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Abstract

This paper is about few-shot instance segmentation,

where training and test image sets do not share the same

object classes. We specify and evaluate a new few-shot

anchor-free part-based instance segmenter (FAPIS). Our

key novelty is in explicit modeling of latent object parts

shared across training object classes, which is expected to

facilitate our few-shot learning on new classes in testing.

We specify a new anchor-free object detector aimed at scor-

ing and regressing locations of foreground bounding boxes,

as well as estimating relative importance of latent parts

within each box. Also, we specify a new network for delin-

eating and weighting latent parts for the final instance seg-

mentation within every detected bounding box. Our eval-

uation on the benchmark COCO-20i dataset demonstrates

that we significantly outperform the state of the art.

1. Introduction

This paper addresses the problem of few-shot instance

segmentation. In training, we are given many pairs of sup-

port and query images showing instances of a target object

class, and the goal is to produce a correct instance segmen-

tation of the query given access to the ground-truth instance

segmentation masks of the supports. In testing, we are given

only one or a very few support images with their ground-

truth instance segmentation masks, and a query image in

which we are supposed to segment all instances of the tar-

get class. Importantly, the training and test image sets do

not share the same object classes. Few-shot instance seg-

mentation is a basic vision problem. It appears in many

applications where providing manual segmentations of all

object instances is prohibitively expensive. The key chal-

lenge is how to conduct a reliable training on small data.

Fig. 1 illustrates a common framework for few-shot in-

stance segmentation that typically leverages Mask-RCNN

[12, 43, 29]. First, the support and query images are in-

put to a backbone CNN and feature pyramid network (FPN)

[23] for computing the support’s and query’s feature maps.
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Figure 1. A common framework of prior work. The query and

support image(s) are input to a backbone CNN with feature pyra-

mid network (FPN) to extract the feature maps. The support’s

features modulate the query’s features by channel-wise multipli-

cation, resulting in the conditional query features, which are then

input to Mask-RCNN for instance segmentation of the query. Our

approach replaces Mask-RCNN with two new modules for anchor-

free object detection, and part-based instance segmentation.

Second, for every feature map and every support’s seg-

mentation mask, the masked average pooling computes the

support’s feature vector. Third, the support’s feature vec-

tor is used to modulate the query’s feature maps through

a channel-wise multiplication, resulting in the conditional

query feature maps. Finally, the conditional query features

are forwarded to the remaining modules of Mask-RCNN to

produce instance segmentation of the query.

This framework has limitations. First, Mask-RCNN is

anchor-based, and hence might overfit to particular sizes

and aspect ratios of training objects, which do not character-

ize new classes in testing. Second, the Mask-RCNN learns

feature prototypes [12] which are correlated with the fea-

ture map from the backbone in order to produce object seg-

mentation. However, the prototypes typically capture global

outlines of objects seen in training [12], and hence may not

be suitable for segmenting new object classes with entirely
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Figure 2. Our FAPIS uses the same feature maps as in Fig. 1, and extends prior work with two new modules: anchor-free object detector

(AFD) and part-based instance segmentor (PIS). The AFD produces three types of dense predictions for every location (x, y) in the feature

map: (a) Figure-ground (FG) classification score; (b) Location of the closest bounding box to (x, y); (c) Relative importance of the latent

parts for segmentation of the bounding box closest to (x, y). The PIS consists of the PartNet and Part Assembling Module (PAM). The

PartNet predicts activation maps of the latent parts. After NMS selects the top scoring bounding boxes, for every box n, the PAM fuses the

part-activation maps according to the predicted part importance for the box n, resulting in the instance segmentation mn.

different shapes in testing.

To address these limitations, we propose FAPIS – a new

few-shot anchor-free part-based instance segmenter, illus-

trated in Fig. 2. In a given query, FAPIS first detects bound-

ing boxes of the target object class defined by the support

image and its segmentation mask, and then segments each

bounding box by localizing a universal set of latent object

parts shared across all object classes seen in training.

Our key novelty is in explicit modeling of latent ob-

ject parts, which are smaller object components but may

not be meaningful (as there is no ground truth for parts).

