compute atten-

tion scores between query Qi and key Kj . We export the

attention map from Clusformer as shown in Figure 7. Over-

all, the self-attention helps to reduce correlation between

hard and positive samples while strengthening the connec-

tion within the positive samples.

In Figure 7, the horizontal axis is the query while the

vertical axis is the key sequence. Brighter colors will re-

sult high attention scores. Firstly, we analyze the attention

scores of visual center placed at the first of sequence Q0 to

the rest of others. It is clear that, the attention scores are all

lower values. It is noticed that the visual center is always

at the fist place and the outputs of Clusformer are ones for

all samples as in Section 4.3.1. Therefore, the model does

not need to pay attention to this visual element. For others

positive samples (orange dot boxes), obviously, the atten-

tion scores are high and build up brightness columns at the

attention. Even though there are positive samples far away

from center (i is high value), the self-attention is able to

highlight them clearly. For the hard or noisy samples close

to the center (i is the low value), the attention columns (red
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Table 1. Performance on face clustering with different number of unlabeled images.

#unlabeled 584K 1.74M 2.89M 4.05M 5.21M Time

Method / Metrics FP FB FP FB FP FB FP FB FP FB

K-means [21, 31] 79.21 81.23 73.04 75.2 69.83 72.34 67.9 70.57 66.47 69.42 11.5h

HAC [33] 70.63 70.46 54.4 69.53 11.08 68.62 1.4 67.69 0.37 66.96 12.7h

DBSCAN [10] 67.93 67.17 63.41 66.53 52.5 66.26 45.24 44.87 44.94 44.74 1.9m

ARO [27] 13.6 17 8.78 12.42 7.3 10.96 6.86 10.5 6.35 10.01 27.5m

CDP [42] 75.02 78.7 70.75 75.82 69.51 74.58 68.62 73.62 68.06 72.92 2.3m

L-GCN [37] 78.68 84.37 75.83 81.61 74.29 80.11 73.7 79.33 72.99 78.6 86.8m

LTC [40] 85.66 85.52 82.41 83.01 80.32 81.1 78.98 79.84 77.87 78.86 62.2m

GCN-V [39] 87.14 85.82 83.49 82.63 81.51 81.05 79.97 79.92 78.77 79.09 4.5m

GCN-VE [39] 87.93 86.09 84.04 82.84 82.1 81.24 80.45 80.09 79.3 79.25 11.5m

Clusformer - Ours 88.20 87.17 84.60 84.05 82.79 82.30 81.03 80.51 79.91 79.95 2.2m

Table 2. Performance on Landmark Clustering

Methods FP FB

K-means [21] 8.52 14.02

HAC [33] 0.2 20.88

DBSCAN [10] 0.97 17.38

Spectral [14] 6.93 18.28

ARO [27] 0.32 10.54

L-GCN [37] 14.08 36.35

GCN - V [39] 16.10 34.86

GCN - VE [39] 10.20 30.23

Clusformer (Ours) 19.32 40.63

dot boxes) contain low attention score. Thus, the samples

in these positions are likely eliminated from the clusters.

5.5.2 Does Cosine Distance Encoding Really Help?

Our method is experimented with several encoding meth-

ods. We select one part, i.e. 584K samples, of MS-Celeb-

1M for comparison. The results are reported in the Table 3.

There are three scenarios, i.e. without encoding, Learnable

Encoding (LE), Positional Encoding (PE) and our Cosine

Distance Encoding. For the Learnable Encoding, a learn-

able k × d matrix is created during training the model.

It is important to notice that, when we apply LE and PE

that are widely used in NLP to this visual problem, they do

not work properly. Not using encoding achieves 84.89%

of FP and 83.87% of FB while LE achieves 83.00% and

82.08%, PE gets 84.17% and 82.71% for FP and FB , re-

spectively. The reason is that the input sequence has been

well defined with a visual grammar, so it is not neces-

sary to use NLP encoding methods. Instead, the proposed

CDE is more appropriate for visual clustering problem.

It significantly boost the performance improvement com-

pared against the other NLP encoding methods by achiev-

ing 88.20% of FP and 87.17% of FB . It strongly shows that

our CDE is reasonable and effective.

Table 3. Clusformer with Different Encoding Methods

Encoding methods FP FB

Without Encoding 84.89 83.87

Learnable Encoding 83.00 82.08

Positional Encoding 84.17 82.71

CDE - Ours 88.20 87.17

Table 4. Average noise ratio remaining in the clusters

Methods 584K 1.75M 2.89M 4.05M 5.21M

GCN-V [39] 0.166 0.199 0.213 0.240 0.269

GCNV-E [39] 0.164 0.193 0.210 0.239 0.267

Clusformer 0.115 0.129 0.166 0.212 0.196

5.5.3 Robustness of Clusformer to Noise.

To further illustrate the noise robustness of the method,

we split MS1M into multiple parts ranging from 584K to

5.21M samples and measure the ratio of hard/noise sample

remaining inside the cluster extracted by Clusformer (Table

4). These results re-emphasize the advantage of Clusformer

in removing more noisy/hard samples than both GCNV and

GCNVE with margins of 4%-7%.

6. Conclusions

We have presented a novel method, namely Clusformer,

for visual clustering problems, i.e. large-scale face and

landmark clustering, thanks to its self-attention mecha-

nisms. Besides, a new visual grammar has presented to con-

struct visual sequence from a given cluster. An innovative

encoding method called Cosine Distance Encoding is also

introduced to improve the performance of Clusformer. Our

framework achieves the state-of-the-art results in both face

and visual landmark clustering and recognition problems.
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