Unlike the prototypes of [12], our latent parts capture cer-

tain smaller components of objects estimated as important

for segmentation. As parts may be shared by distinct ob-

jects, including new object classes of testing, we expect that

accounting for parts will lead to a more reliable few-shot

learning than the aforementioned common framework. We

are not aware of prior work that learns latent parts for few-

shot instance segmentation.

We make two contributions. First, we specify a new

anchor-free object detector (AFD) that does not use a set

of candidate bounding boxes with pre-defined sizes and as-

pect ratios, called anchors, and, as shown in [39], in this

way mitigates over-fitting to a particular choice of anchors.

The AFD (the orange box in Fig. 2) is aimed at three tasks

at every location of the query’s feature map: dense scoring

and regressing locations of foreground bounding boxes, as

well as dense estimation of a relative importance of the la-

tent parts for segmentation. While all of the latent parts are

learned to be relevant for object segmentation, differences

in sizes and shapes across instances will render some latent

parts more important than some others for segmentation of

each instance. Thus, the third head in the AFD estimates the

part importance which varies across the predicted bounding

boxes in the image, as desired. The AFD’s output is passed

to the standard non-maximum suppression (NMS) for se-

lecting top scoring bounding boxes.

Second, we specify a new Part-based instance segmenter

(PIS). The PIS (the yellow box in Fig. 2) is aimed at local-

izing and integrating latent object parts to produce the final

instance segmentation within every NMS-selected bound-

ing box. The PIS consists of the PartNet and part assem-

bling module (PAM). The PartNet predicts activation maps

of the latent parts, called part maps, where large activations
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strongly indicate the presence of the corresponding part in

the image. Importantly, high activations of a certain latent

part at image location (x, y) may not be important for seg-

mentation of the object instance at (x, y) (e.g., when several

latent parts overlap but do not “cover” the full spatial extent

of the instance). Therefore, for every NMS-selected bound-

ing box, these part maps are then integrated by the PAM

so as to account for the predicted relative importance of the

parts for that box. Finally, all instance segmentations form

the output query segmentation mask.

Our evaluation on the COCO-20i dataset [29] demon-

strates that we significantly outperform the state of the art.

In the following, Sec. 2 reviews prior work; Sec. 3 spec-

ifies our deep architecture; Sec. 4 presents our implementa-

tion details and experimental results; and Sec. 5 describes

our concluding remarks.

2. Related Work

Few-shot semantic segmentation labels pixels in the

query with target classes, each defined by K support ex-

amples [36, 32, 33, 6, 47, 38, 28, 14, 37, 46, 45, 44, 31, 41].

Our problem is arguably more challenging than few-shot

semantic segmentation, since we need to additionally dis-

tinguish object instances of the same class.

Instance segmentation localizes instances of object

classes seen in training, whereas we are supposed to seg-

ment instances of new classes. There are proposal-based

and proposal-free approaches. The former [12, 22, 4, 27, 1]

first detects object bounding boxes, and then segments fore-

ground within every box. The latter [16, 17, 2, 8] typically

starts from a semantic segmentation, and then leverages cer-

tain visual cues (e.g., object center, or Watershed energy) to

cluster pixels of the same semantic class into instances.

Our FAPIS and YOLACT [1] are similar in that they

both predict activation maps of certain object features, and

at each location in the image they fuse these activation maps

by weighting their relative importance for segmentation.

However, since YOLACT is not aimed at the few-shot set-

ting, there are a number of significant differences. First, our

FAPIS models latent object parts, whereas YOLACT mod-

els object prototypes representing global outlines of groups

of similar object shapes. While the latter has been ar-

gued as suitable for instance segmentation, our experiments

demonstrate that the prototypes learned on training exam-

ples poorly represent new, differently shaped object classes

in testing for few-shot instance segmentation. As our latent

parts may be components of the new object classes, they are

likely to better represent new objects than the global shapes

of prototypes. Second, YOLACT is standard anchor-based

detector, whereas our AFD object detector is anchor-free

producing dense predictions of bounding boxes. Our ap-

proach is more suitable for few-shot instance segmentation,

as pre-defined anchors in training may not represent well

the sizes and aspect ratios of new objects in testing.

Few-shot instance segmentation approaches usually

adapt methods for instance segmentation (e.g., Mask-

RCNN [12]) to the few-shot setting [29, 43, 7] (see Fig. 1).

Our main differences are in replacing the Mask-RCNN with

our AFD and PID for modeling latent object parts and seg-

menting every detected instance by localizing and assem-

bling latent parts relevant for that instance.

Anchor-free Object Detection [39, 48, 19] predicts

bounding boxes for all pixels in the feature map. This is

opposite to anchor-based approaches [34, 24] where a set

of bounding boxes with pre-defined sizes and aspect ra-

tios are classified as presence or absence. Our AFD fol-

lows the FCOS approach [39], where at each location (x, y)
distances to the top, bottom, left, right sides of the clos-

est bounding box are predicted by regression. We extend

FCOS with SimNet to more reliably score bounding boxes,

and thus reduce the number of false positives.

Part-based segmentation. While the literature abounds

with approaches that use parts for image classification and

object detection, there is relatively scant work on part-based

segmentation. In [40, 10] the deformable part model [9] is

used for semantic segmentation, and in [26] reasoning about

“left”, “right”, “bottom” and “top” parts of the foreground

object is shown to help instance segmentation. Recent work

[21, 11] addresses the problem of human (one class) seg-

mentation, not our multi-class segmentation problem. We

are not aware of prior work that learns latent parts for few-

shot instance segmentation.

3. Our Approach

3.1. Problem Statement

In training, we are given many pairs of support and query

images showing the same target class from the class set C1,

along with their pixel-wise annotations of every instance of

the target class. In testing, we are given K support images,

{xs}, and their K instance segmentation masks {ms} that

define a target class sampled from the class set C2, where

C1 ∩ C2 = ∅. Given a test query, xq , showing the same tar-

get class as the test supports, our goal is to segment all fore-

ground instances in xq , i.e., estimate the query instance seg-

mentation mask mq . This problem is called 1-way K-shot

instance segmentation. In this paper, we consider K = 1
and K = 5, i.e., test settings with a very few supports. It

is worth noting that we can easily extend the 1-way K-

shot to N -way K-shot by running N support classes on

the same query, since every class can be independently de-

tected. However, the N -way K-shot problem is beyond the

scope of this paper.

11101



3.2. Multi­level Feature Extraction

As shown in Fig. 1, FAPIS first extracts multi-level fea-

ture maps at different resolutions from xs and xq using a

backbone CNN with feature pyramid network (FPN), as in

[23]. For each level i = 3, 4, ..., 7, the support feature map

Fs,i is masked-average pooled within a down-sampled ver-

sion of the support mask ms to obtain the support feature

vector fs,i. Then, for each level i, fs,i is used to modu-

late the corresponding query feature map Fq,i. Specifically,

fs,i and Fq,i are multiplied channel-wise. This gives the

conditional query feature map F ′

q,i. The channel-wise mul-

tiplication increases (or decreases) activations in the query’s

F ′

q,i when the corresponding support’s activations are high

(or low). In this way, the channel features that are relevant

for the target class are augmented, and irrelevant features

are suppressed to facilitate instance segmentation.

3.3. The Anchor­free Object Detector

For each conditional query feature map F ′

q,i, i =
3, 4, ..., 7, the AFD scores and regresses locations of fore-

ground bounding boxes. Below, for simplicity, we drop the

notation i for the feature level, noting that the same pro-

cessing is done for each level i. The workflow of the AFD

is illustrated in the orange box in Fig. 2.

For every location (x, y) in F ′

q with height and width

H ×W , the AFD predicts:

1. Figure-ground (FG) classification scores C =
{cx,y} ∈ [0, 1]H×W using the SimNet and Classifi-

cation Head;

2. Regressions T = {tx,y} ∈ ❘
H×W×4
+ of top, bottom,

left, right distances from (x, y) to the closest box.

3. Relative importance of the J latent parts for instance

segmentation of the bounding box predicted at (x, y),
Π = {πx,y} ∈ ❘H×W×J .

SimNet and Classification Head. Prior work [43, 29],

uses the support feature vector to modulate the query feature

map by channel-wise multiplication, and thus detect target

objects. However, in our experiments, we have observed

that this method results in a high false-positive rate. To ad-

dress this issue, we specify the SimNet which consists of a

block of fully connected layers followed by a single convo-

lutional layer. The first block takes as input fs and predicts

weights of the top convolutional layer. This is suitable for

addressing new classes in testing. Then, the top convolu-

tional layer takes as input F ′

q and the resulting feature maps

are passed to the FG head for predicting the FG classifica-

tion scores C at every location (x, y). In this way, the Sim-

Net learns how to more effectively modulate F ′

q , extending

the channel-wise multiplication in [43, 29].

For training the FG head, we use the focal loss [24]:

Lc =
−1

H ×W

∑

x,y

α′

x,y(1− c′x,y)
γ log(c′x,y), (1)

where c′x,y = c∗x,ycx,y +(1− c∗x,y)(1− cx,y), c
∗

x,y ∈ {0, 1}
is the ground-truth classification score at (x, y); α′

x,y =
c∗x,yα+ (1− c∗x,y)(1− α), α ∈ [0, 1] is a balance factor of

classes, and γ ∈ [0, 5] is a focusing parameter to smoothly

adjust the rate at which easy examples are down-weighted.

Bounding Box Regression. For training the box re-

gression head, we use the general intersection-over-union

(GIoU) loss [35]:

Lb =
1

Npos

∑

x,y

✶(c∗x,y = 1) · GIoU(tx,y, t
∗

x,y), (2)

where t∗x,y ∈ ❘
4
+ is a vector of the ground-truth top, bot-

tom, left, right box distances from (x, y); ✶(·) is the indica-

tor function having value 1 if (x, y) belongs to the ground-

truth box and 0 otherwise; and Npos =
∑

x,y ✶(c
∗

x,y = 1)
is the number of locations in the feature map that belong to

the foreground.

Part-Importance Prediction Head. For every location

(x, y) in F ′

q , this head predicts the relative importance of the

latent parts Π = {πx,y} ∈ ❘H×W×J . This part-importance

prediction seeks to capture the varying dependencies among

the latent parts when jointly used to estimate a segmentation

mask of the bounding box predicted for every (x, y). Note

that we are not in a position to specify an explicit loss for

training this head, because the parts are latent, and not anno-

tated in our training set. Importantly, we do get to train this

head by backpropagating the instance segmentation loss, as

described in Sec. 3.4.

The AFD’s predictions are forwarded to the standard

NMS to select the top scoring n = 1, . . . , N bounding

boxes at all feature-pyramid levels.

3.4. The Part­based Instance Segmenter

The PIS is illustrated in the yellow box in Fig. 2. The

PIS consists of the PartNet and the PAM.

The PartNet takes as input the largest conditional query

feature map – specifically, F ′

q,3 – and predicts activation

maps of the J latent parts, or part maps for short, P ∈
❘

H×W×J . J is a hyper-parameter that we experimentally

set to an optimal value. High activations in P for a particu-

lar latent part at location (x, y) strongly indicate that part’s

presence at (x, y). For every bounding box n = 1, . . . , N
selected by the NMS, we conduct region-of-interest (ROI)

aligned pooling of P to derive the J ROI-aligned pooled

part maps Pn ∈ ❘Hr×Wr×J , where Hr and Wr are the ref-

erence height and width ensuring that the pooled features of

the N bounding boxes have the same reference dimension.

The PartNet is learned by backpropagation of the instance

segmentation loss through the PAM module, since the latent

parts are not annotated and we cannot define an explicit loss

for training the PartNet.

A strongly indicated presence of a certain latent part at

location (x, y) in Pn may not be important for segmentation
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of the object instance in the bounding box n (e.g., when this

information is redundant as many other latent parts may also

have a high activation at (x, y) in Pn). For each location, we

obtain a triplet of classification scores, bounding box and

part importance πn. Therefore, for every bounding box n =
1, . . . , N , the following PAM module takes as input both the

pooled part maps Pn ∈ ❘Hr×Wr×J and the estimated part

importance πn ∈ ❘J for segmentation of instance n.

The PAM computes the segmentation mask of every

bounding box n = 1, . . . , N , mn ∈ [0, 1]Hr×Wr , as

mn = P+
n ⊗σ(πn), P+

n = MaxNorm(ReLU(Pn)), (3)

where MaxNorm(A)= A
maxx,y Ax,y

for an activation map A,

⊗ denotes a inner product, and σ is the sigmoid function.

Note that ⊗ in (3) requires the tensor P+
n be rectified to a

matrix of size (HrWr) × J . Thus, the operator ⊗ serves

to fuse the part maps by their respective importance for in-

stance segmentation.

The MaxNorm-ReLU composite function and the sig-

moid in (3) make the part maps and their importance non-

negative with values in [0, 1]. This design choice is in-

spired by the well-known non-negative matrix factoriza-

tion (NMF) [20], so that if the instance segmentation ma-

trix mn were available, the expression in (3) would amount

to the NMF of mn into the non-negative P+
n and σ(πn).

This design choice is conveniently used to regularize learn-

ing of the PartNet and the AFD’s head for predicting the

part importance. Specifically, in learning, we maximize

similarity between the predicted P+
n and the NMF’s bases

computed for the ground-truth instance segmentation masks

{m∗

n : n = 1, . . . , D}, where D is the total number of in-

stances in the training set. This NMF-based regularization

in learning enforces that our P+
n is sparse, justifying our

interpretation that P+
n represents the smaller latent parts of

object instances.

Segmentation loss and NMF-based regularization.

The prediction mn, given by (3), incurs the following seg-

mentation loss Ls with respect to the ground-truth instance

segmentation mask m∗

n:

Ls =
1

N

N∑

n=1

ldice(mn,m
∗

n),

ldice(A,B) = 1−
2
∑

x,y
Ax,y·Bx,y

∑
x,y

A2
x,y

+
∑

x,y
B2

x,y

,

(4)

where ldice is the dice loss [30] between maps A and B.

Ls is backpropagated through the PAM to the PartNet

and AFD for improving the predictions P and Π such that

Ls is minimized. We regularize this learning by using

the NMF of the ground-truth instance segmentation masks

as follows. All ground-truth segmentations of all object

classes in the training dataset {m∗

n : n = 1, . . . , D} are first

re-sized and stacked into a large (HrWr) ×D matrix M∗.

Then, we apply the NMF as M∗ ≈ P ∗U , where P ∗ is the

non-negative basis matrix with size (HrWr) × J , and U is

the non-negative weight matrix with size J ×D. The prod-

uct P ∗U is a low-rank approximation of M∗. Due to the

non-negative constraint, P ∗ is forced to be sparse. Fig. 3

shows the NMF’s bases in P ∗ that we computed on the

ground-truth masks {m∗

n} of the COCO-20i dataset [29].

Hence, P ∗ is interpreted as storing parts of all training ob-

ject classes in M∗. Conveniently, the NMF, i.e., P ∗, can be

pre-computed before learning.

We use P ∗ to regularize our learning of the PartNet such

that it produces part maps P+
n that are similar to P ∗. Note

that the J latent parts in P+
n may be differently indexed

from the NMF’s J bases stored in P ∗. Therefore, we em-

ploy the Hungarian algorithm [18] to identify the one-to-

one correspondence between the latent parts P+

n,j and the

bases P ∗

j′ , j
′ = Hungarian(j), j = 1, . . . , J , based on their

intersection-over-union (IoU) score. With this correspon-

dence, we specify the NMF regularization loss as

LNMF =
1

N

N∑

n=1

J∑

j=1

ldice(P
+

n,j , P
∗

j′), j′ = Hungarian(j).

(5)

Figure 3. Visualization of 16 NMF parts estimated from the size-

normalized ground-truth instance masks in COCO-20i [29].

The total loss for training our FAPIS is specified as

L = λ1Lc + λ2Lb + λ3Ls + λ4LNMF (6)

where the λ’s are positive coefficients, specified in Sec. 4.1.

4. Experiments

Dataset & Metrics: For evaluation, we conduct the stan-

dard 4-fold cross-validation on the benchmark COCO-20i

dataset [29]. In each fold i = 0, ..., 3, we sample 20 test

classes from the 80 object classes in MSCOCO [25], and

use the remaining 60 classes for training. For each COCO-

20i, we randomly sample five separate test sets, and report

the average results as well as their standard deviations, as in

[29]. We follow the standard testing protocol for 1-way K-

shot instance segmentation [29]. Our training uses K = 1

11103



support image, while in testing we consider two settings

with K = 1 and K = 5 support images. For each test query,

K support images are randomly sampled from the remain-

ing test images showing the same test class as the query.

We use the evaluation tool provided by the COCO dataset to

compute the following metrics: mAP50 of both segmenta-

tion and detection is computed at a single intersection-over-

union (IoU) threshold of 50% between our prediction and

ground truth; mAR10 is average recall given 10 detections

per image. Our results of other metrics for each fold can be

found in the supplementary material.

4.1. Implementation Details

Our backbone CNN is ResNet-50 [13] and the FPN of

[23], as in prior work. FAPIS is implemented using the

mmdetection toolbox [3]. We empirically find that using

the P3 to P5 feature map levels gives the best results. The

FG scoring and part-importance prediction share the first

two convolutional layers with GroupNorm [42] and ReLU

activation in between, but use two separate heads for bi-

nary class and part-importance predictions. We strictly fol-

low the design of classification head and box regression

head of FCOS [39]. SimNet has a block of four fully con-

nected layers with BatchNorm [15] and ReLU in between

each layer, followed by a top convolutional layer, where

the block predicts the weights of the top layer. The Part-

Net consists of 5 convolutional layers with GroupNorm and

ReLU, and an Upsampling layer to upscale the resolution

by two in the middle of layer 3 and 4, following the design

of mask head of Mask-RCNN [12]. For learning, we use

SGD with momentum [5] with the learning rate of 1e−3.

The number of training epochs is 12, which is similar to

the setting of 1x in Mask-RCNN. The mini-batch size is

16. The query images are resized to 800×1333 pixels. The

support images and masks are cropped around the ground-

truth bounding boxes and re-sized to 128× 128 pixels. We

set Hr = Wr = 32, α = 0.25 and γ = 2 in (1), and

λ1 = λ2 = λ3 = 1, λ4 = 0.1 in (6).

4.2. Ablation Study

Ablations and sensitivity to input parameters are evalu-

ated for the setting K = 1.

Analysis of the number of parts. Tab. 1 reports how

the number of latent parts J affects our results. We vary

J while keeping other hyper-parameters unchanged. From

Tab. 1, J = 16 gives the best performance. When J is

small, FAPIS cannot reliably capture object variations, and

when J approaches the number of classes considered in

training, the PartNet tends to predict shape prototypes as in

YOLACT [1], instead of parts. Therefore, we use J = 16
for all other evaluations.

Analysis of the predicted part importance. Tab. 2

shows a percentage of the latent parts whose predicted im-

# parts 1 2 4 8 16 32 64

mAP50 16.3 17.2 17.9 18.4 18.8 18.5 18.0

Table 1. mAP50 for segmentation of FAPIS on COCO-200 for dif-

ferent numbers of the latent parts J used.

θ 0.1 0.3 0.5 0.7 0.9

% parts with σ(π)>θ 0.32 0.29 0.26 0.21 0.09

Table 2. The predicted importance of most latent parts is on aver-

age lower than a threshold θ ∈ (0, 1), so instance segmentation is

formed from only a few important parts.

Ablations
Object detection Instance segm

mAP50 mAR10 mAP50 mAR10

FIS 18.4 25.0 16.4 21.3

FAIS 20.9 28.1 18.0 22.5

FAIS-SimNet 20.2 26.9 17.4 22.0

FAIS-CWM 16.5 24.3 15.4 20.5

FPIS 18.4 25.0 17.4 22.4

FAPIS-LNMF 20.5 27.5 18.4 22.7

FAPIS 20.9 28.1 18.8 23.3

Table 3. mAP50 and mAR10 of one-shot object detection and

instance segmentation on COCO-200 for different variants of

FAPIS. The PIS is used only for instance segmentation, so the

variants FIS and FPIS have lower mAP50 for object detection.

The AFD is used for both instance detection and segmentation, and

thus FAIS and FAPIS have higher mAP50 for both object detection

and instance segmentation than FIS and FPIS. The AFD without

SimNet decreases its discriminative power so FAIS-SimNet has

lower mAP50 for object detection than FAIS. When the channel-

wise multiplication (CWM) is replaced with SimNet alone, perfor-

mance of FAIS significantly decreases, and becomes even lower

than that of FIS. This shows that SimNet does not replace but ex-

tends CWM. FAPIS-LNMF has lower mAP50 for instance segmen-

tation than FAPIS.

portance for segmentation is higher than a threshold θ ∈
(0, 1). As can be seen, for a given object instance, most

latent parts are usually estimated as irrelevant. That is, the

PAM essentially uses only a few most important latent parts

to form the instance segmentation mask.

Ablations of FAPIS. Tab. 3 demonstrates how the AFD

and PIS affect performance of the following six ablations:

• FIS: AFD is replaced with the region proposal network

(RPN) [34] for anchor-based detection; and PIS is re-

placed with the standard mask-head of Mask-RCNN.

• FAIS: PIS replaced with mask-head of Mask-RCNN.

• FAIS-SimNet: FAIS without SimNet, and FG scores

are predicted as in [39] (see Fig. 1).

• FAIS-CWM: FAIS without channel-wise multiplica-

tion (CWM).

• FPIS: AFD is replaced with RPN [34]
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• FAPIS-LNMF: FAPIS trained without the regulariza-

tion loss LNMF.

• FAPIS: our approach depicted in Fig. 2
The top three variants test our contributions related to

anchor-free detection, and the last three test our contribu-

tions related to modeling the latent parts.

From Tab. 3, our AFD in FAIS improves performance by

1.6% on mAP50 over FIS that uses the anchor-based detec-

tor. However, removing the SimNet from the AFD in FAIS-

SimNet decreases performance, justifying our SimNet as a

better way to predict FG scores than in [43, 29]. The PIS

in FPIS gives a performance gain of 1% on mAP50 in in-

stance segmentation over FIS. Our performance decreases

when FAPIS is trained without the NMF regularization in

FAPIS-LNMF. FAPIS gives the best performance in com-

parison with the strong baselines.

Note that we cannot directly evaluate our part detection,

since we do not have ground-truth annotations of parts.

Figure 4. Visualization of the most important 10 latent parts out

of 16 predicted for example instances of the “human” and “car”

classes from the COCO-200 validation dataset. From left to right:

(a) input image, (b) GT segmentation, (c) predicted segmentation,

(d) 10 most relevant parts. The predicted importance of the parts

is color-coded from blue (smallest) to green (largest).

4.3. Comparison with prior work

FAPIS is compared with Meta-RCNN [43], Siamese

Mask-RCNN [29] and YOLACT [1]. Meta-RCNN and

Siamese Mask-RCNN use the same anchor-based frame-

work, but differ in that Meta-RCNN performs the feature

correlation after the RPN, whereas Siamese Mask-RCNN

does this before the RPN. YOLACT is another anchor-

based instance segmentor based on RetinaNet [24], which

learns to predict object shapes instead of object parts, and

we adapt it to few-shot instance segmentation by changing

its feature extraction module as in Fig. 1.

Note that the results of Siamese Mask-RCNN in [29]

are reported for evaluation where the support images do not

provide ground-truth segmentation masks, but only bound-

ing boxes. Therefore, for fairness, we evaluate Siamese

Mask-RCNN (without any changes to their public code) on

the same input as for Meta-RCNN, YOLACT, and FAPIS–

i.e., when the support images provide ground-truth segmen-

tation masks of object instances. In addition, in [43], the re-

sults of Meta-RCNN are reported for a different version of

COCO. Therefore, we evaluate Meta-RCNN (without any

changes to their public code) on our test sets.

Tab. 4 reports one-shot and five-shot object detection re-

sults, and Tab. 5 shows one-shot and five-shot instance seg-

mentation results. From these tables, Siamese Mask-RCNN

performs slightly better than Meta-RCNN, since the feature

correlation happens before the RPN, enabling the RPN to

better adapt its bounding box proposals to the target class.

Our FAPIS outperforms YOLACT by 2% for one-shot and

five-shot instance segmentation. This demonstrates advan-

tages of using latent parts and their layouts for assembling

object shapes in our approach over the YOLACT’s proto-

types in few-shot instance segmentation.

Our gains in performance are significant in the context

of previous performance improvements reported by prior

work, where gains were only by about 0.6% by [29] vs [43],

by 0.1% by [29] vs [1], by 0.5 % [1] vs [43]. We improve by

1.8% and 2.0% over [29] on one-shot and five-shot instance

segmentation, respectively.

4.4. Qualitative Evaluation

Fig. 4 visualizes the most important 10 of 16 latent parts

and their relative importance for a few example instances

of the “human” and “car” classes from the COCO-200 val-

idation set. The figure shows that the predicted latent parts

are smaller components of the objects, and that some parts

may be assigned a meaningful interpretation. Our visual-

ization of the latent parts for other classes can be found in

the supplementary material.

A few representative success and failure results on

COCO-200 are illustrated in Fig. 5, and others are included

in the supplementary material.

5. Conclusion

We have specified a new few-shot anchor-free part-based

instance segmenter (FAPIS) that predicts latent object parts

for instance segmentation, where part annotations are not

available in training. FAPIS uses our new anchor-free object

detector (AFD), PartNet for localizing the latent parts, and

part assembly module for fusing the part activation maps by

their predicted importance into a segmentation of every de-

tected instance. We have regularized learning such that the

identified latent parts and similar to the sparse bases of the
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# shots Method COCO-200 COCO-201 COCO-202 COCO-203 mean

K=1

Meta-RCNN [43] 17.7 ± 0.7 19.2 ± 0.6 17.7 ± 0.3 21.1 ± 0.4 18.9

Siamese M-RCNN [29] 18.3 ± 0.8 19.5 ± 0.7 18.0 ± 0.4 21.5 ± 0.6 19.3

YOLACT [1] 18.0 ± 0.5 18.8 ± 0.5 17.8 ± 0.6 21.2 ± 0.7 19.0

FAPIS 20.9 ± 0.4 20.4 ± 0.1 20.0 ± 0.6 23.4 ± 0.5 21.2

K=5

Meta-RCNN [43] 19.1 ± 0.4 21.2 ± 0.2 19.6 ± 0.5 24.0 ± 0.2 21.0

Siamese M-RCNN [29] 20.0 ± 0.4 21.6 ± 0.3 20.2 ± 0.4 24.1 ± 0.3 21.5

YOLACT [1] 20.8 ± 0.4 21.1 ± 0.2 20.2 ± 0.5 24.8 ± 0.2 21.7

FAPIS 22.6 ± 0.3 22.8 ± 0.0 22.6 ± 0.6 26.4 ± 0.2 23.6

Table 4. mAP50 with standard deviation of one-shot and five-shot object detection on COCO-20i. The best results are in bold.

# shots Method COCO-200 COCO-201 COCO-202 COCO-203 mean

K=1

Meta-RCNN [43] 16.0 ± 0.6 16.1 ± 0.5 15.8 ± 0.3 18.6 ± 0.4 16.6

Siamese M-RCNN [29] 16.6 ± 0.8 16.6 ± 0.6 16.3 ± 0.7 19.3 ± 0.6 17.2

YOLACT [1] 16.8 ± 0.6 16.5 ± 0.5 16.1 ± 0.4 19.0 ± 0.6 17.1

FAPIS 18.8 ± 0.3 17.7 ± 0.1 18.2 ± 0.7 21.4 ± 0.4 19.0

K=5

Meta-RCNN [43] 17.4 ± 0.3 17.8 ± 0.2 17.7 ± 0.7 21.3 ± 0.2 18.6

Siamese M-RCNN [29] 17.5 ± 0.4 18.5 ± 0.1 18.2 ± 1.0 22.4 ± 0.2 19.2

YOLACT [1] 17.6 ± 0.2 18.4 ± 0.2 17.9 ± 0.6 21.8 ± 0.3 18.9

FAPIS 20.2 ± 0.2 20.0 ± 0.1 20.4 ± 0.7 24.3 ± 0.2 21.2

Table 5. mAP50 with standard deviation of one-shot and five-shot instance segmentation on COCO-20i. The best results are in bold.

Figure 5. Our one-shot instance segmentation on COCO-200. For each pair of images, the support is the smaller and the query is the larger

image. Results for the segmentation and bounding-box detection of each instance are marked with distinct colors in the query. The green

border indicates success, and the red border marks failure. FAPIS typically fails when instances in the support image are very different in

appearance, shape, or 3D pose from instances in the query. Best viewed in color.

non-negative matrix factorization of the ground-truth seg-

mentation masks. Our evaluation on the benchmark COCO-

20i dataset demonstrates that: we significantly outperform

the state of the art; our prediction of latent parts gives better

performance than using the YOLACT’s prototypes or using

the standard mask-head of Mask-RCNN; and our anchor-

free AFD improves performance over the common anchor-

based bounding-box prediction.
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